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We report the ab initio prediction of a negative Barkas coefficient in lithium fluoride (LiF) insulator at
low velocity (v < 0.25 a:u:, Ekin ∼ 2 keV). The electronic stopping power of protons in LiF has been
extensively studied both experimentally and theoretically because of a controversial threshold effect. While
our time-dependent density-functional theory simulations confirm the presence of a velocity threshold
below which the proton stopping power vanishes, our calculations demonstrate that the antiprotons do not
experience such a threshold. The combination of those two contrasting behaviors gives rise to an
unprecedented negative Barkas effect: the stopping power of antiprotons is larger than that of protons. We
identify that the slow antiproton at close encounter destabilizes a p orbital of the F− anion pointing toward
the antiproton. This particular orbital becomes highly polarizable and hence contributes much to the
stopping power.
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The interaction between swift charged particles and
matter has been a central topic since the earliest days of
quantum mechanics. Famous researchers, such as Bohr [1],
Bethe [2], or Lindhard [3], have developed models to
quantify the energy transfer between the charged projectile
and the target atoms. While tightly bound to the develop-
ment of particle physics, this interaction is still key to
modern applications: nuclear materials [4], radiotherapy
[5], space-grade materials [6].
The interaction between a charged particle and a material

is best characterized by the so-called stopping power S [7]:

S ¼ −
dEkin

dz
; ð1Þ

which measures the average decrease in kinetic energy of
the projectile Ekin as a function of the path length z. Most of
the stopping power occurs through the electronic excita-
tions in the target material, named the electronic stopping
power Se. But the classical nuclear-nuclear collision term
Sn may also produce a finite contribution at low velocity.
In many cases, the electronic stopping power (ESP)

of materials can be qualitatively understood using the
historical model of Lindhard [8,9], which considers a
noninteracting homogeneous electron gas within the linear-
response (LR) approximation. However, some subtle effects
do not obey this simple treatment. Let us highlight two such
features.
First, Barkas and co-workers [10] measured in the 1950s

that the stopping power of negative pions was noticeably

lower than that of positive pions: this is known as the
“Barkas effect.” This difference contradicts the LR approxi-
mation that predicts a quadratic dependence with respect
to the projectile charge Z1 and therefore that makes no
difference between a proton and its antiparticle. The next
coefficient in a polynomial expansion with respect to Z1,
the cubic term, is named the Barkas coefficient and is
always measured being positive in practice [11,12].
Second, in the low-projectile-velocity regime, the

Lindhard model predicts Se ∝ v, a behavior indeed observed
in metallic targets. However, for insulators, there has been a
passionate debate over the years about the existence of a
threshold velocity below which the electronic stopping
power vanishes. Lithium fluoride, with its wide band gap
of 13.6 eV [13], was the battleground for this controversy to
which both theoreticians and experimentalists participated:
some advocating for the absence of threshold [14,15], and
others for the presence of a threshold [16–18].
Today, the existence of a threshold is being supported by

the latest experiments at very low velocity [18], but also
by a new numerical approach in this field, the ab initio
calculations within time-dependent density-functional
theory (TDDFT) [19]. The seminal work of Pruneda et al.
]20 ] using real-time TDDFT (RT TDDFT), proved the

existence of a threshold for proton in LiF. Following this
original work that demonstrated the predictive power of
ab initio calculations, a wealth of new TDDFT studies on
other materials bloomed [21–29].
In this Letter, we employ state-of-the-art RT TDDFT to

simulate proton and antiproton irradiation of LiF. While our
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simulations reproduce the available experimental data,
we also explore the low-velocity regime where exper-
imental results are scarce. We confirm the presence of a
velocity threshold in the ESP of protons, but we predict
that no such threshold exists for antiprotons. These two
opposite behaviors add up to induce a negative Barkas
coefficient for velocities below 0.25 a.u.: the ESP of
antiproton is actually larger than that of proton. We then
analyze the origin of this unique behavior thanks to the
electronic structure of the combined system of LiF and of
the charged projectile.
Method.—In our study, the ESP is evaluated from RT

TDDFT simulations, in which a charged projectile (proton
Hþ or antiproton H̄−) follows a linear trajectory at constant
velocity v through a cluster of immobile LiF atoms. This
particular setup is customary to ESP calculations
[20,30,31] and to atomic collisions [32]. Let us detail here
the procedure.
Performing calculations using a straight-line trajectory

with frozen-atom targets allows us to disentangle the
electronic part of the stopping power Se from the nuclear
part Sn. The straight-line trajectory is also computationally
advantageous since it permits us to give the cluster the
correct cylindrical shape that will embed the projectile
during its entire course. The nuclear stopping power Sn will
be added up later using classical mechanics [33].
Figure 1 shows a typical example of our simulations. The

upper panel displays the actual cylindrical cluster we
employ. It consists of 126 atoms cut from the LiF rocksalt
structure with the experimental lattice constant. The veloc-
ity and the cylinder axis are along the h111i direction. The
cylinder length is approximately 22 Å and its diameter is
around 6 Å. The axis of the cylinder is centered on an
atomic column, so that the impact parameter p ¼ 0
corresponds to a knock-on collision. This allows us to
use the polar symmetry as described in Ref. [26]. Four
different impact parameters are considered: p ¼ 0.225,
0.45, 0.675, and 0.90 Å, so that we could average them
with the geometric weight induced by the polar symmetry
to obtain the so-called random electronic stopping power
(RESP). The reliability of this sampling is demonstrated
in Supplemental Material [34] where using eight impact
parameters leads to the same results. In Supplemental
Material, we also report RESP calculations for the h001i
direction, with very similar results. This confirms the
directional insensitivity of RESP. Finally, the cluster size
convergence is proven in Supplemental Material.
It is worth noting that at low projectile velocities

(v < 0.2 a:u:) and impact parameters (p < 0.1 Å), the
actual projectile trajectories would deviate from the
linear ones: protons are repelled and antiprotons are
attracted by target nuclei. However, this deviation is weak
(as shown in Supplemental Material) and would just affect
the few trajectories that come very close to the nuclei.
Trajectories with p < 0.1 Å only account for 1.5% of the

total trajectories in the impact parameter average we
perform to obtain the RESP.
Note that antiprotons at small velocities and very small

impact parameters have a finite probability of annihilating
with one of the protons of target nuclei. This is not taken
into account in our simulations, but again the geometrical
weight of those trajectories is small and has little influence
on the final impact-parameter-averaged value.
In the central panel of Fig. 1, we report the total energy of

the electronsEðzÞ for the four impact parameters, for protons
and antiprotons. EðzÞ increases along with the penetration
depth z, with marked peaks when the projectile passes
nearby the target nuclei. As the motion of the atoms in the
simulation does not obey the Newton law of mechanics, the
total energy is, of course, not conserved. However, one can
show that the total electronic energy increase per unit length
is precisely the negative of the ESP [30]:

Se ¼ − lim
z→þ∞

EðzÞ − Eðz − aÞ
a

; ð2Þ

where a is the lattice periodicity. Here, in direction h111i,
a is 6.989 Å. When a stationary regime is achieved, the z

FIG. 1. Theoretical model for the LiF crystal. Upper panel: LiF
cluster of 126 atoms with longitudinal and transversal views,
extracted from the perfect rocksalt structure in a cylindrical shape
along the h111i axis. Cyan, pink, and white balls represent,
respectively, Li, F, and the projectile. In the transversal view, the
four impact parameters used in this study are shown in red, green,
orange, and blue. Middle panel: Evolution of the total energy of
the electrons EðzÞ as a function of the penetration depth z. The
zero was set to the value at t ¼ 0. Lower panel: Total electronic
energy difference EðzÞ − Eðz − aÞ, where a is the periodicity
length. In the middle and lower panels, the total energies are
exhibited for v ¼ 0.4 a:u: for four impact parameters p and two
projectiles: proton (solid lines) and antiproton (dashed lines).
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dependence of EðzÞ − Eðz − aÞ vanishes and the limit to
large z is achieved in Eq. (2). In the lower panel of Fig. 1, we
plot the energy increase on a lattice period, as needed for
Eq. (2). After one period, this energy difference stabilizes
to give a constant estimate of the energy increase as can be
seen around z ¼ 20 Å in the lower panel of Fig. 1. Note that
when the projectile approaches the exit of the cluster, the
energy difference starts to vary again.
In practice, we employ the localized Gaussian-type

orbital code MOLGW [38] within the adiabatic local-density
approximation (ALDA). We use very complete basis sets,
namely aug-cc-pCVQZ, for the atoms that are close to the
projectile track. We had shown previously [28] that this is
necessary for a quantitative description of ESP. Those basis
sets contain basis functions with high angular momentum
(up to l ¼ 4), diffuse functions, and also valence and core
polarization functions. The rest of the atoms can be
described with a lighter basis (cc-pVDZ). Here, 48 atoms
have the most complete basis and 78 atoms have the simpler
one. The projectile itself is a simple point charge with no
basis function. The time-dependent Kohn-Sham equations
are integrated with the Magnus 2 propagator, combined with
a predictor-corrector procedure [39]. The time step com-
prises between 0.05 and 0.10 a.u. depending on the projectile
velocity. In addition, we have performed a few calculations
using a tuned hybrid functional (PBEh) observing a very
small effect. This confirms the weak sensitivity to the
exchange-correlation approximation already highlighted in
Refs. [40] and [26]. These hybrid functional calculations are
reported in Supplemental Material. Finally, ALDA neglects
the memory effects in the exchange correlation. This
approximation has been shown to hold for weakly charged
ions in the homogeneous electron gas [41].
Negative Barkas coefficient.—In Fig. 2, we report the RT

TDDFT calculation of RESP in LiF for impinging protons
and antiprotons, together with the available experimental
points. For comparison, we also report a linear-response
TDDFT (LR TDDFT) curve obtained with ABINIT [42,43].
First of all, the overall agreement between RT TDDFT

and experimental data is good for proton and antiproton.
The positive Barkas effect is obtained for velocities above
v ¼ 0.3 a:u:, as expected [7]. LR TDDFT calculation
predicts a threshold, however, for both the proton and
the antiproton, because of its simple Z2

1 charge dependence.
For proton, RT TDDFT yields a major improvement
compared to LR TDDFT: the presence of a velocity
threshold around v ¼ 0.1 a:u: confirms the newest exper-
imental data [18] and the previous RT TDDFT study of
Pruneda and co-workers [20].
Now focusing on antiprotons, our RT TDDFT calculations

show no velocity threshold. The RESP shows a complex line
shape at lowvelocities: a plateau inbetween0.15and0.30 a.u.
and a linear behavior Se ∝ v below 0.15 a.u. As no exper-
imental points are available in this range, our calculations can
be considered as ab initio predictions.

Our results contrast much with the conclusions of the
earlier RT TDDFT calculations of Pruneda and co-workers
[20]. In the inset of Fig. 2, we report the ESP for each
impact parameter p individually, together with the results
of Ref. [20], that selected a single impact parameter under
the h110i channeling condition. Our results for the large
impact parameter p ¼ 0.90 Å confirm their calculations:
the antiproton stopping is very low in the channeling
condition. However, the complex behavior arises for the
closer impacts at p ¼ 0.225 and 0.45 Å. We conclude then
that the RESP of antiproton, which is a weighted average of
all possible impacts, is indeed dominated by the close and
intermediate impacts at low velocity.
Thanks to this strong proton-antiproton asymmetry,

we witness the occurrence of the elusive negative Barkas
coefficient: the ESP of proton is lower than that of
antiproton for v below 0.25 a.u. The possibility of such
a negative coefficient had been foreseen in models, such as
in a harmonic oscillator [44], but never observed, to the best
of our knowledge, in any experiment or in any ab initio
calculation.
So far we concentrated on the electronic contribution.

Recently, Nordlund and co-workers [45] showed that there
also exists a proton-antiproton asymmetry for the nuclear
stopping power Sn. We therefore implemented their

FIG. 2. LiF random stopping power for protons and antiprotons
in the low-velocity regime (below 30 keV). LR TDDFT that is
insensitive to the projectile charge sign is represented with a
short-dashed line. The solid lines with symbols are RT TDDFT
Se. The calculated total random stopping power, including both
the electronic and the nuclear parts Se þ Sn, is drawn with the
long-dashed lines. Several experiments are reported jointly
[15,17,18] (triangles). The inset represents the RT TDDFT-
calculated ESP for antiprotons for each of the four impact
parameters, together with the earlier work of Pruneda et al. [20].
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approach to obtain the antiproton nuclear stopping power in
LiF, Sn, in the binary collision approximation [33]. Details
are reported in Supplemental Material. The proton con-
tribution comes from Ref. [33]. Finally, summing up the
nuclear and electronic contributions produces an even more
negative Barkas coefficient, as shown in Fig. 2.
Fractional charges analysis.—We can further character-

ize the charge asymmetry in LiF by performing calculations
for fractional projectile charges. In Fig. 3, we report the
RESP of LiF as a function of Z1 for three velocities. LR
TDDFT has a pure ðZ1Þ2 behavior. At the highest velocity,
v ¼ 1.2 a:u:, the RT TDDFT calculations follow the same
parabolic shape, which confirms the LR approximation
for this velocity. Just above the velocity threshold, at
v ¼ 0.4 a:u:, the RT TDDFT starts to depart from the
LR but still with a positive Barkas coefficient. However,
around the threshold, at v ¼ 0.2 a:u:, the LR or even any
low-order polynomial expansion in Z1 are not able to
capture the complex Z1 dependence. For low positive
values of Z1, the RESP vanishes. For negative Z1, RT
TDDFT is almost three times larger than the LR TDDFT
and a negative Barkas coefficient is realized. At low
velocity, the classical low-order polynomial expansion
should be abandoned. We nevertheless keep the expression
“Barkas coefficient” in this study for consistency with the
historical naming.
Isolated ions analysis.—We would like to understand

which particular feature in the electronic structure of LiF is
key to the negative Barkas coefficient. To simplify the
problem, we have performed RT TDDFT trajectories on
lithium cations and fluorine anions and found that at low
velocities, F− was responsible for most of the stopping
power. More precisely, by projecting the time-dependent
Kohn-Sham orbitals on the self-consistent orbitals, we

observe the depletion of the px and pz orbitals of F−.
Here, z stands for the direction of the velocity and x for the
impact parameter direction. This figure can be found in
Supplemental Material [34].
RT TDDFT are our most accurate results in this study,

however, they cannot be easily interpreted. We now turn to
LR TDDFT, not for quantitative results, but just to gain
insights. In the low-velocity limit, let us assume that the
electronic system is allowed enough time to adapt to the
perturbing projectile. Then we consider an adiabatic model
in which a proton or an antiproton is fixed at a small
distance (p ¼ 0.45 Å) of an F− anion [14,46]. The precise
setup is represented in the inset of Fig. 4, where positive
charges are also added so to mimic the 6 Liþ first nearest
neighbors.
Figure 4 shows the first excitation energy as obtained

from LR TDDFTwithin ALDA. We see the increase of the
excitation energy in the presence of a positive proton and its
strong decrease in the presence of a negative antiproton in
agreement with Ref. [46]. Indeed the extra proton is much
attractive for the fluorine electrons, which become very
stable and then not polarizable at all. The extra antiproton,
quite the contrary, repels much of the F− electrons. In
particular, the p orbital that points toward the antiproton is
much destabilized. This orbital is referred to as pu, with û
the unit vector pointing to the antiproton. It is graphically
represented in Fig. 4.
We would like to see if this orbital is indeed the cause of

the increased stopping power at low velocity. The oscillator
strengths one usually calculates for optical excitations have
no link to their contribution to the ESP. Instead, we use the
stopping cross-section (SCS) of a finite system [47],

FIG. 3. LiF RESP calculated when continuously varying the
projectile charge Z1 from −1 (antiproton) to 1 (proton). Solid
lines and symbols are the RT TDDFT calculations, whereas the
dashed lines are the LR TDDFT results.

FIG. 4. F− anion stopping cross section (SCS) Se=ρ at v ¼
0.2 a:u: (bars, left axis) and first excitation energy (diamond,
right axis). The fluorine anion is considered in three different
situations: alone, with a proton Hþ at distance p ¼ 0.45 Å, or
with an antiproton H̄− at the same distance. The pu orbital in the
presence of an antiproton in the direction u is drawn in an inset.
The stopping cross section that originates from the pu orbital is
separated from the rest.
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which is calculated for v ¼ 0.2 a:u: with the bars in Fig. 4
for the three systems under scrutiny. SCS derives directly
from generalized oscillator strengths [47], which are
velocity-dependent quantities. SCS measures the intrinsic
ability of a system to capture energy from a passing
charged projectile. The simple model is in qualitative
agreement with the complete rocksalt LiF calculations
reported above: the presence of the proton decreases the
stopping power, whereas the antiproton amplifies it by a
factor of 10. With the LR, one can identify each con-
tribution to the stopping power individually: the orange
bars in Fig. 4 highlight the stopping power that arises
from the excitations of the pu orbital defined above. The
pu orbital destabilized by the antiproton is identified as
the main contributor to the stopping at low velocity. This
statement is in agreement with the complete RT TDDFT
calculations where the px and pz orbitals are depleted:
indeed, the unit vector û is contained in the (xz) plane of
the collision. At larger velocity, all the valence orbitals
contribute to the stopping power and the particular role of
the pu orbital of F− is lost. These data can be found in
Supplemental Material [34].
Conclusion.—In conclusion, this Letter reports a neg-

ative Barkas coefficient for protons and antiprotons below
v < 0.25 a:u: (2 keV) in LiF, obtained from RT TDDFT
simulations. Whereas the RESP for proton experiences a
threshold effect, the one of antiproton does not. The
combination of the two contrasting behaviors induces a
negative Barkas effect, which had never been observed yet
in experiments or in ab initio calculations, to the best of our
knowledge.
This unique feature originates from the small impact

parameters when the antiproton approaches the F− anions.
Using fractional charges, as only possible in simulations,
we showed that the Z1 behavior of the RESP cannot be
accounted for with low-order polynomials in the low-
velocity regime, in contrast with the common practice.
At close range and low velocity, the electrons of the F−

target are destabilized by the antiproton and become highly
polarizable. This is particularly true for the p orbital that
points toward the projectile, which is found responsible for
about 80% of the stopping.
We hope this ab initio prediction will stimulate new

experimental investigations of antiprotons in insulators in
the low-velocity regime in the future.

This work was performed using HPC resources from
GENCI-TGCC (Grant No. 2021-096018). We are indebted
to I. Nagy for having pointed us to the LiF electronic
stopping power.
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