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Abstract—We propose a parametric method to estimate geo-
metrical properties of a population of spheroid-like particles from
2D projection images. The method consists in, first, detecting the
projection of the particles in the images, and then estimating
the parameters of the supposed probability laws of the spheroids
semi-axes using a Bayesian framework. Moreover, a new esti-
mator of the Sauter mean diameter to assess the efficiency of
two-phase flow processes, in the case of spheroid-like particle
system, is proposed. Still in view to its practical use for the
characterization of two-phase flows, the whole methodology is
applied to a typical bubbly flow.

Index Terms—stereology, ellipsoids, Sauter mean diameter,
projection, ellipse detection, approximate Bayesian computation

I. INTRODUCTION

The characterization of particle systems encountered in
multiphase flows is a fundamental step for the design and
control of chemical processes. The experimental determination
of the flow properties - such as the velocity fields, the size
and shape distribution or the Sauter mean diameter (SMD)
of the population of particles - requires rather sophisticated
apparatus and techniques from the field of optics [1]. Typical
signals acquired are 2D projection images, which then require
proper processing to extract the information of interest.

Image analysis has become a powerful tool for monitoring
particle systems as it enables to segment the particles projec-
tions on 2D experimental images and statistical analysis can be
applied to retrieve information on the dispersed phase. Many
segmentation algorithms [2]–[4] and modeling methods [5],
[6] are reported to geometrically characterize particle systems
in the case of sphere-like particles. However, for non-spherical
ones, additional problems arise due to the projection mapping
which results in a loss of information [7], [8]. Therefore, some
assumptions have to be made regarding the particle system to
compensate for this lack of information.

In many situations, ellipsoids arise as a simple, but real-
istic, model for given particles. They are frequently used as
generalized model for droplets and/or bubbles, as this shape
assumption covers a wide range of two-phase flow regimes [9].
Consequently, the observed 2D particle projections correspond
to individual ellipses, or overlapping ellipses as the observation
volume is generally large. Several segmentation algorithms
have been proposed in the literature for overlapping ellipses in
2D images, see for example [8], [10]–[13]. However, very few
stereological methods exist to infer the geometrical properties
of the system from the projected ellipses [16].

In this paper, we propose a complete methodology to
retrieve geometrical properties of a population of ellipsoids-
like particles from its 2D projection images. More importantly,
the proposed approach is able to fill the gap between the 2D set
of projected ellipses and the corresponding 3D particle system
of ellipsoids, providing assumptions are made on the shape and
geometrical features of the particles - here we consider prolate
ellipsoids, called spheroids.

The paper is organized as follows. In Section II, we recall
briefly the detection algorithm for overlapping ellipses we
detailed in [8]. In Section III, a Bayesian inference method
is introduced to recover some 3D geometrical information
on the spheroid-like particle system from the 2D detected
ellipses. Then, a statistical method is described in Section IV
to estimate the SMD. The method is applied to a bubbly flow
in Section V.

II. DETECTION OF THE PROJECTED ELLIPSES

The first step for the characterization of spheroid-like par-
ticle system is the segmentation of the projected ellipses.
Previously we proposed an ellipse detection algorithm which
has proved to be efficient to individualize ellipses from
aggregates [8]. The algorithm consists in 1) detecting the
feature points for each connected component of the binary



image. A feature point is a pixel of the boundary where the
curvature function admits a local minimum ; 2) combining
the segments of the boundary for each connected component.
A segment is a part of the boundary between two successive
feature points ; and 3) for each set of combinations, fitting
ellipses on each group of segments and evaluate the overall fits
using the goodness-of-fit criterion called total average distance
deviation, denoted ADDtot (see [8] for a precise definition of
ADDtot). Consequently, for each connected component, the
set of detected ellipses is the group of fitted ellipses which
achieves the lowest ADDtot.

A detection result is provided in Fig. 4 for a synthetic image
of overlapping ellipses. The ellipses are uniformly oriented
and located in the image, and are not allowed to intersect the
border of the image. No constraint has been imposed on the
overlapping ratio: ellipses can completely cover each other.
The semi-axes are random variables whose distributions are
uniform on the intervals [10, 20] and [15, 40] (unit is pixels).
The ellipses cover approximately 22% of the total image
surface, which is a typical value encountered in bubbles or
droplets flows.

Fig. 1: Detection result on a simulated image of overlapping
ellipses. In (a), the ground-truth population of ellipses. In (b),
the detected ellipses with algorithm in [8].

The performances of our algorithm has been compared
with two methods from the literature: the method proposed
in [11] based on a classification, and the one proposed in [12]
based on ellipse fitting. The three algorithms were applied
on a set of 50 synthetic images similar to the one in Fig. 4.
In total, approximately 9,000 ellipses were generated. Three
usual quantitative metrics were used for comparison: the true
positive rate (TPR), the positive predictive value (PPV), and
the Jaccard similarity coefficient (JSC). The TPR and PPV are
defined as followed:

TPR =
TP

TP + FN
and PPV =

TP

TP + FP
, (1)

where TP (True Positive) is the number of correctly segmented
ellipses, FN (False Negative) is the number of missed ellipses,
and FP (False Positive) is the number of incorrectly segmented
ellipses. Starting from a binary image of the segmented ellipse
Es, the JSC is computed as

JSC =
Es ∩ Et
Es ∪ Et

, (2)

where Et is the binary map of the corresponding true ellipse.
A segmented ellipse is considered correctly detected if there
exists at least one true ellipse achieving JSC > 0.5. Among the
true ellipses satisfying this constraint, the segmented ellipse is
associated to the one achieving the highest JSC. The whole
JSCs are generally averaged in a image in order to form
a new metric, the AJSC (average JSC) which measures the
mean segmentation performance in this image. The statistics
obtained with the three methods are summarized in Table I,
highlighting the efficiency of the method proposed in [8].

TABLE I: Performances of the proposed detection algorithm
compared to two methods from the literature on a set of 50
simulated images of overlapping ellipses.

Algorithm TPR PPV AJSC
Zafari, et al. [12] 0.84 0.85 0.79
Park, et al. [11] 0.67 0.87 0.71
de Langlard, et al. [8] 0.87 0.95 0.91

III. 3D GEOMETRICAL CHARACTERIZATION

A. Modeling approach

Let y = (y1,y2, ...,yk) be the set of k ∈ N∗ detected
ellipses where yi = (a′i, b

′
i) is the pair of semi-major and semi-

minor axes of ellipse i ∈ {1, . . . , k}, a′i and b′i, respectively.
Note that there is only one orthogonal projection for each
particle, and no information is given on the orientation of
each ellipsoid. Therefore, reconstruction methods such as in
[14], [15] are not applicable. However, some 3D geometrical
properties can be estimated using a probabilistic setting.

We assume that the 3D particles are independent and
identically distributed (i.i.d) realizations of a random ellipsoid
of revolution about its semi-major axis a located at the
origin, called random spheroid. The semi-minor axis b is
defined by b = εa, where ε is a random variable, called
flattening coefficient, taking values in the unit interval [0, 1].
The observations yi = (a′i, b

′
i) are i.i.d realizations of the

corresponding random projected ellipse with semi-major and
semi-minor axes a′ and b′, respectively. Two main assumptions
follow:

(A1) the particles are isotropic, i.e., there is no privileged
orientation ;

(A2) the semi-major axis a and flattening coefficient ε follow
the parametric probability laws F1 and F2, respectively.

We denote θ1 ∈ Rp1 and θ2 ∈ Rp2 the respective parameter
vectors of F1 and F2, with p1 and p2 the number of parame-
ters.

The aim of the method is to estimate the parameter vector
θreal = (θ1,θ2) ∈ Rd, with d = p1 + p2, from the detected
ellipses y. A Bayesian framework is adopted, where the vector
of parameter θreal is considered as a realization of a random
variable Θ. The proposed method consists in finding the
maximum a posteriori (MAP), i.e. the point value θMAP at
which the posterior density function f(·|y) is maximal. The



value θMAP is then used as an estimator of θreal. From the
Bayes formula, we have

f(θ|y) ∝ l(y|θ)f(θ), (3)

where l(·|θ) is the probability density function of the pro-
jected ellipse semi-axes given a realization θ of the random
parameter vector Θ, and f(·) the a priori marginal probability
density function of Θ. We denote L(θ;y) the corresponding
likelihood function.

Note that the joint distribution of the projected semi-axes of
the particles is equal to the joint distribution of the projected
semi-axes of the random spheroid with its axes used as the
coordinate system and the projection direction being uniformly
distributed on the unit sphere of R3. This equivalence is
due to (A1) and to the i.i.d hypothesis for the particles. In
[16], we proved that the likelihood function L(.;y) is not
analytically tractable, hence, the posterior density cannot be
easily maximized. Therefore, a numerical approach is required
to first approximate the posterior density, and to compute an
approximation of the MAP.

B. Algorithm

A class of methods, called approximate Bayesian compu-
tation (ABC) methods, were introduced when the likelihood
is not available in analytical form, see [18]. The simplest
approach of ABC is based on a rejection technique by bypass-
ing the calculation of the likelihood function. Only samples
according to the conditional distribution of the observations
given the set of parameters are required. If y ∼ l(·|θ), then
the proposed rejection method follows the three steps below:

1) sample θ′ ∼ f(·) ;
2) sample y′ ∼ l(·|θ′) ;
3) accept θ′ if ρ(S(y′), S(y)) ≤ δ.

In the third step, S : R2×k → Rs+ is a function which
calculates a set of s statistics on the y data (e.g. mean, standard
deviation, etc.) and the function ρ : Rs ×Rs → R+ measures
the difference between the statistics of the simulated data y′

and those observed y. If θ′ is accepted, it is a sample from the
posterior distribution conditionally to ρ(S(y′), S(y)) ≤ δ, i.e.
from f(·|ρ(S(y′), S(y)) ≤ δ). When δ → 0, we sample con-
ditionally to the summary statistics of the observed data, i.e.
from f(·|S(y)). Moreover, when the set of summary statistics
S is Bayes sufficient (see [18], page 128), the approximate
posterior density f(·|ρ(S(y′), S(y)) ≤ δ) converges to the
true posterior f(·|y) when δ → 0. However, the algorithm
becomes ineffective in practice if δ is too small as it results
to a systematic rejection of all the θ′ proposals.

Given the set of n samples θ1:n = (θ1, . . . ,θn) from
f(·|ρ(S(y′), S(y)) ≤ δ) (see [16] for practical consideration
of the sampling algorithm), a kernel density estimator of
f(·|ρ(S(y′), S(y)) ≤ δ) is obtained with

f̂n(θ|ρ(S(y′), S(y)) ≤ δ) =
|H|−1/2

n

n∑
i=1

K
(
H−1/2(θ − θi)

)
,

∀θ ∈ D, (4)

where K is a kernel (a symmetric non-negative real-value
integrable function whose integral equals 1 on Rd) and H
is the so-called 4× 4 bandwidth matrix of the kernel density
estimator with determinant |H|.

The non-parametric estimator in (4) can be maximized.
Its maximum θAMAP, called the approximate maximum a
posteriori (AMAP), can serve as an approximation of θMAP.
Asymptotic properties of the approximate maximum a pos-
teriori estimator can be found in [19]. Finally, the main
steps of the algorithm is summarized in Algorithm 1. For the
computation of the bandwidth matrix H , see [16].

Algorithm 1 Estimation of the AMAP

1) Obtain n samples θ1:n from f(·|ρ(S(y′), S(y)) ≤ δ).
2) Construct the kernel density estimator
f̂n(·|ρ(S(y′), S(y)) ≤ δ) using (4).
3) Compute the maximum θ̂AMAP of f̂n(·|ρ(S(y′), S(y)) ≤
δ) using an optimization algorithm.

C. Numerical tests

Several parameters may influence the quality of the AMAP
estimator: the tolerance parameter δ, the choice of summary
statistics S and the number of samples n. Some numerical
tests have been undertaken to quantify the impact of these
parameters for a specific scenario.

We consider a random spheroid with a semi-major axis a
following a Gamma law Γ(τ, υ) with shape and scale parame-
ters τ = 4 and υ = 0.05, and a flattening coefficient ε follow-
ing a truncated Gaussian law trN (0.85, 0.1; 1/2, 1) restricted
to the interval [1/2, 1], of mean 0.85 and standard deviation
0.1. The true set of parameters is θreal = (µ1, σ1, µ2, σ2),
where µ1 = τ × υ = 0.2, σ1 =

√
τ × υ2 = 0.1, µ2 = 0.85

and σ2 = 0.1. A number of k realizations of the oriented
random spheroid are sampled. Each realization i ∈ {1, . . . , k}
is projected to obtain the set of k projected semi-axes, a′ =
(a′1, · · · , a′k) and b′ = (b′1, · · · , b′k). The AMAP estimator is
computed from a′ and b′.

The ρ function which measures the deviation between the
statistics of the sampled semi-axes and the observations is
defined by

ρ : Rs × Rs −→ R+

(x, y) 7−→ max
1≤i≤s

(∣∣∣xi

yi
− 1
∣∣∣) .

This function was initially proposed in [17]. A natural choice
of statistics s is the mean and standard deviation of the
semi-major axis and those of the flattening coefficient of the
projected ellipses, hence, four statistics are considered.

First, the effect of decreasing values of δ have been tested:
0.8, 0.6, 0.4 and 0.2. In each case, we sampled 20 times from
the approximate posterior distribution f̂n(·|ρ(S(y′), S(y) ≤
δ), and computed the AMAP estimator for each sample. The
sample size is n = 50, 000 and the number of observed ellipses
is k = 4, 000. Fig. 2 gives the violin plots of the AMAP
estimator for the four parameters. In each graph, the horizontal



Fig. 2: Performances of the AMAP estimator with respect to
the tolerance δ for n = 50, 000 and k = 4, 000. The mean and
the median of the estimations are plotted within the violin
plots in horizontal lines and white circles respectively. The
target values are represented in red dashed lines.

line within the violin plots corresponds to the mean of the 20
estimations, while the median is highlighted with white circle,
and the actual values of the target parameter are represented
by the red dashed lines. A decrease of the dispersion of the
distribution is evidenced as δ decreases. The distribution tends
to be more concentrated around the corresponding theoretical
values. This is expected as f̂n(·|ρ(S(y′), S(y) ≤ δ) is a better
approximation of f(·|y) when δ decreases. Besides, the mean
absolute percentage error (mape) for δ = 0.2 is less than 10%
for µ1, σ1 and µ2.

The corresponding error is however higher when consid-
ering the standard deviation of the flattening coefficient σ2.
One possible explanation is that the chosen summary statistics
are not fully informative for the posterior distribution. This
is confirmed with the result of the second numerical test
when adding one more statistics: a fifth statistic, defined as
the average area of the projected ellipses, is added to the
four initial ones. We then observed a decrease of the mape
for all four parameters with also a decrease of the statistical
dispersion. On the contrary, if we removed the statistic on the
standard deviation of the flattening coefficient of the projected
ellipses - then only three statistics remain - we observed a
significant deviation on the estimated parameters, especially
for µ2. For more details on the numerical tests, see [16].

IV. ESTIMATION OF THE SAUTER MEAN DIAMETER

A. Definition

The SMD, d32, is generally used to characterize two-
phase flows composed of polydisperse populations of spherical
particles, i.e., population of particles with different radii. The

SMD represents the radius of the particles of a monodisperse
system which has the same total volume Vtot and total surface
Stot of the polydisperse one.

In the discrete and finite case, the polydisperse system is
composed of particles with N different diameters dj , where
j ∈ {1, . . . , N}. The SMD is given by (see [20])

d32 =

∑N
j=1 njdj

3∑N
j=1 njdj

2
, (5)

where nj is the number of particles of diameter dj , which is
equivalent to

d32 = 6
Vtot

Stot
. (6)

B. Estimator for spheroids

Equation (6) can be used to get an estimator of the SMD,
denoted d̂32, in the case of random spheroid-like particle
systems such as the one in Section III. For random particle
systems, Vtot and Stot should naturally be replaced in (6) by
V̄tot and S̄tot, i.e., the mean total volume and mean total surface
of the particle system within the sampling window W .

It is assumed that the semi-major axis a and the flattening
coefficient ε have both continuous probability distributions
with third order moment. Moreover, the mean number of
particles per unit volume, λ, is independent on the space
coordinates (we neglect edge effects due to the tank wall).
Then, we have

V̄tot = Vobs × V̄ and S̄tot = Vobs × S̄, (7)

where Vobs is the volume of W , V̄ and S̄ are the mean volume
and mean surface area, respectively, of the particle system per
unit volume. Moreover, by definition we have

V̄ = λE[Vp] and S̄ = λE[Sp], (8)

where E[Vp] and E[Sp] are the mean volume and mean surface
area of a particle, respectively. After replacing in (6), the
constants cancel out and it comes

d32 = 6
E[Vp]

E[Sp]
. (9)

Replacing Vp and Sp by the expression of the volume and
surface area of a prolate ellipsoid, and after some simplifica-
tions, the SMD is rewritten as

d32 =
4(µ2

2 + σ2
2)E[a3]

(µ2
1 + σ2

1) (µ2
2 + σ2

2 + E [ε arcsin(e)/e])
. (10)

Consequently, the following estimator, d̂32, is proposed for the
SMD in the case of prolate spheroid-like particle systems:

d̂32 =
4(µ̂2

2 + σ̂2
2) d3M̂a(t)

dt3

∣∣∣
t=0

(µ̂2
1 + σ̂2

1)

(
µ̂2
2 + σ̂2

2 + 1/Ns
Ns∑
i=1

[εi arcsin(ei)/ei]

) ,
(11)

where:
• (µ̂1, σ̂1, µ̂2, σ̂2) are the estimators of the means and

standard deviations of a and ε ;



Fig. 3: Experimental setup of the bubbly flow.

• M̂a is the moment generating function under the proba-
bility law of the semi-major axis ;

• ei =
√

1− ε2i , where εi is a sample of the flattening co-

efficient. Then, 1/Ns
Ns∑
i=1

[εi arcsin(ei)/ei] is the Monte-

Carlo estimator of E [ε arcsin(e)/e], where Ns is the
number of samples.

V. APPLICATION

The flow takes place in a vertical glass cylinder of height
250 mm and diameter 100 mm, with two opposite planar
optical windows in order to minimize light distortions. The
tank is filled with deionized water with a volume of about
1L, and air is injected at the bottom through a sintered glass
disk (with pore size in the range 4090 nm). Due to buoyancy,
bubbles are rising in the liquids, pass in front of the windows
and freely escape the cylinder at the top. The gas flow-rate is
Q = 10L/h. The optical setup consists in a green collimated
light-source, a bi-telecentric lens (from OptoengineeringTM)
and a high resolution and high dynamic CMOS camera (1.1
MPixel, 12 bits). Acquisitions are conducted at 50 fps, with an
exposure time of 1/60, 000s in order to “freeze” the bubbles
motion. The spatial resolution is 1024×1024 pixels where 100
pixels corresponds to 1.72mm. Such a configuration, associ-
ating bi-telecentric lens and collimated light, is particularly
suitable for two-phase flow observation as it provides high
contrast images. A photograph of the experimental set-up is
provided in Fig. 3.

The preprocessing and binarization procedure is standard
and consists of the following steps: 1) a crop to remove the
vignetting effect on the image edges, 2) a binarization using
the Otsu’s method, and 3) a morphological area opening to
remove very small objects (≤100 pixels) considered as noise
and measurement artifacts. The ellipse detection algorithm
of Section II was applied to a set of 100 preprocessed
experimental images. A typical experimental image and the
corresponding detected ellipses are provided in Fig. 4. Note
that the minus-sampling method is used to remove edge-
effects, see [21].

More than 1000 ellipses have been detected from the
measured images. The Bayesian inference method of Section
III was applied using these detected ellipses. We assume

Fig. 4: Result of the detection algorithm on a typical projection
image of the bubbly flow. (a) Typical image of the bubbly flow.
(b) The detected ellipses in red with algorithm in [8].

TABLE II: Estimations of some 3D geometrical properties of
the population of bubbles.

3D properties Estimations

λ̂
(
mm−3

)
0.00733

µ̂1 (mm) 0.43
σ̂1 (mm) 0.26
µ̂2 (mm) 0.73
σ̂2 (mm) 0.34
d̂32 (mm) 1.16

that the semi-major axis follow a Gamma law with mean
µ1 and standard deviation σ1 and the flattening coefficient
a truncated Gaussian law on the interval [0, 1] with mean µ2

and standard deviation σ2. From a statistical analysis of the
detected ellipses, we remark that approx. 22% of the ellipses
can be considered as perfect disk (ε ≥ 0.98) and approx.
65% exhibit flattening coefficient higher than 0.9. This results
highlights that, on average, the shape of the bubbles tends
to be close to that of a sphere. Therefore, we assume for the
Bayesian inference in Section III that the parameter µ2 is Beta
distributed with parameter α = 5 and β = 2. Thus, the prior
density function f(θ) is designed as

f(θ) = f(µ2) =
Γ(α+ β)

Γ(α)Γ(β)
µα−12 (1− µ2)β−1, (12)

where Γ is the Gamma function. Moreover, the numerical
experiments undertaken in Section III suggest to choose
the tolerance parameter δ = 0.2, the number of samples
n = 10000 and the set of five statistics.

As the volume of observation is known, the estimator λ̂ of
the particle density can be easily computed. Moreover, using
the Bayesian inference procedure of Section III, we estimate
the mean and the standard deviation of the semi-major axis
(µ̂1 and σ̂1) and the ones of the flattening coefficient (µ̂2 and
σ̂2). The estimators µ̂1, σ̂1, µ̂2 and σ̂2 are the means of the
AMAP estimator over 20 runs. Furthermore, the SMD of the
population of bubbles can be estimated by d̂32 using (11).
These values are presented in Tab. II.

Although the exact properties of the bubbly flow are not
known in this case, we can compare the d̂32 in Tab. II



with another estimator of the SMD, denoted d̂lit
32, which is

sometimes used in the literature [10]. It is computed from the
area-equivalent diameter, i.e.,

d̂lit
32 =

∑
j njd

3
j,eq∑

j njd
2
j,eq

, (13)

where nj is the number of detected ellipses in the class j with
area-equivalent diameter equal to dj,eq. The area-equivalent
diameter of a detected ellipse is the diameter of the disk
having the same area of the detected ellipse. For the considered
population of bubbles, we obtained dlit

32 = 1.32 mm, hence
a relative difference of 14% with d̂32. Unlike d̂32, a major
drawback of dlit

32 is that it does not hold any relevant 3D
geometrical information on the population of bubbles. Indeed,
there is no straightforward relationship between the area-
equivalent diameter of the ellipses and the total volume or total
surface of the population of bubbles. This lack of geometrical
consistency for the SMD when using dlit

32 may explain the
difference obtained when estimating it with d̂32.

VI. CONCLUSION

We proposed a complete methodology to estimate important
3D geometrical properties of spheroid-like particle systems
encountered in two-phase flows, using 2D projection images.
It consists in detecting the 2D projections of the particles
in the images, and estimating the parameters of the semi-
axes probability laws from these detections using a Bayesian
framework. The main drawback of the Bayesian inference
method is the assumption made on the probability laws of
the semi-major axis and flattening coefficient of the particles.
These probability laws are not known in practice. Therefore,
we can only expect to estimate accurately the first order
moments of the distributions. Some numerical tests have been
undertaken in previous papers for validating the detection
algorithm and the Bayesian inference method. However, it is
very difficult to test and validate the full methodology on
typical two-phase flows as the exact 3D properties of the
particle system are not known.

Besides, we proposed a new estimator of the SMD which
is an important characteristic for most particulate flow ap-
plications. For the considered bubbly flow, the comparison
between the proposed estimator of the SMD and the one
generally used in the literature suggests that some cares have
to be taken. Unlike d̂32, the SMD estimator d̂lit

32 cannot be
used to characterize the efficiency of the flow as there is
no straightforward geometrical relationship between the area-
equivalent diameter of a projected ellipse and the volume or
the surface area of the corresponding spheroid. This why for
very elongated particles, i.e. whose shape deviates strongly
from that of a sphere, the proposed SMD estimator d̂32 in
(11) should be preferred.
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