Innovative Technologies for District Heating and Cooling: InDeal Project - Archive ouverte HAL Access content directly
Journal Articles MDPI Proceedings Year : 2019

Innovative Technologies for District Heating and Cooling: InDeal Project

(1) , (1) , (1) , (1) , (2) , (2) , , (3) , , , , , , , , , ,
1
2
3
Elise Saoutieff
Pierre Gasnier
Javier Ojer-Aranguren
  • Function : Author
Bartosz Marciniak
  • Function : Author
Isabelle Rodot
  • Function : Author
Emil Lezak
  • Function : Author
Jakub Pluta
  • Function : Author
Mladen Penev
  • Function : Author
Hilkka Jäppinen
  • Function : Author
Samuel Petit
  • Function : Author
Marko Krajnc
  • Function : Author
Kostas Kouvaris
  • Function : Author
Anastasia Eleftheriou
  • Function : Author

Abstract

The paper discusses the outcomes of the conference organized by the InDeal project. The conference took place on 12 December 2018 in Montpellier as part of the EnerGaia energy forum 2018. A holistic interdisciplinary approach for district heating and cooling (DHC) networks is presented that integrates heterogeneous innovative technologies from various scientific sectors. The solution is based on a multi-layer control and modelling framework that has been designed to minimize the total plant production costs and optimize heating/cooling distribution. Artificial intelligence tools are employed to model uncertainties associated with weather and energy demand forecasts, as well as quantify the energy storage capacity. Smart metering devices are utilized to collect information about all the crucial heat substations parameters, whereas a web-based platform offers a unique user environment for network operators. Three new technologies have been further developed to improve the efficiency of pipe design of DHC systems: (i) A new sustainable insulation material for reducing heat losses, (ii) a new quick-fit joint for an easy installation, and (iii) a new coating for reducing pressure head losses. The results of a study on the development and optimization of two energy harvesting systems are also provided. The assessment of the environmental, economic and social impact of the proposed holistic approach is performed through a life cycle analysis. The validation methodology of the integrated solution is also described, whereas conclusions and future work are finally given.
Fichier principal
Vignette du fichier
proceedings-05-00001-v2.pdf (564.96 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

cea-03582665 , version 1 (21-02-2022)

Licence

Attribution - CC BY 4.0

Identifiers

Cite

Serafeim Moustakidis, Ioannis Meintanis, Nicos Karkanias, George Halikias, Elise Saoutieff, et al.. Innovative Technologies for District Heating and Cooling: InDeal Project. MDPI Proceedings, 2019, 5 (1), pp.1. ⟨10.3390/proceedings2019005001⟩. ⟨cea-03582665⟩
9 View
14 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More