
A Near-Instantaneous and Non-Invasive Erasure 

Design Technique to Protect Sensitive Data Stored in 

Secure SRAMs 
J.-P. Noel, M. Pezzin, J.-F. Christmann, L. Ciampolini, M. Le Coadou, M. Diallo, F. Lepin, B. Blampey1, S. Bacles-

Min, R. Wacquez1,2 and B. Giraud 

Univ. Grenoble Alpes, CEA, LIST, F-38000 Grenoble 
1Univ. Grenoble Alpes, CEA, LETI, F-38000 Grenoble 

2CEA Tech, Systèmes et Architectures Sécurisées (SAS), Centre CMP, Equipe Commune CEA Tech - Mines Saint-

Etienne, Gardanne 

jean-philippe.noel@cea.fr 

 
Abstract—On-chip memories, and in particular SRAMs, are 

among the most critical components in terms of data security 

because they might contain sensitive data such as secret keys. 

Whenever a tampering event is detected, one should be able to erase 

efficiently and rapidly the full content of a memory holding such 

sensitive data, but current solutions based on simple power-off lead 

to very long erasure times. In this paper, we present a non-invasive 

design technique based on an innovative mechanism to remove 

electric charges from SRAM bitcells still powered on, before 

refreshing them with a new content not correlated with the previous 

one. The particularity of this novel hardware countermeasure is to 

be natively compatible with any SRAM circuit designed from 

pushed-rule foundry bitcells. We have designed and characterized 

an 8kB SRAM in 22nm FD-SOI process technology exploiting the 

proposed security strategy demonstrating an erase operation 

accomplished in the nanosecond time scale (versus 295µs with the 

conventional power-off solution) at the cost of an additional area of 

less than 5%. We have also shown that our solution is more efficient 

than a solution without prior erasure consisting in writing identical 

data to all memory addresses in a single clock cycle (1 ns). The use 

of the latter drops the ratio of zeroized addresses at 92%, while 

increasing the operating energy consumption by 2.1x under nominal 

operating conditions. 

I. INTRODUCTION 

Today, SoC design faces new challenges such as being able to 
take full advantage of smart and secure cyber-physical systems 
(CPS) in the demanding world of IoT. Design efforts therefore 
focus on two distinct areas: (1) how to deliver high performance 
while minimizing energy consumption and (2) how to provide 
both cryptographic-quality “roots of trust” in silicon and 
resistance to physical side-channel attacks with minimal area 
overhead [1-2]. Among the main elements of a CPS, on-chip 
memories, and in particular SRAMs, are probably the most 
critical in terms of performance and vulnerabilities to attacks 
because they might contain sensitive data (such as secret keys) 
[3]. In this context, the detection of malicious tampering events 
(mechanical, electrical or optical) is then the first bulwark of the 
defense strategy aimed at effectively securing SRAMs, while 
maintaining high performance in nominal operating conditions 
[4]. As a response to a tampering event, two types of 
countermeasure can be applied: (1) software and (2) hardware. 
Software countermeasures are generally less expensive to 
implement and sufficiently effective against most threats. 
However, in some cases, this type of countermeasure is not fast 

enough. This is particularly the case for data remanence attacks 
(or cold-boot attacks) [5]. In this case, a well-known hardware 
countermeasure consisting in powering off the SRAM can be 
advantageously used [6]. This technique drastically reduces the 
erasure time (compared to software countermeasures), while 
being relatively easy to implement. Nevertheless, it may still be 
too slow for certain sensitive applications (such as key 
generation). To further reduce the erasure time, the use of an 
inverting charge pump is an efficient solution but at the cost of 
a relatively large silicon footprint. With the constant 
improvement of physical side-channel attack techniques 
combined with the increase of parasitic elements, which slows 
down the power-off of SRAMs in advanced CMOS technology 
nodes (below 28nm), faster, less invasive and more efficient 
countermeasures must be developed. An alternative solution is 
to intentionally tamper memory content by writing as quickly as 
possible a new content defined at design time (e.g. zeroization). 
This consists, for example, in writing new data address-by-
address [5][7]. Nevertheless, this design technique presents two 
major drawbacks. First, the time of self-tampering depends on 
the memory size (i.e. the number of addresses to tamper). 
Second, the refreshed data is not uncorrelated from the previous 
one. This means that an attacker can exploit the information leak 
by side-channel analysis to retrieve the original data [8]. In 
secure CPS, the notion of temporality is a key factor because the 

 
Figure 1 Integration scheme of a secure SRAM erasable after tampering 

event detections either by (top) powering it off or (bottom) using the 
proposed fast erase mechanism. 



 

faster the system reacts to a tampering event, the less the attacker 
has the chance to recover data. For this reason, a hardware 
countermeasure must also generate as few information leaks as 
possible that can be exploited by attackers. In this paper, we 
propose a design technique that significantly reduces the erasure 
time, while decorrelating at the same time the memory content 
with the previous one to minimize the information leaks. In 
addition, particular attention has been paid to limit both the area 
overhead and the performance penalty, while remaining 
compatible with any conventional SRAM circuit designed from 
pushed-rule foundry bitcells. 

The remainder of the paper is organized as follow: Section II 
describes the proposed non-invasive design technique for 
quickly erasing the sensitive data of a secure SRAM. Section III 
presents and compares the measurement results obtained from 
an 8kB SRAM testchip implemented in 22nm FD-SOI process 
technology. Finally, Section IV summarizes the paper and 
presents the application perspectives. 

II. PROPOSED FAST ERASE SRAM CIRCUIT 

 Integration scheme with a tamper detection 

Most of the time, the erasure of the memory content is triggered 
following the physical detection of a tamper event. For the 
response to this detection to be as effective as possible, in 
particular to counter cold-boot attacks, the memory must erase 
its content as quickly as possible. Figure 1 illustrates an example 
of the use of a tamper detection controlling the path of the supply 
voltage of the SRAM to be secured. Conventionally, the erasure 
of the sensitive data will be carried out by the tamper detection 
by switching the supply voltage to either ground or a negative 
voltage (-VDD) to accelerate the operation. In the first case, the 
erasure time is often very long (few µs to few ms), while in the 
second case the area overhead is significant.In both cases, the 
entire memory is erased (even non-sensitive data) but its content 
after initialization is not mastered. This could be problematic to 
protect the content of an SRAM used to generate PUFs. The 
proposed fast erase mechanism makes it possible to respond to 
all of these issues by integrating it at a lower cost at memory cut 
or compiler level. 

 Circuit description & implementation 

Figure 2 represents the 8kB SRAM testchip manufactured in 
Globalfoundries 22nm FD-SOI technology. It is composed of 2 

sub arrays of 256 addresses of 128 bits in MUX-1 configuration 
(i.e. 256 rows of 128 columns). Each of these sub arrays consists 
of two bitcell matrices of 128 rows of 128 columns. Access to 
each matrix is via a shared local IO (including the write and read 
circuitry connected to the BLs) and the WL drivers controlled 
by an internal clock signal supplied by the local controller. The 
special feature of this testchip is that it does not include address 
decoding circuitry to allow multiple selection of write WLs 
(WWLs). Finally, the bitcell used for its design is a pushed-rule 
foundry two-port (8T). Figure 3 (a) shows the implementation 
at schematic level of the proposed fast erase mechanism in the 
different elements of the sub-arrays, mainly at the level of WL 
and write drivers. Concerning the WL driver, two transistors per 
bitcell row have been added to allow simultaneous activation of 
all the WWLs when the erase signal is activated. Then, in the 
write driver of the local IO, two transistors have been also added 
to connect the write BLs (WBLT & WBLF) between them and 
to disconnect the bitcell column from its supply voltage (VDD). 
Figure 3 (b) shows the impact of integrating these modifications 
at layout level, while Figure 3 (c) quantifies it in terms of 
additional cost: 1% of the overall area of the 8kB SRAM and 
estimated at 3.2% for a memory capacity reduced to 256B. 
Figure 4 shows a comparison between the erase mechanisms by 

 
Figure 3 (a) Schematic and (b) layout views of the proposed fast erase 
mechanism (additional transistors in dark blue) in the sub array of the 

1R1W 8kB SRAM in MUX-1 configuration and (c) the area overhead (also 

extrapolated for a 256B SRAM). 

 
Figure 2 Proposed 8kB (512x128-bit) SRAM architecture based on 2 sub-

arrays in MUX-1 configuration. 

LOCAL IO

ARRAY<3>

ARRAY<2>

LOCAL IO

GLOBAL 

CTRL/IO

D/Q/CTRL

5
1

2
 R

O
W

S

128 COL.

2-SUB

ARRAY
(MUX1)

1
2

8
-R

O
W

S

ARRAY<1>

ARRAY<0>

LCTRL

WL

DRV

WL

DRV

LCTRL

WL

DRV

WL

DRV

R
O

W
 S

E
LE

C
T

IO
N

CLK

128 COL.

ERASE



 

(a) by powering off and by (b) using the modifications depicted 
in Figure 3. In Figure 4 (a), when VDD is forced to ground, in 
each bitcell only one pull-up PMOS (PU) can discharge the 
internal node from ‘1’ to ‘0’. Morever, as soon as the internal 
node (node high, NH) reaches a value close to the threshold 
voltage of the PU (VTP), the latter operates in weak-inversion 
region and considerably slows down the erasure time. The most 
effective way to speed up the erase operation is thus to apply a 
negative supply voltage via an inverting charge pump. In Figure 
4 (b), the activation of the erase signal triggers (1) the opening 
of all the WWLs then, with a certain delay, (2) the isolation of 
the supply voltage of each bitcell column and (3) the 
equalization of the WBLT/WBLF pairs. This puts all the pull 
down NMOS of each bitcell in the diode-mounted 
configuration, leading to an acceleration of the evacuation of the 
electric charges from all the internal nodes (NH) of the bitcells. 
Figure 5 illustrates that after the memory erasure phase, the 
bitcells are in an undetermined data state. In the following state 
(memory initialization), the WWLs are deactivated (controlled 
by ERASE_WL signal) only after the supply voltage of the write 

drivers and of each bitcell column is restored and once the 
WBLT/WBLF pairs are electrically disconnected. In this way, 
new data can be decorrelated from the previous ones (limiting 
the information leak) and initialized all-at-once for the full array 
from data hold in write latches. 

III. MEASUREMENT RESULTS 

 Erasure time 

Figure 6 shows the reference erasure time measured on a 

different 8kB SRAM manufactured in the same CMOS 

technology (using the same process options) and coming from 

a commercial memory compiler supported by the foundry. In 

this case, the SRAM was powered off for increasing time 

durations, allowing to acquire the cumulative distribution of the 

erased bitcell data, as shown in the left part of Figure 6. The 

resulting time of 295µs at 0.6V is significantly longer than that 

obtained with our solution, which was less than 150ns (the 

current testchip design did not allow us to measure erasure 

times less than 150ns, a limitation that will be drop in future 

releases). Post-layout Spice simulations at room temperature 

(25°C) and typical process have then been performed in order 

to improve the accuracy of the comparison. The erasure time is 

defined by the time interval that begins when the rising edge of 

the erase signal reaches 50% of VDD and ends when all internal 

nodes of the bitcells are equalized. The initialization time is 

defined by the time interval from the falling edge of the erase 

signal reaching 50% of VDD to the internal node (NH) of the 

slowest bitcell reaching 90 % of VDD. This condition is only 

valid if all the memory addresses have been correctly written 

with the value held in the write latch. As shown in the right part 

of Figure 6, the simulated erasure time of the proposed fast 

erase mechanism is 0.5ns and even decreases down to 0.15ns at 

0.85V (nominal VDD). As for the initialization time, it is of the 

same order of magnitude ranging from 0.7ns to 0.3ns at 0.6V 

and 0.85V, respectively. This reduction is explained by the fact 

that the more the supply voltage increases, the faster the diode-

mounted transistors evacuate electrical charges. 

 Erasure efficiency & energy consumption 

Two methods are available in the proposed testchip to initialize 

the full memory content at ‘0’ (zeroization): either the latch-

based mechanism, described in section II, or a massively 

parallel write ‘0’ operation performed by switching on all WLs. 

The worst-case energy cost of both methods has been evaluated 

by writing at first a solid ‘1’ in a traditional way to all memory 

 
Figure 5 Diagram of the operating sequence of the fast erase mechanism 

triggered by a tampering event. 

 
Figure 4 Erase mechanism when the SRAM is (a) powered-off and (b) 

driven by the proposed fast erase circuit (bitcell columns in diode-mounted 

NMOS configuration). 

 
Figure 6 Measured erasure time by powering off a standard 8kB SRAM 

and measured/simulated erasure/initialization time using the fast erase 
mechanism of the proposed 8kB SRAM. 

0

20

40

60

80

100

1 10 100 1000e
ra

se
d

 m
e

m
o

ry
 c

o
n

te
n

t 
(%

)

measured TERASE_REF (µs)

8kB SRAM

0.6V/25°C

295µs

*post-layout Spice simulations (TT/25°C) 

VDDA/P (V) 0.6 0.85

TERASE_REF (ns) 295.103

TERASE_FAST (ns)
<150

0.5* 0.15*

TINIT_FAST (ns) 0.7* 0.3*



 

addresses (in 512 write cycles, i.e. 512ns at 0.85V). For the 

proposed fast initialization mechanism, a ‘0’ is recorded in the 

write latches without activating any WWLs. Finally, the erase 

signal is activated for 150ns. For the massive parallel write 

mechanism, all of the WWLs are activated during a write ‘0’ 

operation during a single cycle (1ns). Figure 7 (a) shows the 

percentage of correctly zeroized memory addresses for supply 

voltages ranging from 1 to 0.8V for the periphery (VDDP) and 

down to 0.6V for the bitcell arrays (VDDA) at room 

temperature. Under all these conditions, the rate of zeroizing is 

100% using the fast erase mechanism, while it drops to 92% in 

the nominal condition (0.85V) using the parallel write, because 

the write drivers in local IO have not been oversized to drive 

128 WWLs to spare area and power. A 100% of zeroizing can 

be achieved with this technique if VDDP is increased by 

100mV (up to 0.95V), while decreasing VDDA by 100mV 

(down to 0.75V). This increases the erasure energy by 23% 

whereas this is already 2.1x higher in nominal condition than 

the energy consumed by the proposed fast erase mechanism 

(Fig. 7 (b)). Finally, Figure 8 shows the die micrograph and the 

testchip summary at 0.85 V. 

IV. CONCLUSION 

This paper proposes a near-instantaneous and non-invasive 

erasure design technique to efficiently protect the sensitive data 

stored in secure SRAMs. This novel hardware countermeasure, 

applied in response to a tampering event, has been developed to 

compensate for the relatively long erasure time when powering 

off SRAM, especially in advanced CMOS technology nodes. 

We have thus experimentally demonstrated that the erasure 

time when switching off supply voltage (0.6V@25°C) of an 

8kB SRAM fabricated in 22nm FD-SOI process technology 

was 295µs versus an estimated 0.15ns (2.106x reduction) using 

the proposed fast erase mechanism. Furthermore, this solution 

limits the possible information leaks by completely 

decorrelating the new memory content with the previous one. 

An alternative erasure strategy based on a complete rewriting 

of the data without prior erasure has been demonstrated to be 

not as effective in a single clock cycle (1ns) because the rewrite 

is incomplete (92% of addresses zeroized) and increases energy 

consumption by 2.1x under nominal operating conditions. 

Finally, the proposed solution is also competitive both in terms 

of area (<5% overhead) and memory performance (no 

significant increase in leakage currents and timing) thanks to its 

native compatibility with any conventional SRAM circuit 

designed from pushed-rule foundry bitcells. In perspective, this 

design technique could be also advantageously used to design 

efficient and secure SRAM-based PUF or RNG providing 

cryptographic-quality “roots of trust” in silicon. 

REFERENCES 

[1] P. Kocher, “Complexity and the challenges of securing SoCs”, DAC, pp. 
328–331, 2011. 

[2] A. Ehret et al., “A Survey on Hardware Security Techniques Targeting 
Low-Power SoC Designs”, HPEC, pp. 1–8, 2019. 

[3] S. Malliaros, C. Ntantogian and C. Xenakis, “Protecting Sensitive 
Information in the Volatile Memory from Disclosure Attacks”, ARES, pp. 
687–693, 2016. 

[4] D. Serpanos and D. Stachoulis, “Secure Memory for Embedded Tamper-
proof Systems”, DTIS, pp. 1–4, 2019. 

[5] W.-G. Ho et al., “Area-efficient and low stand-by power 1k-byte 
transmission-gate-based non-imprinting high-speed erase (TNIHE) 
SRAM”, ISCAS, pp. 698–701, 2016. 

[6] K. Wenjing et al., “Novel security strategies for SRAM in powered-off 
state to resist physical attack”, ISIC, pp. 298–301, 2009. 

[7] A. Srivastava and P. Ghosh, “An Efficient Memory Zeroization 
Technique Under Side-Channel Attacks”, VLSID, pp. 76–81, 2019. 

[8] R. Giterman et al., “Power Analysis Resilient SRAM Design 
Implemented with a 1% Area Overhead Impedance Randomization Unit 
for Security Applications”, ESSCIRC, pp. 69–72, 2019. 

 

 
Figure 8 Die micrograph and chip summary @0.85 V. 

 
Figure 7 Shmoo plot of measured (a) percentage of memory content at ‘0’ 

and (b) energy consumption using write with all active WWLs (left) and 

fast erase (right). 

1 35

0.95 45 35

0.9 19 66 54

0.85 92 77 75 75

0.8 94 99 99 99 99

0.75 93 99 99 100 100

0.7 93 98 99 99 100

0.65 93 98 99 99 100

0.6 94 97 99 99 100

0.8 0.85 0.9 0.95 1

V
D

D
A

 (
V

)

VDDP (V)

1 100

0.95 100 100

0.9 100 100 100

0.85 100 100 100 100

0.8 100 100 100 100 100

0.75 100 100 100 100 100

0.7 100 100 100 100 100

0.65 100 100 100 100 100

0.6 100 100 100 100 100

0.8 0.85 0.9 0.95 1

V
D

D
A

 (
V

)
VDDP (V)

Fast EraseWrite w/ all active WLs
(w/o prior erasure)

% of memory content at ‘0’ (zeroization) after:

1 1.82

0.95 1.29 1.82

0.9 0.88 1.29 1.82

0.85 0.56 0.88 1.29 1.82

0.8 0.34 0.56 0.88 1.29 1.82

0.75 0.34 0.56 0.88 1.29 1.82

0.7 0.34 0.56 0.88 1.29 1.82

0.65 0.34 0.56 0.88 1.29 1.82

0.6 0.34 0.56 0.88 1.29 1.82

0.8 0.85 0.9 0.95 1

V
D

D
A

 (
V

)

VDDP (V)

1 3.27

0.95 1.44 2.13

0.9 1.36 1.44 2.12

0.85 1.19 1.35 1.44 2.12

0.8 1.13 1.19 1.34 1.44 2.14

0.75 1.12 1.19 1.34 1.46 2.21

0.7 1.12 1.19 1.36 1.52 2.40

0.65 1.11 1.20 1.41 1.69 2.82

0.6 1.12 1.25 1.57 2.09 3.52

0.8 0.85 0.9 0.95 1

V
D

D
A

 (
V

)

VDDP (V)

Fast EraseWrite w/ all active WLs
(w/o prior erasure)

Energy (fJ/bit) to zeroize the memory content 

nom.

nom. ÷2.1

(a)

(b)


