Coupling Natural Orbital Functional Theory and Many-Body Perturbation Theory by using non-dynamically correlated canonical orbitals - CEA - Commissariat à l’énergie atomique et aux énergies alternatives Access content directly
Journal Articles Journal of Chemical Theory and Computation Year : 2021

Coupling Natural Orbital Functional Theory and Many-Body Perturbation Theory by using non-dynamically correlated canonical orbitals

Abstract

We develop a new family of electronic structuremethods for capturing at the same time thedynamic and non-dynamic correlation effects.We combine natural orbital functional theory(NOFT) and many-body perturbation theory(MBPT) through a canonicalization procedureapplied to the natural orbitals to gain access toany MBPT approximation. We study three dif-ferent scenarios: Corrections based on second-order Møller-Plesset (MP2), Random-PhaseApproximation (RPA), and coupled-cluster sin-gles doubles (CCSD). Several chemical prob-lems involving different types of electron cor-relation in singlet and multiplet spin stateshave been considered. Our numerical tests re-veal that RPA-based and CCSD-based correc-tions provide similar relative errors in molecu-lar dissociation energies (De) to the results ob-tained using a MP2 correction. With respectto the MP2 case, the CCSD-based correctionimproves the prediction, while the RPA-basedcorrection reduces the computational cost.
Fichier principal
Vignette du fichier
Coupling_NOFT_and_MBPT_in_NOF_c_X.pdf (885.54 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

cea-03516535 , version 1 (07-01-2022)

Licence

Attribution - CC BY 4.0

Identifiers

Cite

Mauricio Rodriguez, Ion Mitxelena, Fabien Bruneval, Mario Piris. Coupling Natural Orbital Functional Theory and Many-Body Perturbation Theory by using non-dynamically correlated canonical orbitals. Journal of Chemical Theory and Computation, 2021, 17 (12), pp.7562. ⟨10.1021/acs.jctc.1c00858⟩. ⟨cea-03516535⟩
19 View
24 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More