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Abstract

In this paper, a phase-field model is developed for a two phase compositional (multicomponent) system and
combined with the thermodynamic description provided by a CALPHAD database. The model is applied to a
uranium-oxygen binary system within a solid/liquid mixture to simulate incipient melting and oxygen transport
(oxygen-uranium inter-diffusion and Soret effect) in the fuel with thermodynamic properties coming from the
Thermodynamics for Advanced Fuels-International Database (TAF-ID). The interface with the TAF-ID required
the coupling of the phase-field model with the OpenCalphad thermochemical solver. This coupling led to the
development of a partitioned scheme that is solved at each time step with a fixed-point algorithm. To analyze the
response of and to parameterize the phase-field model, two 1D demonstration problems from the open literature
have been considered and solved using a finite-difference scheme. The first problem deals with oxygen transport
in UO2.005 fuel under an imposed parabolic temperature profile below liquidus. The second one describes the
incipient melting and oxygen transport in oxidized fuel under an increasing temperature profile. Oxygen thermal
diffusion is considered both in the solid and liquid phases. All the results presented in this paper are in good
agreement with those already published but are here performed considering a direct coupling with the TAF-ID
database. They demonstrate the thermodynamic consistency of the phase-field model as well as its capability to
simulate incipient melting and oxygen transport in the fuel with advanced thermodynamics databases.
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1. Introduction

In nuclear reactors, the fuel experiences high temperatures and large temperature gradients. During extreme
power transients, partial fuel core melting might occur. Modeling the phase change is complex due to the Fission
Products (FPs) generated in the fuel material that modifies the local equilibria. In case of defective fuels, transport
mechanisms such as oxygen thermal diffusion in the solid phase might also be involved [1]. Since the fuel phase5

change depends on the local oxygen-to-uranium ratio [2], a strong coupling between the heat flux, the oxygen
redistribution process and the local chemical equilibria in the fuel must be considered. In the last decade, the
thermochemical state of the FPs and their migration in the fuel have received greater attention in conditions far
from fuel melting [3, 4, 5]. Thermochemical solvers capable of handling large and complex chemical systems have
been developed [6, 7, 8, 9]. Thanks to modern interface softwares, they have been incorporated in fuel perfor-10

mance codes [4, 5, 10, 11, 12, 13]. To our knowledge, there is no fuel performance code that is nowadays capable
of handling simultaneously fuel melting, oxygen thermal diffusion and local chemical equilibria in the fuel.

The coupling between thermal diffusion, oxygen thermal diffusion and local chemical equilibria is already
available in the PLEIADES/ALCYONE 2.1 fuel performance code [4, 5, 13] but limited to temperatures below the
liquidus and to the constant power plateau of power ramps. Indeed, it relies on the thermodynamic properties of15

the TBASE database [14] that does not contain any description of the liquid phase diagram. The thermal diffusion
problem is furthermore formulated as a function of the fuel stoichiometry deviation. Recently, Simunovic & al.
[11] have developed a model for oxygen transport in LWR fuel that has been performed in the BISON fuel perfor-
mance code [15, 16]. The model is formulated such that it can be combined with CALPHAD databases [2, 17, 18].
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In this approach, the driving force for the oxygen thermal diffusion mechanism is the oxygen chemical poten-20

tial gradient and not the stoichiometry deviation gradient in the fuel. This formulation facilitates the handling of
multi-component systems such as those encountered in irradiated fuels. Moreover, the Soret effect is formally ne-
glected assuming that the gradient of the oxygen chemical potential accounts for the effects of both composition
and temperature gradients.

The modeling actually provided by the BISON or PLEIADES/ALCYONE fuel performance codes is however25

limited to temperatures below the liquidus. To overcome this limit, phase-field modeling appears as an inter-
esting method since it is an efficient numerical approach for mesoscopic modeling of complex micro-structures
[19]. As shown in the open literature, phase-field methods are particularly suitable for physical systems with com-
plex topology changes such as, multiphase multicomponent flows [20, 21, 22, 23] and brittle fracture [24]. More
interesting for nuclear fuel applications, solute diffusion in a binary alloy [25], liquid phase segregation in the30

U–O binary system [26], solidification in binary alloys [27, 28], sub-oxidized corium plane front solidification [29],
constituent redistribution in U-Zr fuels [30, 31] and incipient melting in defective fuel [32, 33, 34] have all been
successfully treated with a phase-field modeling approach. Contrary to sharp interfaces models in which the in-
terfaces are viewed as discontinuous surfaces with excess physical properties, phase-field modeling considers the
interfaces as thin regions of finite thickness across which variables vary continuously and smoothly. This is why35

phase-field methods belong to the family of diffuse interface methods. With such a diffuse description of the inter-
faces, phase-field modeling enables an implicit tracking of the interfaces thanks to intensive phase-field variables,
also called order parameters, that are constant in each bulk phase and vary smoothly across the interfaces.

Another great interest of phase-field modeling is the possible and natural coupling with a thermodynamic
CALPHAD database from which thermodynamic fluxes involved in the governing equations and diffusion ki-40

netics parameters such as mobilities or self-diffusion coefficients can be directly calculated [35, 36]. As previ-
ously mentioned, most of the studies conducted in the PLEIADES platform about nuclear fuel thermochemistry
rely on a TBASE database. Recently, the Thermodynamics for Advanced Fuels-International Database (TAF-ID)
[2, 37, 38, 39] has been incorporated in the PLEIADES platform [12, 40]. Based on the CALPHAD method and the
Compound Energy Formalism (CEF) [41], the TAF-ID thermodynamic models take crystal and defect structure45

of the phases into account, such as, for example, sub-lattices, interstitials or vacancies. Moreover, compared to
the TBASE, the TAF-ID provides a more complex description of irradiated fuel and enables to describe the liquid
solution phase using an ionic model [42].

In the open literature, different approaches are used to couple a phase-field model with a CALPHAD database.
When the variables of the CALPHAD phase Gibbs energy function are the same than those of the phase-field50

model, a straightforward approach is to use directly an analytical expression of the Gibbs energy function (see
[30, 31, 32, 33, 34]). However, in complex thermodynamic systems with advanced thermodynamic representa-
tions, this is no longer possible as the homogeneous energy function of the phase-field model cannot be directly
identified with a CALPHAD phase Gibbs energy function. Additional modeling hypotheses are needed. In most
cases, a 〈〈 local 〉〉 energy minimization is involved (e.g. local equilibrium of redox mechanisms in [26]) and the55

interfacing of a CALPHAD thermodynamic description with a phase-field becomes a computational issue to be
handled with care [43]. The use of a thermodynamic solver (Gibbs energy minimizer) provides in fact an exact and
continuous representation of the composition dependence of the CALPHAD Gibbs energies. The difficulties that
can be encountered are an extra computational cost and the management of non convergence problems when
coupled to the phase-field model. In the present work, the experience acquired from the implementation of a60

thermochemical solver in the fuel performance code ALCYONE led to choose this type of direct coupling with a
thermodynamic solver.

In this work, the coupling between thermal diffusion, oxygen thermal diffusion and local chemical equilibria
available in the PLEIADES platform is expanded to temperatures above the liquidus. A new phase-field model
for a two-phase compositional (multicomponent) system is proposed. The general formulation of the governing65

equations is first derived in the frame of the Thermodynamics of Irreversible Processes (TIP) [44] by using suitable
thermodynamic closures. More particularly, the description of the liquid-solid interface is based on the Kim-Kim-
Suzuki model [28]. A reduction of this general model to a uranium-oxygen binary system in a solid/liquid mixture
is then detailed. Its implementation is explained with a focus on the numerical scheme that efficiently couples
the phase-field model with the OpenCalphad thermo-chemical solver [9][13]. Finally, to assess the efficiency of70

the coupling, two demonstration problems dealing with oxygen thermal diffusion and incipient fuel melting are
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presented. For this purpose, the OpenCalphad calculations are performed with the thermodynamic data coming
from the TAF-ID [2].

2. Thermodynamically consistent derivation of a phase-field model for a two-phase compositional system

This section is devoted to the derivation of a phase-field model for a two-phase compositional system. We start75

with the thermodynamic description of the targeted physical system and, more particularly, with the definition of
the thermodynamic closures. Then, we derive the governing equations in the frame of the TIP [44].

Before describing the thermodynamic system, it is noteworthy mentioning that the hydrodynamics and struc-
tural mechanics effects such as, respectively, convection and fuel cracking, are fully neglected in this work.

2.1. Statement of the problem and thermodynamic closures80

We begin by introducing a non-conserved phase-field variable ϕ to simulate the two-phase transformation
[19]. In this context, ϕ is often called order parameter as in [45], to cite among others. But here, the phase-field
variable rather plays the role of an indicator function. That is why, in the following, ϕ is referred to as phase-
indicator. It is equal to one in the solid phase, zero in the liquid phase and varies continuously and smoothly
between zero and one across the liquid-solid interface:

ϕ = 1 (solid phase) (1a)

ϕ = 0 (liquid phase) (1b)

ϕ ∈ ]0,1[ (liquid-solid interface) (1c)

Then, to describe the compositional system, we define a set of conserved variables which must fulfill the following
constraint:

n∑
i=1

xi = 1 (2)

where n is an arbitrary finite number of components. Here-above, the xi variable refers to the molar fraction of
the ith component1. As the gaseous phase is not described, we assume that each component is incompressible.
The thermal expansion and the volume change upon phase transition are also neglected. In these conditions, the
molar density (mol.m−3) of the liquid-solid mixture ρ or, equivalently, the molar volume Vm = 1/ρ only depends
on the composition of the system but, here, it is assumed to be constant for simplicity.85

At this stage, for the sake of clarity, let us define some notations that will be used in this section: the subscript
·i denotes a quantity related to the i th component; the superscripts ·l and ·s refer to the liquid and solid phases,
respectively; and the curly bracket {·} defines a set of variables indexed by the number of components.

In this work, we consider that a thermodynamic description of the two-phase compositional system by the
molar Gibbs energy g (J.mol−1) is valid. In the case of a diffuse interface modeling, g depends not only on the
pressure p, the temperature T , the phase-field variableϕ and the molar fractions {xi } but also on the gradients ∇ϕ
and {∇xi }. Under these circumstances, the proposed closure for the Gibbs energy density function reads:

ρg (p,T, {xi } ,ϕ, {∇xi } ,∇ϕ) = ρg0(p,T, {xi } ,ϕ)+W (ϕ)+
n∑

i=1

λi

2
|∇xi |2 + κ

2
|∇ϕ|2 (3)

where λi and κ are gradient energy coefficients (J.m−1), here assumed to be constant. In Eq.(3), g0(p,T, {xi } ,ϕ) is
a molar homogeneous free energy (J.mol−1) and W (ϕ) corresponds to the well-known double-well potential. The
latter is given by:

W (ϕ) =ωϕ2 (
1−ϕ)2 (4)

where ω is the height of the double-well (J.m−3). This parameter will be defined later. A schematic representation
of W (ϕ) is given in Fig.1 where the link to the smooth variation of the phase-field variableϕ across the interface is90

1Using the terminology considered in [8], it is important to keep in mind that the derivation of the model is based on the mole fractions of
components, not on the mole fractions of species nor on the sites fractions as in [46]
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shown. These graphs show that the double-well potential has two local minima inϕ= 0 andϕ= 1 that correspond
to the pure phases. It acts to separate the two phases contrary to gradient energy terms that can be viewed as a
regularization of the interfaces. It is the competition between these two terms that contributes to have a diffuse
interface.
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Figure 1: Schematic representation of the smooth variation of the phase-indicator ϕ across the interface, the double-well potential W (ϕ), the
interpolation function h(ϕ) and its derivative h′(ϕ)

At this stage, it remains to express g0 in Eq.(3). Here, we assume that the molar homogeneous free energy
is defined by the weighting of pure molar Gibbs energies g s and g l associated to the solid and liquid phases,
respectively. This reads:

g0(p,T, {xi },ϕ) = h(ϕ)g s (p,T, xs
i )+ [

1−h(ϕ)
]

g l (p,T, x l
i ) (5)

where h(ϕ) is an interpolation function. Here, according to [19], we consider the following expression:95

h(ϕ) =ϕ3 (
6ϕ2 −15ϕ+10

)
(6)
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whose first derivative with respect to ϕ is proportional to the double-well potential. We will see later that h′(ϕ)
appears in the phase-field model. The function h(ϕ) and its derivative h′(ϕ) are schematically presented in Fig.1.

Another important thermodynamic closure is the description of the interfacial region. Following [29, 30, 32],
we consider the well-known Kim-Kim-Suzuki model [28] to describe the interface as a mixture of solid and liquid
phases, with different composition but with the same chemical potentials.

xi = h(ϕ)xs
i +

[
1−h(ϕ)

]
x l

i (7a)

∂g s

∂xs
i

(xs
i ) = ∂g l

∂x l
i

(x l
i ) (7b)

Note that ∂g /∂xi differs from the standard definition of the chemical potential but is used here since the change
in the total density ρ induced by the components’ diffusion is neglected. For more details about the strength of
such a model compared to other approaches [27], we refer the interested reader to [19, 28, 46] and the references100

therein. The thermodynamic closures given by Eq.(3) to Eqs.(7) are similar to those proposed in [46]. They will be
used in the next section to derive the governing equations.

2.2. Governing equations

In this section, we derive the governing equations used to describe a two-phase compositional system. This is
done from the thermodynamic closures proposed in §2.1 in the frame of the TIP [44].105

To begin, let us consider the following set of governing equations:

∂ϕ

∂t
= −Jϕ (8a)

∂ρxi

∂t
= −∇· ji i = 1, . . . ,n (8b)

∂ρet

∂t
= −∇·qet (8c)

∂ρs

∂t
= −∇·qs +S (8d)

where s is the molar entropy , S the entropy source, qs the entropy flux, et the molar total energy , qet the total
energy flux, ji the compositional flux associated to the i th component and Jϕ a flow related to the phase change.
In this work, as done in [33], the momentum balance equation is ignored since neither structural mechanics nor
hydrodynamics effects are considered. Therefore, the molar total energy et corresponds to the molar internal
energy of the system e.110

In Eqs.(8), Jϕ, ji , qet and qs are thermodynamics flow and fluxes that must be specified such that the second
law of the thermodynamic holds, namely:

S ≥ 0 (9)

For this purpose, the governing equations Eqs.(8) must be combined under the constraint Eq.(2) to express the
entropy source S as a linear combination of thermodynamics forces and fluxes.

As already mentioned, the molar Gibbs energy depends on the pressure p, the temperature T , the phase-field
variable ϕ, the molar fractions {xi } but also on the gradients ∇ϕ and {∇xi }. Therefore, its differential reads:

d g =−sdT +Vmd p +
n∑

i=1
µi d xi +

n∑
i=1
ψi ·d∇xi +θdϕ+ζ ·d∇ϕ (10)
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where the molar volume Vm , the molar entropy s and the potentials µi ,ψi , θ, ζ are defined by:

Vm =
(
∂g

∂p

)
T,ϕ,∇ϕ,{xi },{∇xi }

(11a)

s = −
(
∂g

∂T

)
p,ϕ,∇ϕ,{xi },{∇xi }

(11b)

µi =
(
∂g

∂xi

)
p,T,ϕ,∇ϕ,{x j } j 6=i ,{∇xi }

(11c)

ψi =
(
∂g

∂∇xi

)
p,T,ϕ,{xi },{∇x j } j 6=i

(11d)

θ =
(
∂g

∂ϕ

)
p,T,∇ϕ,{xi },{∇xi }

(11e)

ζ =
(
∂g

∂∇ϕ
)

p,T,ϕ,{xi },{∇xi }
(11f)

Now, we define the molar internal energy e as a function of the molar Gibbs energy g by applying the Legendre
transformation. This yields to:

e = g −T

(
∂g

∂T

)
p,ϕ,∇ϕ,{xi },{∇xi }

−p

(
∂g

∂p

)
T,ϕ,∇ϕ,{xi },{∇xi }

(12)

In the following, the subscripts referring to the constant quantities in the partial derivatives will be omitted in
order to simplify the notations. The use of Eqs.(11) together with Eq.(12) leads to:

e = g +Ts −pVm (13)

Now, as the evolution of the two phase compositional system is driven by the minimization of the molar Gibbs
energy g , the Lagrange multiplier β is introduced to ensure the constraint Eq.(2), yielding:

e = g +Ts −pVm +β
n∑

i=1
(xi −1) (14)

or, equivalently, the following differential form (where the constant molar volume assumption is applied):

de = d g +T d s + sdT −Vmd p +β
n∑

i=1
d xi (15)

Then, substituting Eq.(10) in Eq.(15) and after performing some straightforward calculations under local thermo-
dynamic equilibrium conditions [44], it yields to:

∂e

∂t
= T

∂s

∂t
+

n∑
i=1

(
µ̃i +β

) ∂xi

∂t
+

n∑
i=1

∇·
(
ψi

∂xi

∂t

)
+η∂ϕ

∂t
+∇·

(
ζ
∂ϕ

∂t

)
(16)

where µ̃i and η are two generalized potentials defined by:

µ̃i = µi −∇·ψi i = 1, . . . ,n (17a)

η = θ−∇·ζ (17b)

By using Eq.(3) and Eqs.(11), they can be written as:

µ̃i = µi − λi

ρ
∇2xi i = 1, . . . ,n (18a)

η = ∂g

∂ϕ
− κ

ρ
∇2ϕ (18b)
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Finally, the governing equations Eqs.(8) are used to simplify Eq.(16), yielding:

∂ρs

∂t
=−∇·

(
1

T
q′

)
− 1

T 2 q′ ·∇T − 1

T

n∑
i=1

∇(
µ̃i +β

) · ji + 1

T
ρηJϕ (19)

where q′ is a heat flux given by:

q′ = ρζ
∂ϕ

∂t
−

n∑
i=1

[(
µ̃i +β

)
ji +ψi

∂
(
ρxi

)
∂t

]
+qet (20)

From the comparison of Eq.(19) to the entropy balance Eq.(8d), one can write:

q′ = T qs (21)

S = − 1

T

n∑
i=1

∇(
µ̃i +β

) · ji + 1

T
ρηJϕ− 1

T 2 q′ ·∇T (22)

As expected, the entropy source given by Eq.(22) is now expressed as a linear combination of the thermody-115

namic forces
([∇(

µ̃i +β
)]

/T,∇T /T 2,ρη/T
)

and of the thermodynamic fluxes
(−ji , −q′, Jϕ

)
responsible for the ir-

reversible processes [44].
In the frame of the TIP, the thermodynamic fluxes may be linked to thermodynamic forces thanks to linear

phenomenological relationships [44, 47]. Before expressing these relationships, let us discuss about the formula-
tion of the entropy source term. Indeed, it is noteworthy to mention that the conjugate pairs (−ji ,

[∇(
µ̃i +β

)]
/T )120

and (−q′,∇T /T 2) depend directly on how the heat flux is defined in Eq.(20). Another definition of the heat flux will
result in a different formulation of the entropy source term with different conjugate pairs. For example, following
[11, 44, 48, 49] to cite among others, S can be formulated as:

S = −
n∑

i=1
∇

(
µ̃i +β

T

)
· ji + 1

T
ρηJϕ− 1

T 2 q ·∇T (23)

where q is another heat flux related to qs (cf. Eq.(21)) according to:

q = T qs +
n∑

i=1

(
µ̃i +β

)
ji (24)

Compared to Eq.(22), the diffusion flux −ji in Eq.(23) is conjugate to ∇[(
µ̃i +β

)
/T

]
instead of

[∇(
µ̃i +β

)]
/T .125

From Eq.(24), another heat flux q can be defined. It reads:

q = q−
n∑

i=1

(
∂h

∂xi
−ψi

)
ji (25)

where h = g−Ts is the molar enthalpy (J.mol−1). In Eq.(25), q can be viewed as a 〈〈 reduced 〉〉 heat flux that includes
the pure heat conduction but excludes the heat transfer by diffusion [48]. Such a definition of the heat flux leads
to the following entropy source term:

S = − 1

T

n∑
i=1

∇T

(
µ̃i +β

) · ji + 1

T
ρηJϕ− 1

T 2 q ·∇T (26)

In Eq.(26), the conjugate pairs are different from those obtained in Eq.(22) or in Eq.(23). Here, the diffusion flux130

−ji is conjugate to
[∇T

(
µ̃i +β

)]
/T where ∇T is the gradient taken at constant temperature. It means that the

thermodynamic force
[∇T

(
µ̃i +β

)]
/T does not contain any temperature gradient contribution, contrary to the

thermodynamic force
[∇(

µ̃i +β
)]

/T that results from the heat flux q′ defined by Eq.(20). Such conjugate pairs are
similar to those considered in [34].

The definition of the heat flux could appear to be somewhat arbitrary since it does not change the physical135

results [44]. However, as it leads to different conjugate pairs, this choice determines in some extent the meaning
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of the physical effects that are described by the linear phenomenological relationships. Keeping that in mind, we
assume in this work that the heat flux defined by Eq.(20) and its associated entropy source term given by Eq.(22)
are suitable (or at least as suitable as any other) for describing the system of interest.

Now, assuming that the physical system is isotropic, the Curie principle applies [44] and we can propose the
following relations:

Jϕ = Lϕϕ
ρη

T
(27a)

−q′ = Lq′,q′
∇T

T 2 +
n∑

i=1
Lq′,i

∇(
µ̃i +β

)
T

(27b)

−ji = Li ,i
∇(
µ̃i +β

)
T

+Li ,q′
∇T

T 2 i = 1, . . . ,n (27c)

The coefficient Lq′,q′ is related to the thermal conductivity k so that with no mass flow, the heat flux q′ is given by
the well-known Fourier law. This leads to:

Lq′,q′ = kT 2 (28)

The coefficients Lϕ,ϕ and Li ,i correspond to mobility terms MϕT and ρMi T associated with the phase-field vari-
able ϕ and the ith component, respectively. Onsager’s theory [47] states that the cross coefficients Lq′,i and Li ,q′
are equal. The former is related to the Dufour effect i.e. the presence of a heat flux caused by composition gra-
dients. The latter is associated to the Soret effect i.e. the components diffusion under the temperature gradient.
They can be expressed as follows:

Li ,q′ = Li ,i Qi (29)

where Qi is the heat of transport coefficient associated with the ith component. Using the 〈〈 reduced 〉〉 heat flux
given by Eq.(25), Eq.(29) may be written as:

Li ,q′ = Li ,i Q?
i (30)

Here-above, Q?
i is the 〈〈 reduced 〉〉 heat of transport [48] that includes a kinetic contribution and a thermodynamic140

contribution [49, 50, 51]. Similarly to Eq.(25), it can be expressed as:

Q?
i = Qi −

(
∂h

∂xi
−ψi

)
(31)

From Eq.(31), it appears that the heat of transport Qi used in Eq.(29) corresponds to the kinetic contribution of
Q?

i whereas its thermodynamic contribution is rather contained in the thermodynamic force
[∇(

µ̃i +β
)]

/T that
is used in Eqs.(27b) and (27c).

As done by Welland & al. [34] in similar conditions, we assume that temperature gradients are sufficiently145

large compared to composition gradients so that the Dufour effect may be neglected. The Soret effect is taken into
account in our model.

In these conditions, the phenomenological relations Eqs.(27) read:

−q′ = k∇T (32a)

−ji = ρMi∇
(
µ̃i +β

)+ρMi Qi
∇T

T
i = 1, . . . ,n (32b)

Jϕ = Mϕρη (32c)

Now, we shall define the Lagrange multiplier β to express the fluxes ji . To this end, we use the mass balance
constraint Eq.(2) together with Eq.(8b), yielding:

n∑
i=1

∇· ji = 0 (33)

Then, to satisfy Eq.(33), we propose the following sufficient condition:

n∑
i=1

ji = 0 (34)
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which, combined with Eq.(32b), gives:

∇β=− 1
n∑

j=1
M j

[
n∑

i=1

(
Mi∇µ̃i +Mi Qi

∇T

T

)]
(35)

Now, after some calculations, one can write ji in the following form:

−ji = ρ
n∑

i= j
M j

{
n∑

k=1,k 6=i
Mi Mk

[
∇(
µ̃i − µ̃k

)+ (Qi −Qk )
∇T

T

]}
i = 1, . . . ,n (36)

Finally, by substituting the phenomenological relations Eq.(32a), Eq.(32c) and Eq.(36) in Eqs.(8) and by using
Eqs.(18), we are able to write the governing equations in the following form:

∂ϕ

∂t
= −Mϕρη (37a)

ρη = ρ
∂g

∂ϕ
−κ∇2ϕ (37b)

∂xi

∂t
= ∇·


1

n∑
j=1

M j

n∑
k=1,k 6=i

Mi Mk

[
∇(
µ̃i − µ̃k

)+ (Qi −Qk )
∇T

T

] i = 1, . . . ,n (37c)

µ̃i = ∂g

∂xi
− λi

ρ
∇2xi i = 1, . . . ,n (37d)

T
∂ρs

∂t
= ∇· (k∇T )−

n∑
i=1

∇(
µ̃i +β

) · ji −ρη∂ϕ
∂t

(37e)

Here-above, Eq.(37a) and Eq.(37b) correspond to the Allen-Cahn equation whereas Eq.(37c) and Eq.(37d) can be
viewed as Cahn-Hilliard equations where the diffusive driving force is extended to account for the Soret effect.
Following [28] and by using the thermodynamic closures given in §2.1, one can explicitly express the potentials η
(multiplied by the molar density ρ) and µ̃i as:

µ̃i = ∂g s

∂xs
i

− λi

ρ
∇2xi (38a)

ρη = −ρh′(ϕ)

[
g l − g s −

n∑
i=1

∂g s

∂xs
i

(
xi

l −xi
s
)]

+W ′(ϕ)−κ∇2ϕ (38b)

We refer the interested reader to Appendix A for more details about the derivation of Eqs.(38). More particularly,
we show in Appendix A that the potentials η (multiplied by the molar density ρ) and µ̃i can be written in the
following equivalent form:

µ̃i = ∂g l

∂x l
i

− λi

ρ
∇2xi (39a)

ρη = −ρh′(ϕ)

[
g l − g s −

n∑
i=1

∂g l

∂x l
i

(
xi

l −xi
s
)]

+W ′(ϕ)−κ∇2ϕ (39b)

Regarding Eq.(37e), in practice, it is more appropriate to perform numerical simulations as a function of tem-
perature instead of entropy. The entropy balance is therefore re-written as:150

ρCp
∂T

∂t
= ∇· (k∇T )−

n∑
i=1

[
∂h

∂xi
− λi

ρ
∇2xi

]
∂ρxi

∂t
−ρ

(
∂h

∂ϕ
− κ

ρ
∇2ϕ

)
∂ϕ

∂t
(40)
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and we refer the reader to Appendix B for more details about the derivation of this heat equation.
Finally, from Eqs.(37) together with Eqs.(38) and Eq.(40), one can write:

∂ϕ

∂t
= −Mϕρη (41a)

ρη = −ρh′(ϕ)

[
g l − g s −

n∑
i=1

∂g s

∂xs
i

(
xi

l −xi
s
)]

+W ′(ϕ)−κ∇2ϕ (41b)

∂xi

∂t
= ∇·


1

n∑
j=1

M j

n∑
k=1,k 6=i

Mi Mk

[
∇(
µ̃i − µ̃k

)+ (Qi −Qk )
∇T

T

] i = 1, . . . ,n (41c)

µ̃i = ∂g s

∂xs
i

− λi

ρ
∇2xi i = 1, . . . ,n (41d)

ρCp
∂T

∂t
= ∇· (k∇T )−

n∑
i=1

[
∂h

∂xi
− λi

ρ
∇2xi

]
∂ρxi

∂t
−ρ

(
∂h

∂ϕ
− κ

ρ
∇2ϕ

)
∂ϕ

∂t
(41e)

These equations stand for the general expression of our two-phase compositional phase-field model.

3. Reduction to the uranium-oxygen binary system in a solid/liquid mixture

Here, the phase-field model derived in §2 is applied to a system of interest for nuclear reactors. So, rather than
considering a general multi-component system to describe, for instance, a set of volatile fission products, we focus155

on the uranium-oxygen binary system. In addition, to simplify the problem, we assume that there is no miscibility
gap in the solid and liquid phases and consider that the gradient energy coefficients λo and λu are null. Such an
assumption is commonly used in solidification applications [19].

However, as shown by the U-O phase diagram of Fig.2, the binary system can exhibit miscibility gaps (see
〈〈 LIQUID-1+LIQUID-2 〉〉 in the hypostoichiometric region in Fig.2). Simulation of the associated phase segregation160

effects would require to keep these gradient coefficient terms in the system, as shown by Cardon & al. [26] in his
treatment of liquid phase segregation in the U-O binary system.

For a uranium-oxygen binary system in a solid/liquid mixture, the phase-field model given by Eqs.(41) boils
down into the following form:

∂ϕ

∂t
= −Mϕ

{
−ρh′(ϕ)

[
g l − g s −

(
x l

o −xs
o

)(
µ̃o − µ̃u

)]+W ′(ϕ)−κ∇2ϕ
}

(42a)

∂xo

∂t
= ∇·

{
Mu Mo

Mu +Mo

[
∇(
µ̃o − µ̃u

)+ (Qo −Qu)
∇T

T

]}
(42b)

µ̃o − µ̃u = ∂g s

∂xs
o
− ∂g s

∂xs
u

, with xu +xo = 1 (42c)

ρCp
∂T

∂t
= ∇· (k∇T )−

(
∂h

∂xo
− ∂h

∂xu

)
∂ρxo

∂t
−ρ

(
∂h

∂ϕ
− κ

ρ
∇2ϕ

)
∂ϕ

∂t
(42d)

without forgetting the interfacial region defined by:

xo = h(ϕ)xs
o +

[
1−h(ϕ)

]
x l

o (43a)

∂g s

∂xs
o

(xs
o)− ∂g s

∂xs
u

(xs
u) = ∂g l

∂x l
o

(x l
o)− ∂g l

∂x l
u

(x l
u) (43b)

where the subscripts ·u and ·o refer to uranium and oxygen, respectively. Here-above, it is noteworthy to mention
that the relationship Eq.(43b) ensures that the chemical potentials are the same in the interfacial region because
we focus on a binary system and xo +xu = 1.165
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Figure 2: U–O phase diagram calculated by the OpenCalphad thermochemical solver [9] at 5Mpa (pressure representative of the reactor con-
ditions of interest) with the TAF-ID database [2, 39]: visualization in a range of U-O of interest for nuclear reactors.

At this stage, let us take a look at the mobility coefficients whose expressions have not been discussed yet. Fol-
lowing [21] and [52], we express these coefficients in such a way that the two-phase compositional model remains
valid in some limiting cases, namely when one of the two phases or one of the two components vanishes. For
example, when the solid phase has fully melted (i.e. ϕ = 0), the phase-field model degenerates in the following
form:

∂xo

∂t
= ∇·

[
M l

c (xo , xu)∇(
µ̃o − µ̃u

)+M l
T

(xo , xu)
∇T

T

]
(44a)

µ̃o − µ̃u = ∂g l

∂x l
o

− ∂g l

∂x l
u

(44b)

ρCp
∂T

∂t
= ∇· (k∇T )−

(
∂h

∂xo
− ∂h

∂xu

)
∂ρxo

∂t
(44c)

where we have related the mobility coefficients Mu,u and Mo,o to a mobility coefficient M l
c (xo , xu) of the uranium-

oxygen binary system in the liquid phase. We have also denoted by M l
T

(xo , xu) the product of M l
c (xo , xu) with the

difference of the heat of transport coefficients Q l
o −Q l

u evaluated in the liquid phase. Here-above, Eqs.(44) corre-
spond to the oxygen thermal diffusion problem in the pure liquid phase. This limiting case is obtained whether
Mϕ is constant or depends on ϕ. So, as an initial approach, we assume Mϕ is constant for numerical reasons, i.e.
to ensure the convergence of the numerical method used to solve the discrete form of the Allen-Cahn equation
and to guaranty that the movement of the liquid-solid interface is controlled by the compositional diffusion gra-
dient. A similar approach has been followed by Welland [32]. However, in theory, this kinetic parameter should
be estimated on the basis of a rigorous dimensional analysis, as proposed by Tiwari [29]. Similarly, when ϕ = 1,
we can link the mobility coefficients to the compositional M s

c (xo , xu) and thermal M s
T

(xo , xu) mobility coefficients
for the uranium-oxygen binary system in the solid phase. In these conditions, we postulate the following general
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relationships:

Mc (ϕ, xo , xu) := h(ϕ)×M s
c (xo , xu)+ (

1−h(ϕ)
)×M l

c (xo , xu) (45a)

MT (ϕ, xo , xu) := h(ϕ)×M s
T

(xo , xu)+ (
1−h(ϕ)

)×M l
T

(xo , xu) (45b)

where h(ϕ) is the interpolation function given by Eq.(6). In the following, we assume that the generic mobility
coefficients in the oxygen thermal diffusion Eqs.(42b) are equal to Mc (ϕ, xo , xu) and MT (ϕ, xo , xu). In Eqs.(45), the
coefficients M s

c (xo , xu), M l
c (xo , xu), M s

T
(xo , xu) and M l

T
(xo , xu) must be defined to prevent unphysical apparition

of a component not initially present, such that:

xo (t = t0) = 0 ⇒ ∀t > t0, xo (t ) = 0 (46a)

xo (t = t0) = 1 ⇒ ∀t > t0, xo (t ) = 1 (46b)

To fulfill these constraints, we follow [19] and assume that M s
c (xo , xu) and M l

c (xo , xu) are given in the following
form:

M s
c (xo , xu) = (

M s
u xo +M s

o xu
)×xo ×xu (47a)

M l
c (xo , xu) =

(
M l

u xo +M l
o xu

)
×xo ×xu (47b)

where M l
u , M l

o , M s
u and M s

o are the uranium and oxygen mobilities, respectively associated with the liquid and
solid phases. They will be detailed in §5. At this stage, it is interesting to remark that the governing Eqs.(44) applied
to the solid phase can be viewed as an extension of the thermal diffusion equations proposed by Simunovic & al.
[11] where the diffusive driving force only depends on the oxygen chemical potential. Indeed, the diffusive driving
force in Eq.(44a) shows that, in our model, the oxygen transport is by oxygen-uranium inter-diffusion and by Soret170

effect.
Now, we focus on Eq.(42a) where we must first define the height of the double-wellω on which W ′(ϕ) depends

and then the gradient energy term κ. To do so, a standard way consists in conducting an one-dimensional analysis
of the phase-field model at the equilibrium state (see for instance [26, 28, 29, 32]). Here, it is noteworthy to mention
that such an analysis is only valid because the gradient energy coefficients λo and λu are null. Otherwise, the
analysis is broken by the inclusion of gradient energy terms (i.e. ∇xo and ∇xu) which produce implicit energy
contributions in interfacial energies. As shown in Appendix C, this analysis yields:

κ= 3

2
σε (48a)

ω= 12
σ

ε
(48b)

where ε andσ denote the liquid-solid interface thickness (m) and the surface tension (J.m−2) acting between these
two phases, respectively. They will be defined later for the demonstration problems presented in §5.

In the heat equation Eq.(44c), the thermal conductivity k and the heat capacity Cp depend on temperature
but also on the phase composition and the oxygen content. In fuel performance codes, the heat capacity is often175

calculated according to empirical correlations or given by laws resulting from atomic-scale simulations [53, 54, 55].
It is interesting to keep in mind that Cp could be calculated at run-time with a thermochemical solver coupled with
a CALPHAD database such as, for instance, OpenCalphad with the TAF-ID.

Finally, one can write the phase-field model in the following form:

∂ϕ

∂t
= −Mϕ

{
−ρh′(ϕ)

[
g l − g s −

(
x l

o −xs
o

)(
µ̃o − µ̃u

)]
+ 24

σ

ε
ϕ

(
1−ϕ)(

1−2ϕ
)− 3

2
σε∇2ϕ

}
(49a)

∂xo

∂t
= ∇· [Mc (ϕ, xo , xu)∇(

µ̃o − µ̃u
)+MT (ϕ, xo , xu)∇ln(T )

]
(49b)

µ̃o − µ̃u = ∂g s

∂xs
o
− ∂g s

∂xs
u

, with xu +xo = 1 (49c)

ρCp
∂T

∂t
= ∇· (k∇T )−

(
∂h

∂xo
− ∂h

∂xu

)
∂ρxo

∂t
−

(
ρ
∂h

∂ϕ
− 3

2
σε∇2ϕ

)
∂ϕ

∂t
(49d)
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where, for numerical convenience, we have reformulated the Soret term in Eq.(49b) as a function of the gradient
of the logarithm of the temperature (i.e. 1/T∇T =∇ln(T )).180

At this stage, it is interesting to discuss the link between the phase-field model and a CALPHAD database. As
mentioned in §1, the goal is to use the thermodynamic data from the TAF-ID [2, 39]. This database provides a com-
plex description of the solid and liquid phases based on sub-lattices models that does not allow to make a direct
link to the homogeneous Gibbs energy function of the phase-field model. Indeed, to illustrate the complexity, the
variables of the Gibbs energy functions in the sub-lattices models provided by the TAF-ID are the mole fractions185

of constituents in each sub-lattice (e.g. ion fractions in the liquid ionic model) whereas ours are expressed in mole
fraction of the U and O elements. So, among the different approaches available in the open literature to interface a
CALPHAD thermodynamic description with a phase-field model, our coupling method relies on thermodynamic
equilibrium calculations performed with the OpenCalphad thermochemical solver [9]. More particularly, all CAL-

PHAD contributions in Eqs.(49), namely g l ,g s , µ̃u

(
= ∂g s

∂xs
u

)
, µ̃o

(
= ∂g s

∂xs
o

)
, x l

o , x l
u , xs

o , xs
u ,

∂h

∂xo
and

∂h

∂xu
will be given190

by OpenCalphad 2 〈〈 local 〉〉 equilibrium calculations performed at each time step and at each node of the mesh.
The coupling is detailed in §4.

4. Phase-field solver

The phase-field model given by Eqs.(49), has been implemented in a C++ program. It can be used as a stand-
alone program but also as a dedicated component in the PLEIADES/Fuel Performance Codes to simulate incipient195

fuel melting and oxygen transport.
This phase-field solver is directly coupled with the OpenCalphad thermochemical solver recently integrated

in the PLEIADES platform [13] which relies on the TAF-ID database [2, 39] for equilibrium calculations. The use of
a thermochemical solver forces us to perform a partitioned scheme at each time step (cf. §4.1). As a first straight-
forward implementation to well analyze and parameterize the phase-field model, we consider 1D problems, dis-200

cretized by a Finite-Difference scheme (cf. §4.2).
In the following, the numerical treatment of the heat equation Eq.(49d) is not discussed. Without loss of gen-

erality, the focus is on Eq.(49a), Eq.(49b) and Eq.(49c) assuming the temperature T be known.

4.1. Partitioned scheme solved at each time step

As previously explained, the use of a thermochemical solver with a CALPHAD database leads us to develop a
partitioned scheme, here solved at each time step by a fixed-point algorithm. Fig.3 presents the solution proce-
dure performed at each iteration of the fixed-point algorithm. It consists in three main stages, starting with the
local equilibrium calculations (see 〈〈 Stage 1 〉〉 in Fig.3). These calculations are performed with the OpenCalphad
thermochemical solver recently integrated in the PLEIADES platform [13]. Here, the scope of the numerical strate-
gies proposed in [13] have been expanded for the needs of the current application. Thus, equilibrium calculations
are either done in a pure phase (liquid or solid) or in the interfacial region depending on the value of the phase-
indicator ϕ. As done in [13] to deal with the trace fission products (§2.4.4 in reference [13]), a preliminary step
is added to classify the nodes of the mesh in three groups depending on whether they belong to the solid phase
(i.e. ϕ= 1), to the liquid phase (i.e. ϕ= 0) or to the interfacial region (i.e. ϕ ∈]0,1[). The spatial strategy discussed
in §2.4.2 of reference [13] to initialize the thermochemical calculations is then used. There is no technical diffi-
culty in performing equilibrium calculations in the pure phases for the U-O binary system. However, regarding
the nodes of the mesh located at the interface, it is a little more tricky since we have to find the liquid and solid
compositions that are consistent with the average composition of the mixture and that ensure the equality of the
chemical potentials. In other words, we have to solve a non linear problem that can be written as follows. Let xo

and ϕ being known, we have to find x l
o such that:

F (x l
o) = 0 (50)

2 For more details about the links between these thermodynamics quantities and the OpenCalphad thermochemical solver, the interested
reader may refer to the Eq.22 in reference [8] which defines the molar Gibbs energy. Their values are computed at run-time from the outputs
of the OpenCalphad thermochemical solver managed by an application software interface (see §2.2.3 in reference [13]).
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Figure 3: Partitioned scheme solved by a fixed-point algorithm at each time step ∆t .

where F is an univariate function defined by:205

F (x l
o) =

(
∂g s

∂xs
o(x l

o)
− ∂g s

∂xs
u(x l

o)

)
−

(
∂g l

∂x l
o

− ∂g l

∂x l
u(x l

o)

)
(51)

Here-above, the chemical potentials are consecutively calculated by the OpenCalphad thermochemical solver in

the liquid phase with x l
o and in the solid phase with xs

o =
[

xo −
(
1−h(ϕ)

)
x l

o

]
/h(ϕ) whereas the root of Eq.(50) is

found with TOMS Algorithm 748 [56]. The algorithm used to perform equilibrium calculations during the first
stage is schematically described in Fig.4. As mentioned in this figure, the outputs of interest are the chemical
potentials, the Gibbs energies and the oxygen molar fractions in pure phases. They are used to calculate the CAL-210

PHAD source term in the Allen-Cahn equation Eq.(49a), which is solved during the second stage of the partitioned
scheme. The thermodynamic outputs of the first stage are also used with the updated phase-indicator ϕ resulting
from the second to estimate the diffusive driving force of the oxygen thermal diffusion equation Eq.(49b) (with
Eq.(49c)). The latter equation is solved during the third stage of the partitioned scheme. At the end of this third
stage, the phase-field variable and the oxygen molar fraction are updated and their values can be used to start215

a new iteration of the fixed-point algorithm. When the convergence of the fixed-point iterations is reached, the
phase-field problem can be solved at the next time step using the same procedure.
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Figure 4: Schematic representation of the proposed algorithm used to perform equilibrium calculations during the first stage of the partitioned
scheme

4.2. Finite-Difference solution of the two-phase compositional problem

As explained in §4.1, after doing all the equilibrium calculations, the two-phase problem and the oxygen ther-
mal diffusion problem are solved sequentially. Even if the time discretization scheme is implicit within each equa-220

tion, the problem splitting (partitioned resolution) involves a semi-implicit resolution of the global problem vari-
ables. Therefore, this may lead to a time step restriction depending for instance on the magnitude of the mobility
coefficients, the temperature, the chemical potentials and the space size. Regarding the space discretization, we
focus here on one-dimensional problem solved by centered Finite Differences. The interested reader may refer to
Appendix D for more details about the derivation of this numerical scheme.225

5. Demonstration problems

In this section, we present two demonstration problems based on applications to nuclear fuel already studied
in open literature. The range of U-O of interest for these two demonstration problems is shown in the phase di-
agram depicted in Fig.5. Following Simunovic & al. [11], we begin by simulating the oxygen transport in UO2.005

under an imposed thermal gradient with a maximum temperature lower than the liquidus. This numerical exper-230

iment aims at verifying the thermodynamic consistency of the phase-field model when one of the two phases is
initially absent and at assessing the impact of the formulation of the diffusive driving forces on the results. Then,
based on the work proposed by Welland & al. [33], we check the robustness and the capability of our phase-field
model to simulate incipient melting and oxygen transport in oxidized fuel under an increasing thermal gradient.
For this demonstration problem, we consider two oxidation levels with initial uniform oxygen-to-uranium ratios235

O/U equal to 2.01 and 2.05.
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Figure 5: U–O phase diagram calculated by the OpenCalphad thermochemical solver [9] at 5Mpa (pressure representative of the reactor con-
ditions of interest and used for the demonstration problems) with the TAF-ID database [2, 39]: focus on the hyperstoichiometric region.

Before presenting the results, let us define the kinetics parameters of the models and the computational do-
main used for these two tests.

5.1. Kinetics parameters

As previously explained, the CALPHAD terms in our phase-field model result from OpenCalphad equilibrium
calculations done with the thermodynamic data of the TAF-ID. More particularly, the liquid phase is thermody-
namically described by a single ionic two-sublattice model [2, 42] while the solid phase of mixed oxides with a
fluorite structure is described by a three-sublattice model [2]. In case of a uranium-oxygen binary system, it re-
duces to the following description:

(U3+,U4+,U5+)1(O2−,Va)2(O2−,Va)1 (52)

where the first sublattice corresponds to the metallic cations, the second to the normal site for oxygen anions while240

the third sublattice represents the interstitial oxygen anions in the fluorite phase [2, 39]. Moore & al. [35] have
related the concentration of defects in UO2±x (i.e. the site fractions of each component in each sublattice) to the
stoichiometric deviation and developed a model of oxygen and uranium diffusion in non-stoichiometric uranium
dioxide. For more details about the diffusion mechanisms associated to each component, we refer the interested
reader to reference [35]. According to their model, the uranium mobility M s

u in Eq.(47a) can be expressed as:245

M s
u = yU 3+MU 3+ exp

(
−QU 3+

RT

)
+ yU 4+MU 4+ exp

(
−QU 4+

RT

)
+ yU 5+MU 5+ exp

(−QU 5+ + yU 4+ yU 5+ IU 5+

RT

)
(53)

where R is the gas constant (J.mol−1.K−1) and T the temperature. In Eq.(53), the quantities y are the site frac-
tions of cationic species (calculated by the OpenCalphad thermochemical solver) while the parameters M , Q and
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U3+ U4+ U5+

M [mol.m2.J−1.s−1] 1.55×10−8 5.5×10−9 1.35×10−9

Q [kJ.mol−1] 540 580 440
I [kJ.mol−1] - - 345

Table 1: Pre-exponential factors and activation energies associated with the uranium mobility in the solid phase [35]

I denote pre-exponential factors, activation energies and a non-temperature dependent mixing term, respec-
tively. Their values are given in Table.1. The diffusion model proposed in [35] describes the oxygen mobility M s

o in
Eq.(47a) in the following form:250

M s
o = yV a

(
1− yV a

)
MV a exp

(−QV a + yV a
(
1− yV a

)
(AV a −BV aT )

RT

)
+ yIo

(
1− yIo

)
MIo exp

(−QIo + yIo

(
1− yIo

)
AIo

RT

)
(54)

where the subscripts ·V a and ·Io correspond to quantities associated with the oxygen vacancy in the second sub-
lattice and the interstitial oxygen anions in the third sublattice, respectively. The pre-exponential factors M , the
activation energies Q and the mixing terms A and B are given in Table.2. Regarding the liquid phase, the uranium

Va Io

M [mol.m2.J−1.s−1] 4.38×10−12 2.76×10−10

Q [kJ.mol−1] 53.498 95.411
A [kJ.mol−1] 2.234 -90.548

B [kJ.(mol.K)−1] 0.01991 -

Table 2: Pre-exponential factors and activation energies associated with the oxygen mobility in the solid phase [35] (here, MIo has to be
multiplied by 100 in order to be consistent with the Fig.6 shown in [35])

and oxygen mobilities M l
u and M l

o should be defined similarly to M s
u and M s

o . However, to our knowledge, there is
no diffusion model for the ionic two-sublattice model used to describe the liquid phase. Consequently, for these255

demonstration problems, we consider that at each time step, M l
u and M l

o are equal to the maximum values of M s
u

and M s
o calculated at the hottest point in the solid phase.

As far as the oxygen heat of transport coefficient is concerned, we use as first approximation the correlation
recently proposed by Konarski & al. [5] for the solid phase. It reads:

Q s
o =−2.04×10−4 ×exp

5.35

4+
2

(
xo

xu
−2

)
0.0508


 in J.mol−1 (55)

To the best of our knowledge, no reference data is available in the open literature for the uranium heat of transport.
Consequently, Q s

u is null for these demonstration problems. Given the lack of data, Welland & al. [34] ignored
the Soret effect in the liquid phase in their numerical experiments. Here, similarly to [34], we consider that the260

difference of the heat of transport coefficients Q l
o −Q l

u is zero in the pure liquid phase.
At this stage, the interfacial energy σ, the interface thickness ε and the mobility coefficient Mϕ needs to be

defined. We consider σ = 6.10−2J.m−2 according to [32] and we choose ε = 3.10−4m and Mϕ = 10−4. As men-
tioned in §3, this value is chosen for numerical convenience but it should be estimated on the basis of a rigorous
dimensional analysis [29].265

5.2. Computational domain and solution algorithm
Fig.6 shows the computational domain Ω with its boundaries Γ0 (center of the fuel pellet) and ΓN (periphery

of the fuel pellet) that is used for both demonstration problems. It corresponds to a half fuel pellet with a radius
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R = 4.65mm. Regarding the discrete problem, Ω is described by an uniform grid composed of 41 points (i.e grid
similar to those that are commonly used to perform one dimensional simulations with Fuel Performance Codes270

[57]) and then, 5 grid points in the liquid-solid interface, sufficient to have a precise resolution without increasing
the computational cost too much.

|
i = 0

| | | | . . . | | | | |Γ0center
pellet

ΓN periphery
pellet

N

Ωr = 0 r = R

i = N

Figure 6: Schematic representation of the computational domainΩ= [0,R] with its boundaries Γ0 and ΓN

In this work, we consider it is sufficient to perform only one iteration of the fixed-point algorithm described
in §4.1 to solve accurately these 1D demonstration problems. In that case, the partitioned scheme solved at each
time step reduces to a one way coupling scheme. The time step used for the first problem is equal to 10−1s. The275

harsh conditions associated to melting in the second problem require smaller time steps. Therefore, we have used
∆t = 2×10−2s and ∆t = 2×10−3s for the lowest and highest fuel oxidation levels, respectively.

5.3. Simulation of oxygen transport in UO2.005 under an imposed radial temperature gradient below the liquidus

In this section, we simulate the oxygen transport in hyperstoichiometric fuel under an imposed temperature
gradient below the liquidus. In this case, ϕ= 1 and the phase-field model reduces to the oxygen thermal diffusion280

equation in the solid phase. This demonstration problem aims at checking the consistency of the model but
also assessing the impact of the Soret effect in the solid phase on the oxygen redistribution along the fuel pellet
radius. To do so, we have performed two simulations without and with accounting for the temperature gradient
in the diffusive driving force. In the following, these simulations are referred to as 〈〈 diffusion case 〉〉 and 〈〈 thermal
diffusion case 〉〉, respectively.285

Regarding temperature, we consider a parabolic profile similar to the one proposed in [58]. It reads:

T (r ) = T (R)+P0 ×
(

R2 − r 2

4πR2k

)
(56)

where k = 2W.m−1.K−1 is the thermal conductivity and T (R) = 835K the temperature imposed on ΓN (r = R) and
P0 the linear heat rate calculated to have 1873K imposed on Γ0 (i.e. P0 ' 26kW.m−1). The radial distribution of
temperature obtained with Eq.(56) is depicted in Fig.7. It is representative of temperature profiles induced by
linear heat rates encountered during power ramps.290

Figs.8 show the initial state of the simulations in terms of oxygen-to-uranium ratio O/U , chemical potential
difference µ̃o −µ̃u and oxygen chemical potential µ̃o . In Fig.8a, we can see that the O/U ratio of the fuel is uniform
along the pellet radius and equal to 2.005. The graphs of Fig.8b and Fig.8c show that the chemical potentials
µ̃o − µ̃u and µ̃o decrease from the periphery to the center of the pellet while temperature increases. The radial
profile of the oxygen chemical potential shown in Fig.8c is in good agreement with the one obtained by Simunovic295

& al. (see Fig.5 in the reference [11]).
Figs.9 present the simulation results at steady state. In the graphs, the blue curves refer to the diffusion case

whereas the green curves refer to the thermal diffusion case. The radial profiles of the O/U ratio clearly show that
the oxygen moved from the periphery (coldest region) to the center of the pellet (hottest region). Moreover, as
suggested in [11], we observe that oxygen transport is hardly affected by the Soret effect in the conditions consid-300

ered for this demonstration problem. This result can be viewed as a direct consequence of the definition of the
heat flux in Eq.(20) because the compositional part of the diffusive driving forces is a function of the gradient of
the chemical potentials which depend on the temperature implicitly. As discussed in §2.2, the thermodynamic
contribution of the heat of transport is in some ways included in the gradient of the chemical potentials and only
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Figure 7: Parabolic temperature profile prescribed along the fuel pellet radius

the kinetic part is associated to the thermal diffusion contribution, here called Soret effect. However, this trend ob-305

served under an imposed temperature gradient cannot be generalized to harsher conditions, with higher degree
of oxidation and temperature gradients.

Now, let us focus on the radial distribution of the chemical potentials presented in the two last graphs of Fig.9.
As expected from Eq.(49), at the steady state, the difference between the oxygen and the uranium chemical poten-
tials becomes uniform for the diffusion case and proportional to the logarithm of the temperature for the thermal310

diffusion case.
Contrary to the results obtained by Simunovic & al. (Fig.5 in reference [11]), the oxygen potential remains

non uniform along the fuel pellet radius, even for the pure compositional diffusion case. This difference in results
is explained simply by the definition of the compositional part of the oxygen equation which describes oxygen-
uranium inter-diffusion in our model and only oxygen diffusion in the model proposed by Simunovic & al. [11].315

Our results point out that the contribution of uranium cannot be ignored from the diffusion process in order to
be thermodynamically consistent with the equilibrium calculations done for the uranium-oxygen binary system.
Consequently, to simulate oxygen diffusion in a multicomponent system [11], it seems more thermodynamically
consistent to express the compositional part of the diffusive driving forces as a function of the chemical potentials
of all the components involved in the system. Such a formulation is provided by the general form of our phase-320

field model Eqs.(41). That being said, it should be kept in mind that there is very few experimental measurements
of the oxygen chemical potential under these high temperature conditions. The validity of the considered diffusive
driving force cannot therefore be assessed for sure. Note furthermore that the proposed formulation of U-O inter-
diffusion assumes that each O atom is replaced by an U atom. At moderate to high temperatures, this assumption
leads to an overestimation of U migration in the fuel which is usually not mobile compared to O. As illustrated in325

the next part, the proposed phase-field formulation aims at describing incipient melting where one might expect
a much higher U mobility more consistent with the proposed formulation of O-U inter-diffusion.
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Figure 8: Radial distribution of O/U , µ̃o − µ̃u and µ̃o along the pellet radius r calculated at the initial state for the simulations done with
(diffusion case) and without the Soret effect (thermal diffusion case). The temperature profile is also indicated.
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Figure 9: Radial distribution of O/U , µ̃o − µ̃u and µ̃o along the pellet radius r calculated at the steady state for the simulations done with
(diffusion case) and without the Soret effect (thermal diffusion case). The temperature profile is also indicated.
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5.4. Simulation of incipient melting and oxygen transport in oxidized fuel under an increasing thermal gradient

In this section, following [34], we apply our phase-field model to simulate incipient melting together with
oxygen transport in oxidized fuel under an increasing thermal gradient. In order to demonstrate the capability of330

the phase-field model, we perform two simulations with initial oxygen-to-uranium ratios O/U equal to 2.01 and
2.05.

As done in §5.3, we simulate the heat transfer across the oxidized fuel pellet by prescribing a parabolic tem-
perature profile that changes as a function of time t according to:

T (r, t ) = T (R)+ [
P0 +min

(
t × Ṗ ,Pmax

)]×(
R2 − r 2

4πR2k

)
(57)

At the initial state, Eq.(57) corresponds exactly to Eq.(56). Here-above, Ṗ = 900W.m−1.s−1 is the linear power ramp335

rate allowing us to increase the linear power during more than forty seconds till Pmax = 65kW.m−1. At the end of
this power ramp, the temperature near the center of the pellet reaches 3420K . The initial and final temperature
profiles along the pellet radius are plotted in Fig.10. In this figure, we also present the liquidus in order to show
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Figure 10: Initial and final temperature profiles prescribed along the fuel pellet radius

the beginning of the melting for both oxidized fuels. This thermodynamic property is automatically calculated
at run-time by the OpenCalphad thermochemical solver with the TAF-ID. Phase-field modeling of nucleation (in340

the present case, the onset of melting) is a complex computational issue out of scope of the present paper. For
these simulations, given the high temperatures, we propose to simplify the nucleation problem by assuming that
the liquid phase suddenly appears and immediately initiates the fuel melting. From a numerical point of view,
this consists in prescribing a Dirichlet-like condition when the liquidus is calculated by OpenCalphad. Here, as
expected for one-dimensional simulations performed with the parabolic temperature profile given by Eq.(57), the345

liquid phase appears first at the hottest grid point of the mesh on Γ0 (r = 0). In practice, we prescribeϕ(r = 0) = 0.1
when the liquidus is calculated by OpenCalphad. Further parametric studies regarding this arbitrary choice will
be considered in a thorough analysis of the model properties. In the case O/U = 2.01, the fuel melting starts after
34s and the liquidus is equal to 3086.95K. This temperature is lower than the liquidus obtained for stoichiometric
fuel, i.e. 3123.50K, and higher than the liquidus 2929.39K calculated for the O/U = 2.05 fuel that is reached after350

29s. These results confirm the trend observed in [34]: the more the fuel is oxidized, the lower the liquidus is and
the earlier incipient melting occurs.

The thermodynamic system obtained at the end of the power ramp thus consists of a liquid-solid mixture. At
this stage, the highest temperature gradient is maintained during more than 100s in order to study the melting
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front propagation together with the oxygen redistribution process in the two-phase system. Fig.11 and Fig.12355

show the results obtained for the fuels with O/U ratios of 2.01 and 2.05, respectively. The radial profiles given
in these figures show that the oxygen transport is consistent with the melting front propagation. When the fuel
starts to melt, the liquid phase is characterized by a peak of the O/U ratio. Then, the central melted zone extends
towards the periphery with a decrease of the O/U ratio in the liquid phase. The fuel oxidation observed in the
liquid phase is compensated by a reduction of the oxygen content in the solid phase. Consequently, the local360

melting temperature raises and the formation of the liquid phase is thus limited. The graphs of Fig.11 and Fig.12
indicate that the melting front reaches a steady state after one hundred seconds. The trends observed in these
graphs are in good agreement with those published in [34]. It is however noteworthy that the radial profiles of
oxygen in the liquid phase at the end of the calculation and, more particularly, with O/U = 2.01 slightly differ from
those presented in [34]. Indeed, the graphs of Fig.11 suggest that the composition gradient has changed sign in365

the liquid phase after 50s. A convergence study in time has confirmed these results. This profile can be explained
by the small part of the solid phase near the interface where the fuel is hypostoichiometric at 45s and 50s. In that
specific case, the oxygen thermal diffusion process is from the center (hottest region) to the periphery (coldest
region) [5]. This trend is not seen with O/U = 2.05 because the fuel remains hyperstoichiometric until the end of
the simulation. In that case, the shape of the oxygen distribution obtained in the liquid phase also differs from the370

one presented in [34] which was uniform (Fig.5 in reference [34]). Here, as shown in Fig.12, the oxygen quantity
increases from the liquid-solid interface to the center of the pellet (r = 0). This trend seems consistent with the
prescribed parabolic temperature profile. To confirm these results, a sensitivity study on the interface thickness
and the mobility Mϕ remains to be done.

As a whole, these and the previous results presented in this paper show the capability of our phase-field model375

to simulate incipient melting and oxygen transport in the fuel with thermodynamics data coming from the TAF-ID.
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Figure 11: Radial distributions of O/U and ϕ along the pellet radius r calculated at several times after detecting incipient melting in the fuel
with an initial O/U = 2.01
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6. Conclusion

The purpose of this work was to improve the modeling included in the PLEIADES platform in order to perform
simulations of incipient melting and oxygen transport in the fuel using the thermodynamic properties of the TAF-
ID. To this end, a phase-field model for a two phase compositional (multicomponent) system has been developed380

and combined with the CALPHAD thermodynamic description of the fuel available in the TAF-ID. The governing
equations were first derived within a consistent thermodynamic framework and considering rigorous thermo-
dynamic closures, namely the Gibbs energy of the system and the description of the interfacial region based on
the Kim-Kim-Suzuki model. The model was then reduced to a uranium-oxygen binary system in a solid/liquid
mixture, of interest in nuclear applications.385

In this limiting case, the liquid-solid phase change is described by the Allen-Cahn equation and the oxy-
gen transport by a thermal diffusion equation whose diffusive driving forces include the compositional (oxygen-
uranium inter-diffusion) and the thermal gradients (Soret effect). The mobility coefficients of the phase-field
model were defined to satisfy some consistency properties in the sense that the model had to remain valid when
one of the two phases or one of the two components vanishes. The interface with the thermodynamic description390

of the TAF-ID is performed by coupling the phase-field model with the OpenCalphad thermochemical solver.
Two 1D demonstration problems have been proposed to demonstrate the performance of the numerical scheme.

First, oxygen transport in a UO2.005 fuel under an imposed parabolic radial temperature profile below the liquidus
temperature has been analyzed. The gradient of the difference between the oxygen and the uranium chemical po-
tentials is used as the main driving force for oxygen diffusion together with the temperature gradient. The radial395

oxygen redistribution expected for hyperstoichiometric fuel in these thermal conditions is satisfactorily repro-
duced by the phase-field model. The simulation results clearly show that oxygen redistribution is hardly affected
by the Soret effect, as suggested by Simunovic & al. [11]. However, the contribution of the uranium chemical
potential appears non negligible and raises the question of its consideration in oxygen diffusion equations.

The second problem describes incipient melting and oxygen transport in oxidized fuel under an increasing400

radial thermal gradient. For this demonstration problem, two simulations were performed with initial uniform
oxygen-to-uranium ratios equal to 2.01 and 2.05. The simulation results clearly show that the melting front prop-
agation is strongly coupled with oxygen transport in the liquid-solid mixture. As already explained by Welland
[34], oxygen redistribution leads to a self-regulating process. Indeed, the oxidation occurring in the liquid phase
is compensated by a decrease of the oxygen content in the solid phase, which, in turn, increases the liquidus and405

stops the fuel melting.
These results demonstrate the consistency of the phase-field model and its capability to simulate incipient

melting and oxygen transport with a thermodynamic description of the fuel based on the TAF-ID.
Future work will concern the application of the phase-field model to more complex problems such as power

ramps. The numerical scheme could also be adapted in 2D and 3D. The extension of this approach to the uranium-410

plutonium-oxygen ternary system at hand in Mixed OXide fuels is planned. In that case, the formulation of the
phase-field problem may have to be written on the basis of a grand-potential functional [29, 59, 60, 61].

For systems with much larger number of components, the interfacing of an advanced thermodynamic database
with a phase-field solver may become a computational issue and thus, the use of an approximate albeit accurate
thermodynamic representation derived from CALPHAD databases (see [43]) might be considered.415
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Appendix A. Explicit form of the generalized chemical potential

In this appendix, we present the developments leading to the potentials Eqs.(38). Following [28], the first step
is to calculate the partial derivative of Eqs.(7) with respect to xi . It reads:

∂g0

∂xi
= h(ϕ)

∂g s

∂xs
i

∂xs
i

∂xi
+ [

1−h(ϕ)
] ∂g l

∂x l
i

∂x l
i

∂xi
(A.1a)

h(ϕ)
∂xs

i

∂xi
+ [

1−h(ϕ)
] ∂x l

i

∂xi
= 1 (A.1b)

Then, by substituting the relationships Eq.(7) and Eq.(A.1b) in Eq.(A.1a), one obtains:420

∂g0

∂xi
= ∂g s

∂xs
i

= ∂g l

∂x l
i

(A.2)

which enables to re-write Eq.(37d) as:

µ̃i = ∂g s

∂xs
i

− λi

ρ
∇2xi (A.3)

or, by using Eq.(A.2), in the following equivalent form:

µ̃i = ∂g l

∂x l
i

− λi

ρ
∇2xi (A.4)

Now, we focus on the potential η (multiplied by the molar density ρ) given by Eq.(37b). The derivative of relation-
ships Eq.(5) and Eq.(7) with respect to ϕ gives:

∂g0

∂ϕ
= h′(ϕ)

(
g s − g l

)
+h(ϕ)

n∑
i=1

∂g s

∂xs
i

∂xs
i

∂ϕ
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1−h(ϕ)
] n∑

i=1

∂g s

∂x l
i

∂x l
i

∂ϕ
(A.5a)
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1−h(ϕ)
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= h′(ϕ)

(
x l

i −xs
i

)
(A.5b)

Next, by using Eq.(A.5b), one can simplify Eq.(A.5a) as follows:

∂g0

∂ϕ
= h′(ϕ)

(
g s − g l

)
−

n∑
i=1

∂g s

∂xs
i

h′(ϕ)
(
xs

i −x l
i

)
(A.6)

which enables to express the potential η (multiplied by the molar density ρ) as:

ρη = −ρh′(ϕ)

[
g l − g s −

n∑
i=1

∂g s

∂xs
i

(
xi

l −xi
s
)]

+W ′(ϕ)−κ∇2ϕ (A.7)

Here again, by using Eq.(A.2), Eq.(A.7) can be written in the following equivalent form:425

ρη = −ρh′(ϕ)

[
g l − g s −

n∑
i=1

∂g l

∂x l
i

(
xi

l −xi
s
)]

+W ′(ϕ)−κ∇2ϕ (A.8)

At this stage, as the pure molar Gibbs energies g s and g l are homogeneous functions, it is interesting to note that
the CALPHAD contributions in Eq.(A.7) and Eq.(A.8) can be calculated according to:

ρ

[
g l − g s −

n∑
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∂g l

∂x l
i

(
xi

l −xi
s
)]

=
g l

(
ρx l

i

)
− g s (

ρxs
i

)− n∑
i=1

∂g l
(
ρx l

i

)
∂ρx l

i

(
ρxi

l −ρxi
s
) (A.9)
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Appendix B. Derivation of the heat equation from the entropy balance equation

In this appendix, we detail the derivation of the heat equation Eq.(40) from the entropy balance equation430

Eq.(37e).
To begin, we recall the reader that the molar entropy is defined from the molar Gibbs energy g according to

Eq.(11b) and g depends on p, T , {xi }, {∇xi }, ϕ and ∇ϕ. In these conditions, according to Eq.(11), one can write:

d s = −
[
∂2g

∂T∂p
d p + ∂2g

∂T 2 dT +
n∑

i=1

(
∂2g

∂T∂xi
d xi + ∂2g

∂T∂∇xi
·d∇xi

)
+ ∂2g

∂T∂ϕ
dϕ+ ∂2g

∂T∂∇ϕ ·d∇ϕ
]

= −
[
∂Vm

∂T
d p − ∂s

∂T
dT +

n∑
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(
∂µi

∂T
d xi +

∂ψi

∂T
·d∇xi

)
+ ∂θ

∂T
dϕ+ ∂ζ

∂T
·d∇ϕ

]
(B.1)

In this work, the molar volume Vm is constant and we also assume that the coefficientsψi , ζ do not depend on the
temperature. In these conditions, by assuming local thermodynamic equilibrium conditions [44], Eq.(B.1) reads:435

∂s

∂t
= −

[
−Cp

T

∂T

∂t
+

n∑
i=1

(
∂µi

∂T

∂xi

∂t

)
+ ∂θ

∂T

∂ϕ

∂t

]
(B.2)

where Cp is the heat capacity at constant pressure defined by:

Cp = T

(
∂s

∂T

)
P

(B.3)

Now, by multiplying Eq.(B.2) by ρT , we obtain:

T
∂ρs

∂t
= ρCp

∂T

∂t
−T

n∑
i=1

(
∂µi

∂T

∂ρxi

∂t

)
−ρT

∂θ

∂T

∂ϕ

∂t
(B.4)

Then, we can introduce the potential term µ̃i +β in Eq.(B.4), yielding:

T
∂ρs

∂t
= ρCp

∂T

∂t
−T

n∑
i=1

∂
(
µ̃i +β

)
∂T

∂ρxi

∂t
−ρT

∂θ

∂T

∂ϕ

∂t
(B.5)

Now, in order to simplify the heat equation, we introduce the molar enthalpy h defined by:

h = g −T

(
∂g

∂T

)
p,ϕ,∇ϕ,{xi },{∇xi }

(B.6)

Then, by using Eqs.(11) together with Eq.(38) and after some calculations, we can write the derivative of Eq.(B.6)440

with respect to xi in the following form:

∂h

∂xi
= (

µ̃i +β
)+ λi

ρ
∇2xi −T

∂
(
µ̃i +β

)
∂T

i = 1, . . . ,n (B.7)

Similarly, for the phase-field variable ϕ, we have:

∂h

∂ϕ
= η+ κ

ρ
∇2ϕ−T

∂θ

∂T
(B.8)

According to Eq.(B.7) and Eq.(B.8), Eq.(B.5) reads:

T
∂ρs

∂t
= ρCp

∂T

∂t
+

n∑
i=1

[
∂h

∂xi
− (
µ̃i +β

)− λi

ρ
∇2xi

]
∂ρxi

∂t
+ρ

(
∂h

∂ϕ
−η− κ

ρ
∇2ϕ

)
∂ϕ

∂t
(B.9)
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At this stage, we substitute Eq.(37e) and Eq.(8b) in Eq.(B.9) to obtain the heat equation in the following form:

ρCp
∂T

∂t
= ∇· (k∇T )−

n∑
i=1

[
∂h

∂xi
− λi

ρ
∇2xi

]
∂ρxi

∂t
−ρ

(
∂h

∂ϕ
− κ

ρ
∇2ϕ

)
∂ϕ

∂t
−∇·

[
n∑

i=1

(
µ̃i +β

) · ji

]
(B.10)

In this work, we assume that the latter term on the right-hand-side in Eq.(B.10) is of an order of magnitude lower445

than the other contributions and thereby, it can be neglected. This estimate can be explained on the basis of a
rigorous dimensional analysis but it is out of scope of the present paper.

In these conditions, the heat equation reduces to:

ρCp
∂T

∂t
= ∇· (k∇T )−

n∑
i=1

[
∂h

∂xi
− λi

ρ
∇2xi

]
∂ρxi

∂t
−ρ

(
∂h

∂ϕ
− κ

ρ
∇2ϕ

)
∂ϕ

∂t
(B.11)

Appendix C. One-dimensional analysis of the phase-field model at the equilibrium state

In this appendix, our purpose is to define the depth of the double-well potential ω as a function of the interfa-450

cial energy and the interface thickness. To do so, we follow an approach proposed in [28], to cite among others, to
conduct an one-dimensional analysis of the Allen-Cahn equation Eq.(42a) at the equilibrium state

In these conditions, Eq.(42a) reduces to:

κ
∂2ϕeq (z)

∂z2 = −ρh′(ϕeq )

[
g l − g s −

n∑
i=1

∂g s

∂xs
i

(
x l

i −xs
i

)]
eq

+W ′(ϕeq (z)) (C.1)

where the subscript ?eq denotes quantities evaluated at equilibrium. Now, by multiplying the equation Eq.(C .1)

by
∂ϕeq

∂z and by integrating over ±∞, one can find:455 [
g l − g s −

n∑
i=1

∂g s

∂xs
i

(
x l

i −xs
i

)]
eq

= 0 (C.2)

which allows us to simplify Eq.(C .1) in the following form:

κ
∂2ϕeq (z)

∂z2 = W ′(ϕeq (z)) = 2ωϕeq (z)
(
1−ϕeq (z)

)(
1−2ϕeq (z)

)
(C.3)

Here again, we multiply Eq.(C .3) by
∂ϕeq

∂z and, afterwards, by integrating over ±∞, one obtain:

∂ϕeq (z)

∂z
=

√
2ω

κ
ϕeq (z)

(
1−ϕeq (z)

)
(C.4)

where we used ϕeq (+∞) = 1 (solid) and ϕeq (−∞) = 0 (liquid). At this stage, for the sake of simplicity, we consider
the following variable change:

v(z) = 2ϕeq (z)−1 (C.5)

where v(+∞) = 1 and v(−∞) = 0. Then, the relationship Eq.(C .5) is substituted in Eq.(C .4), yieldings:460

∂v

1− v(z)2 = 1

2

√
2ω

κ
∂z (C.6)

which gives after integrating over ±∞:

argtan(v(z)) = 1

2

√
2ω

κ
z +K (C.7)
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In Eq.(C .7), K is a constant of integration. We can easily show that it is zero by defining the interface location such
that ϕeq (z = 0) = 0.5. Finally, according to Eq.(C .5) and Eq.(C .7), the phase-field variable at equilibrium is defined
by:

ϕeq (z) = 1

2

[
1+ tanh

(
1

2

√
2ω

κ
z

)]
(C.8)

At this stage, it remains to make links between κ, ω, the interfacial thickness ε and the interfacial energy σ. To465

do so, we begin by defining σ in one-dimension as follows:

σ =
∫ +∞

−∞
κ

2

(
∂ϕeq (z)

∂z

)2

+W (ϕeq (z))d z (C.9)

Then, according to the relationships Eq.(C .3) (integrated over [0,1]) and Eq.(C .4), Eq.(C .9) takes the form:

σ =
∫ +∞

−∞
κ

(
∂ϕeq (z)

∂z

)2

d z =
∫ 1

0
κ
∂ϕeq

∂z
∂ϕeq =

∫ 1

0
κ

√
2ω

κ
ϕeq

(
1−ϕeq

)
∂ϕeq = 1

6

p
2ωκ (C.10)

Furthermore, one can express the interface thickness as:

ε =
[

max−∞≤z≤+∞

(
∂ϕeq (z)

∂z

)]−1

(C.11)

and, according to Eq.(C .4), one obtain:

ε=
[

max−∞≤z≤+∞

(
∂ϕeq (z)

∂z

)]−1

=
[

max
{0≤z≤1}

√
2ω

κ

[
ϕeq

(
1−ϕeq

)]]−1

= 4

√
κ

2ω
(C.12)

which enables to re-write Eq.(C .8) as follows:

ϕeq (z) = 1

2

[
1+ tanh

(
2

ε
z

)]
(C.13)

At this stage, substituting Eq.(C .12) in Eq.(C .6) yields:

κ= 3

2
σε (C.14)

and the use of Eq.(C .14) together with Eq.(C .12) gives the depth of the double-well potential in the following form:

ω= 12
σ

ε
(C.15)

Here, it is interesting to mention that all the relationships obtained in this appendix are equivalent to those given470

by [34] and [28] by setting ε= 4δ in [34] and ε= 2λ with α= 1 in [28].

Appendix D. Centered Finite Differences scheme

In this appendix, we present the centered Finite Differences scheme used to solve one-dimensional problem.
Before detailing the numerical scheme, let us define some practical notations: Ω denotes the non-uniformly dis-
cretized one-dimensional domain and Γ its boundary; ∆t refers to the time increment between two successive475

time steps t n and t n+1; N is the maximum number of grid points, i the node index whereas ∆zi+1 and ∆zi cor-
respond to the space sizes from i to i +1 and from i to i −1, respectively; and the curly brackets define a set of
variables indexed by i for i = 0, . . . , N .

In the following, we assume that
{
ϕn

i

}
,
{
T n

i

}
,
{
(xo)n

i

}
are known at the time step t n . In these conditions, by

focusing on Eq.(49a), Eq.(49b) and Eq.(49c), the time marching reads:480
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1. Using
{
ϕn

i

}
,
{
T n

i

}
,

{
(xo)n

i

}
, perform all the equilibrium calculations and find an estimation of

{
(g l )n+1

i

}
,{

(g s )n+1
i

}
,
{
(xs

o)n+1
i

}
,
{

(x l
o)n+1

i

}
,
{
(µ̃o)n+1

i

}
and

{
(µ̃u)n+1

i

}
2. Afterwards, calculate the discrete CALPHAD term

{
(g l )n+1

i − (g s )n+1
i −

(
(x l

o)n+1
i − (xs

o)n+1
i

)(
(µ̃o)n+1

i − (µ̃u)n+1
i

)}
and find

{
ϕn+1

i

}
such that:

ϕn+1
i −ϕn

i

∆t
= −Mϕ

{
−ρh′(ϕn+1

i )
[

(g l )n+1
i − (g s )n+1

i −
(
(x l

o)n+1
i − (xs

o)n+1
i

)(
(µ̃o)n+1

i − (µ̃u)n+1
i

)]n+1

i

+ 24
σ

ε
ϕn+1

i × (
1−ϕn+1

i

)× (
1−2ϕn+1

i

)
− 3

2
σε

[
2ϕn+1

i+1

∆zi+1 (∆zi +∆zi+1)
− 2ϕn+1

i

∆zi∆zi+1
+ 2ϕn+1

i−1

∆zi (∆zi +∆zi+1)

]
(D.1)

Here-above, when the mesh is uniform (i.e. ∆zi =∆z∀i = 0, . . . , N ), the latter term of the right-hand-side of
Eq.(D.1) degenerates in the well-known 3-point stencil Laplacian:

3

2
σε

[
ϕn+1

i+1 −2ϕn+1
i +ϕn+1

i−1

∆z2

]
(D.2)

Finally, for this problem, by assuming that the right side (i = N ) of the domain remains solid, the following
Neumann-Dirichlet boundary conditions are considered:

(Dirichlet) ϕn+1
N = 1 ∀n ≥ 0 (D.3a)

(Neumann) ϕn+1
−1 = ϕn+1

1 ∀n ≥ 0 (D.3b)

where the subscript ·−1 denotes a virtual grid point located at a distance ∆z0 =∆z1 from the zero grid point.485

This non-linear problem is solved by using a standard Newton method.

3. At this stage, using the estimations of
{
ϕn+1

i

}
,
{
T n+1

i

}
,
{(
µ̃o

)n+1
i

}
and

{(
µ̃u

)n+1
i

}
, find

{
(xo)n+1

i

}
such that:

(xo)n+1
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i
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= 2
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2
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c
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(
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−
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(
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(D.4)

where ∆µ̃n+1
i =

[(
µ̃o

)n+1
i − (

µ̃u
)n+1

i

]
for i = 0, . . . , N whereas M

i− 1
2

T , M
i+ 1

2
T , M

i− 1
2

c and M
i+ 1

2
c are discrete mo-

bility coefficients given by:

M i+ j
2

α
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Mα

(
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)
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(
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2

for α= T,C and j =±1 (D.5)

Here-again, when the mesh is uniform (i.e. ∆zi = ∆z∀i = 0, . . . , N ), the right-hand-side of Eq.(D.4) reduces490

to:
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2
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2
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Regarding to the boundary conditions associated to this discretization, we consider the following Neumann-
Neumann boundary conditions:

M
i+ 1

2
c

(
∆µ̃n+1

i+1 −∆µ̃n+1
i

)+M
i+ 1

2
T

[
ln

(
T n+1

i+1

)− ln
(
T n+1

i

)] = M
i− 1

2
c

(
∆µ̃n+1

i−1 −∆µ̃n+1
i

)
+ M

i− 1
2

T

[
ln

(
T n+1

i−1

)− ln
(
T n+1

i

)]
for i = 0 and i = N (D.7)

where we have defined two virtual grid points located at a distance ∆z0 =∆z1 from the zero grid point and
∆zN =∆zN−1 from the point number N , respectively.495
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