
HAL Id: cea-03483683
https://cea.hal.science/cea-03483683

Submitted on 16 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep learning side-channel analysis on large-scale traces
Loïc Masure, Nicolas Belleville, Eleonora Cagli, Marie-Angela Cornélie,

Damien Couroussé, Cécile Dumas, Laurent Maingault

To cite this version:
Loïc Masure, Nicolas Belleville, Eleonora Cagli, Marie-Angela Cornélie, Damien Couroussé, et al..
Deep learning side-channel analysis on large-scale traces: A Case Study on a Polymorphic AES.
ESORICS 2020: Computer Security, Sep 2020, Guildford, United Kingdom. pp.440-460, �10.1007/978-
3-030-58951-6_22�. �cea-03483683�

https://cea.hal.science/cea-03483683
https://hal.archives-ouvertes.fr


Deep Learning
Side-Channel Analysis on Large-Scale Traces

A Case Study on a Polymorphic AES

Loïc Masure1,3, Nicolas Belleville2, Eleonora Cagli2, Marie-Angela
Cornélie1, Damien Couroussé2, Cécile Dumas1, and Laurent Maingault1

1 Univ. Grenoble Alpes, CEA, LETI, DSYS, CESTI, F-38000 Grenoble
2 Univ. Grenoble Alpes, CEA, List, F-38000 Grenoble

3 Sorbonne
Université, UPMC Univ Paris 06, POLSYS, UMR 7606, LIP6, F-75005, Paris, France

Abstract. Code polymorphism is a way to efficiently address the challenge of
automatically applying the hiding of sensitive information leakage, as a way to
protect cryptographic primitives against side-channel attacks (SCA) involving
layman adversaries. Yet, recent improvements in SCA, involving more powerful
threat models, e.g., using deep learning, emphasized the weaknesses of some
hiding counter-measures. This raises two questions. On the one hand, the
security of code polymorphism against more powerful attackers, which has
never been addressed so far, might be affected. On the other hand, using
deep learning SCA on code polymorphism would require to scale the state-of-
the-art models to much larger traces than considered so far in the literature.
Such a case typically occurs with code polymorphism due to the unknown
precise location of the leakage from one execution to another. We tackle those
questions through the evaluation of two polymorphic implementations of
AES, similar to the ones used in a recent paper published in TACO 2019 [6].
We show on our analysis how to efficiently adapt deep learning models used
in SCA to scale on traces 32 folds larger than what has been done so far in the
literature. Our results show that the targeted polymorphic implementations
are broken within 20 queries with the most powerful threat models involving
deep learning, whereas 100,000 queries would not be sufficient to succeed the
attacks previously investigated against code polymorphism. As a consequence,
this paper pushes towards the search of new polymorphic implementations
secured against state-of-the-art attacks, which currently remains to be found.

1 Introduction

1.1 Context

Side-channel analysis (SCA) is a class of attacks against cryptographic primitives that
exploit weaknesses of their physical implementation. During the execution of the latter
implementation, some sensitive variables are indeed processed that depend on both a
piece of public data (e.g. a plain-text) and on some chunk of a secret value (e.g. a key).
Hence, combining information about a sensitive variable with the knowledge of the



public data enables an attacker to reduce the secret chunk search space. By repeating
this attack several times, implementations of secure cryptographic algorithms such as
the Advanced Encryption Standard (AES) [31] can then be defeated by recovering each
byte of the secret key separately thanks to a divide-and-conquer strategy, thereby
breaking the high complexity usually required to defeat such an algorithm. The
information on sensitive variables is usually gathered by acquiring time series (a.k.a.
traces) of physical measurements such as the power consumption or the electromagnetic
emanations measured on the target device (e.g. a smart card). Nowadays, SCA are
considered as one of the most effective threats against cryptographic implementations.

To protect against SCA, many counter-measures have been developed and have
been shown to be practically effective so that their use in industrial implementations is
today common. Their effects may be twofold. On the one hand it may force an attacker
to require more traces to recover the secret data. In other words it may require more
queries to the cryptographic primitive, possibly beyond the duration of a session key.
On the other hand, it may increase the computational complexity of side-channel anal-
ysis, making the use of simple statistical tools and attacks harder. Countermeasures
against SCA can be divided into twomain families: masking and hiding. Masking, a.k.a.
secret-sharing, consists in replacing any sensitive secret-dependent variable in the imple-
mentation by a (d+1)−sharing, so that each share subset is statistically independent
of the sensitive variable. This counter-measure is known to be theoretically sound since
it amplifies the noise exponentially with the number of shares d, though at the cost of
a quadratic growth in the performance overheads [35,33]. This drawback, combined
with the difficulty of properly implementing the counter-measure, makes masking
still challenging for a non-expert developer. Hiding covers many techniques that aim
at reducing the signal-to-noise ratio in the traces. Asynchronous logic [34] or dual rail
logic [41] in hardware, shuffling independent computations [43], or injecting temporal
de-synchronization in the traces [13] in software, are typical examples of hiding counter-
measures that have been practically effective against SCA. Hence, in practice, masking
and hiding are combined to ensure that a secured product meets security standards.

However, due to the skyrocketing production of IoT, there is a need for the
automated application of protections to improve products’ resistance against SCA
while keeping the performance overhead sufficiently low. In this context, a recent
work proposed a compiler toolchain to automatically apply a software hiding counter-
measure called code polymorphism [6]. The working principle of the counter-measure
relies on the execution of many variants of the machine code of the protected software
component, produced by a runtime code generator. The successive execution of
many variants aims at producing variable side-channel traces in order to increase
the difficulty to realize SCA. We emphasize on the fact that, if code polymorphism
is the only counter-measure applied to the target component, information leakage
is still present in the side-channel traces. Yet, several works have shown the ability
of code polymorphism and similar software mechanisms to be effective in practice
against vertical SCA [2,14], i.e. up to the point that the Test Vector Leakage Assess-
ment (TVLA) methodology [5], highly discriminating in the detection of side-channel
leakage, would not be able to detect information leakage in the traces [3,6].



1.2 Problem Addressed in this Paper

Yet, though very promising, these results cannot draw an exhaustive guarantee con-
cerning the security level against SCA, since other realistic scenarios have not been
investigated.

Indeed, on the one hand the SCA literature proposes other ways to outperform
vertical attacks when facing hiding counter-measures. Re-synchronization techniques
might annihilate the misalignment effect occurred by code polymorphism, since
it is successfully applied on hardware devices prone to jitter [29,44,16]. Likewise,
Convolutional Neural Networks (CNN) can circumvent some software and hardware
de-synchronization counter-measures, in a sense similar to code polymorphism [10,23].
It is therefore of great interest to use those techniques to assess the security provided
by some code polymorphism configurations against more elaborated attackers.

On the other hand, until now the literature has only demonstrated the rele-
vance of CNN attacks on restricted traces whose size does not exceed 5,000 sam-
ples [10,7,23,42,45], which is small, e.g., regarding the size of the raw traces in the
public datasets of software AES implementations used in those papers [30,7,12].
This requires to restrict the acquired traces to a tight window where the attacker
is confident that the relevant leakage occurs. Unfortunately, this is not possible
since code polymorphism applies hiding in a systematic and pervasive way in the
implementation. Likewise, other dimensionality reduction techniques like dedicated
variants of Principal Component Analysis (PCA) [38] might be considered prior to
the use of CNNs. Unfortunately, they do not theoretically provide any guarantee
that relevant features will be extracted, especially for data prone to misalignment.
As a consequence, attacking a polymorphic implementation necessarily requires to
deal with large-scale traces. This generally spans serious issues for machine learning
problems known under the name of curse of dimensionality [36]. That is why it
currently remains an open question whether CNN attacks can scale on larger traces, or
whether it represents a technical issue that some configurations of code polymorphism
might benefit against these attacks. Hence, both problems, namely evaluating code
polymorphism and addressing large-scale traces SCA, are closely connected.

1.3 Contribution

In this paper, we tackle the two problems presented so far by extending the security
evaluation provided by Belleville et al. [6]. The evaluation aims to assess the security
of the highest code polymorphism configuration they used, on same implementations,
against stronger attackers.

Our evaluation considers a wide spectrum of threat models, ranging from auto-
mated attacks affordable by a layman attacker, to state-of-the-art techniques. The
whole evaluation setup is detailed in Section 2. In particular, we propose to adapt the
architectures used in the literature of CNN attacks, in order to handle the technical
challenge of large scale traces. This is presented in Subsection 2.6.

Our results show that vertical attacks fail due to the code polymorphism counter-
measure, but that more elaborated scenarios lead to successful attacks. Compared to
the ones conducted in [6], and depending on the different attack powers considered



hereafter, the number of required queries is lowered by up to several orders of mag-
nitude. In a worst case scenario, our trained CNNs are able to recover every secret
key byte in less than 20 traces of dimensionality 160,000, which is 32 times higher
than the traces used so far in CNN attacks. This therefore illustrates that large scale
traces are not necessarily a technical challenge for deep-learning based SCA. Those
results are presented in Section 3.

Thus, this study claims that though code polymorphism is a promising tool
to increase the hardness of SCA against embedded devices, a sound polymorphic
configuration, eventually coupled with other counter-measures, is yet to be found, in
order to protect against state-of-the-art SCA. This is discussed in Section 4. However,
the toolchain used by Belleville et al. [6] allows to explore many configurations beside
the one considered here, the exploration of the securing capabilities of the toolchain is
then beyond the scope of this paper, and left as an open question for further works.

2 Evaluation Methodology

This section presents all the settings necessary to proceed with the evaluation. Subsec-
tion 2.1 briefly presents the principle of the code polymorphism counter-measure, and
precises the aim of the different code transformations included in the evaluated config-
uration. Subsection 2.2 presents the target device and the two AES implementations
that have been used for this evaluation. Subsection 2.3 details the acquisition settings,
while Subsection 2.4 describes the shape of the acquired traces. Finally, Subsection 2.5
presents the different threat models considered hereafter, and Subsection 2.6 precises
how the CNN attacks have been conducted.

2.1 Description of the Target Counter-Measure

We briefly describe the code polymorphism counter-measure applied by the toolchain
used by Belleville et al. [6]. The compiler applies the counter-measure to selected
critical parts of an unprotected source code: it inserts, in the target program, machine
code generators, called SGPC s (Specialized Generators of Polymorphic Code), that
can produce so-called polymorphic instances, i.e., many different but functionally-
equivalent implementations of the protected components. At run-time, SGPCs are
regularly executed to produce new machine code instances of the polymorphic
components. Thus, the device will behave differently after each code generation but the
results of the computations are not altered. The toolchain supports several polymorphic
code transformations, which can be selected separately in the toolchain, and most of
them offer a set of configuration parameters. A developer can then set the level and
the nature of polymorphic transformations, hence the amount of behavioral variability.

Hereafter, we detail the specific code transformations that have been activated
for the evaluation:

– Register shuffling: the index of the general purpose callee saved registers are
randomly permuted.

– Instruction shuffling: the independent instructions are randomly permuted.



– Semantic variants: some instructions are randomly replaced by another seman-
tically equivalent (sequence of) instruction(s). For example, variants of arithmetic
instructions (e.g. eor, sub), remains arithmetically equivalent to the original
instruction.

– Noise instructions: a random number of dummy instructions is added between
the useful instructions in order to break the alignment of the leakage in the traces.
Noise instructions are interleaved with useful instructions by the instruction
shuffling transformation.

We emphasize on the fact that the sensitive variables (e.g., the AES key) are
only manipulated by the polymorphic instances (i.e., the generated machine code),
and not by the SGPCs themselves. SGPCs are specialized code generators, and their
only input is a source of random data (a PRNG internal to the code generation
runtime) that drives code generation. Hence, SGPCs only manipulate instruction
and register encodings,and never manipulate secret data. Thus, performing a SCA on
side-channel traces of executions of SGPCs cannot reveal a secret nor an information
leakage. However, SGPCs manipulate data that are related to the contents of the
buffer instances, e.g., the structure of the generated code, the nature of the generated
machine instructions (useful and noise instructions), etc. SCA performed on SGPC
traces could possibly be helpful to reveal sensitive information about the code used
by the polymorphic instances, but to the best of our knowledge, there is no such work
in the literature. As such, this research question is out of the scope of this paper.

2.2 Target of Evaluation

In order to make a fair comparison with the results presented by Belleville et al. [6],
we consider two out of the 15 implementations used in their benchmarks, namely the
AES 8-bit and the mbedTLS that we briefly describe hereafter.

mbedTLS. This 32-bit implementation of AES from the ARM mbedTLS library [4]
follows the so-called T-table technique [15]: the 16-byte state of AES is encoded into
four uint32_t variables, each representing a column of the state. Each round of the
AES is done by applying four different constant look-up tables, that are stored in
flash memory.

AES 8-bit. This is a simple software unprotected implementation of AES written
in C, and manipulating only variables of type uint8_t, similar to [1]. The SubBytes
operation is computed byte-wise thanks to a look-up table, stored in RAM. This
reduces information leakage on memory accesses, as compared to the use of the same
look-up table stored in flash memory.

Target Device. We ran the different AES implementations on an evaluation board
embedding an Arm Cortex-M4 32-bit core [40]. This device does not provide any hard-
ware security mechanisms against side-channel attacks. This core originally operates at
72 MHz, but the core frequency was reduced to 8 MHz for the purpose of side-channel



measurements. The target is similar to the one used by Belleville et al. [6], who consid-
ered a Cortex-M3 core running at 24MHz. These two micro-controllers have an in-order
pipeline architecture, but with a different pipeline organization. Thus, we cannot
expect those two platforms to exhibit the same side-channel characteristics. However,
our experience indicates that these two experimental setups would lead to similar con-
clusions with regards to the attacker models considered in our study. Similar findings
on similar targets have also been reported by Heuser et al. [20]. Therefore, we assume
in this study that the differences of side-channel characteristics between the two targets
should not induce important differences in the results of such side-channel analysis.

Configuration of the Code Polymorphism Counter-Measure. For each eval-
uated implementation, the code polymorphism counter-measure is applied with a
level corresponding to the configuration high described by Belleville et al. [6]: all
the polymorphic code transformations are activated, the number of inserted noise
instructions follows a probability distribution based on a truncated geometric law.
The dynamic noise is activated and SGPCs produce a new polymorphic instance of
the protected code for each execution (the regeneration period is set to 1).

2.3 Acquisition Setup

We measured side-channel traces corresponding to EM emanations with an EM probe
RF-B 0.3-3 from Langer, equipped with a pre-amplifier, and a Rohde & Schwarz
RTO 2044 oscilloscope with a 4 GHz bandwidth and a vertical resolution of 8 bits.
We set the sampling rate to 200 MS/sec., with the acquisition mode peak-detect that
collects the minimum and the maximum voltage values over each sampling period.
We first verify that our acquisition setup is properly set. This is done by acquiring
several traces where the code polymorphism was de-activated. Thus, we can verify
that those traces are synchronized. Then, computing the Welch’s T-test [28] enables
to assess whether the probe is correctly positioned and the sampling rate is high
enough. Then, 100,000 profiling traces are acquired for each target implementation.
Each acquisition campaign lasts about 12 hours.

2.4 Preliminary Analysis of the Traces

Once the traces are acquired, and before we investigate the attacks that will be pre-
sented in Subsection 2.5, we detail here a preliminary analysis of the component. The
aim is to restrict as much as possible the target region acquired to a window covering
the entire first AES round. Therefore there would not be any loss of informative
leakage about the sensitive intermediate variable targeted in those experiments. In
addition to that, a univariate leakage assessment, by computing the Signal-to-Noise
Ratio (SNR) [27],4 is provided hereafter in order to verify that there is no trivial
leakage that could be exploited by a weak, automatized attacker (see Subsection 2.5).

4 A short description of this test is provided in Appendix B for the non-expert reader.



50
100
150

E
M

50

100

150

E
M

0 25 50 75 100 125 150 175 200

Time (µs)

0.002

0.003

S
N

R

Fig. 1: Acquisitions on the mbedTLS implementation. Top: two traces containing the
first AES round. Bottom: SNR computed on the 100,000 profiling traces.

mbedTLS. We ran some preliminary acquisitions on 107 samples, in order to visualize
all the execution. We could clearly distinguish the AES execution with sparse EM
peaks, from the call to the SGPC with more frequent EM peaks. This enabled to
focus on the first 106 samples of the traces corresponding to the AES execution.

Actually, the traces restricted to the AES execution seem to remain globally the
same between each other, up to local elastic deformations along the time axis. This is
in line with the effect of code polymorphism, since it involves transformations at the
assembly level. Likewise, 10 patterns could be distinguished on each traces, which were
clues to expect that it would correspond to the 10 rounds of AES. That is how we could
restrict again our target window to the first round, up to comfortable margins because
of the misalignment effect of code polymorphism. This represents 80,000 samples. An
illustration of two traces restricted to the first round is given in Figure 1 (top).

The SNR denoting here the potential univariate leakage of the first output byte
of the SubBytes operation is computed based on the 100,000 acquired profiling traces,
and is plotted in Figure 1 (bottom). No distinguishing peak can be observed, which
confirms the soundness of code polymorphism against vertical attacks on raw traces.

However, we observe in each trace approximately 16 EM peaks, which corresponds
to the number of memory accesses to the look-up tables per encryption round. These
memory accesses are known to carry sensitive information. This suggests that a trace
re-alignment on EM peaks might be relevant to achieve successful vertical attacks.
We proceed with such a re-alignment that we describe hereafter. For each 80,000-
dimensional trace, the clock cycles corresponding to the region between two EM
peaks are identified according to a thresholding on falling edges. Since the EM peak
pattern delimiting two identified clock cycles may be spread over a different number of
samples, from one pattern to another, we only keep the minimum andmaximum points.
Likewise, since the number of identified clock cycles can also differ from one trace to
another, the extracted samples are eventually zero-padded to be of dimension D=50.

Based on this re-alignment, a new SNR is computed on Figure 2. Contrary to the
SNR computed on raw traces in Figure 1, some leakages are clearly distinguishable



0 10 20 30 40 50

Time (samples)

10−2

10−1
S

N
R

Other bytes

Byte 0

Byte 1

Fig. 2: The 16 SNR of the acquired traces from the mbedTLS implementation, one
for each targeted byte, after re-aligned pattern extraction.

−50

0

50

E
M

−50

0

50

E
M

0 50 100 150 200 250 300 350 400

Time (µs)

0.002

0.003

S
N

R

Fig. 3: Acquisitions on the AES 8-bit implementation. Top: two traces containing the
first AES round. Bottom: SNR computed on the 100,000 profiling traces.

though the amplitude of the SNR peaks vary from 5.10−2 to 5.10−1, according to
the targeted byte.

AES 8-bit. We proceed in the same way for the evaluation of AES 8-bit implemen-
tation. As with the mbedTLS traces, we could identify 10 successive patterns likely
to correspond to the 10 AES rounds. Therefore we reduce the target window at the
oscilloscope to the first AES round, which represents 160,000-dimensional traces plot-
ted in Figure 3 (top). This growth in the size of the traces is expected, since the naive
AES 8-bit implementation is not optimized to be fast, contrary to the mbedTLS one.

Yet, here the peaks are hardly distinguishable from the level of noise. This is
expected, due to the look-up tables being moved from the flash memory to the
RAM, as mentioned in Subsection 2.2. As a consequence, the memory accesses being
less remarkable. That is why the re-alignment technique described for the mbedTLS
implementation is not relevant here.

Finally, Figure 3 (bottom) shows the SNR on the raw traces, ensuring once again
that no trivial leakage can be exploited to recover the secret key.



2.5 Threat Models

We propose several threat models that we distinguish according to two powers that
we precise hereafter.

First, the attacker may have the possibility to get a so-called open sample, which
is a clone device behaving similarly to the actual target, in which he has a full
access and control to the secret variables, e.g. the secret key. Having an open sample
enables to run a profiled attack by building the exact leakage model of the target
device. This is a necessary condition in order to evaluate the worst-case scenario from
developer’s point of view [21]. Though often seen as strong, this assumption can be
considered realistic in our context: Here both the chip and the source codes used for
the evaluation are publicly available.

Second, the attacker may eventually incorporate human expertise to improve
attacks initially fully automatized. Here, this will concern either the preliminary
task of trace re-alignment (see the procedure described in Subsection 2.4), or the
capacity to properly design a CNN architecture for the deep learning based SCA (see
Subsection 2.6).

Hence, we consider the following attack scenarios:

– Aauto: considers a fully automatized attack (i.e. without any human expertise),
without access to an open sample.

– ACPA: considers an attack without access to an open sample, but with human
expertise to re-align the traces (see Subsection 2.4). It results in doing a CPA
targeting the output of the SubBytes operation, assuming the Hamming weight
leakage model [8].

– AgT: considers the same attack as ACPA, i.e. targeting re-aligned traces, along
with access to an open sample in addition. The profiling is done thanks to
Gaussian templates with pooled covariance matrices [11]. No dimensionality re-
duction technique is used here, beside the implicit reduction done through the
re-alignment detailed in Subsection 2.4.

– ACNN: considers an attack with access to an open sample and human expertise
to build a CNN for the profiled attack. This attack scenario is considered the
most effective against de-synchronized traces with first-order leakage [10,23,7].
Therefore, we do not assume ACNN to need to get access to re-aligned traces. In
addition, no preliminary dimensionality reduction is done here.

We observed in the preliminary analysis conducted in Subsection 2.4 that the SNR
of the raw traces, computed on 100,000 traces, did not emphasize any peak. Instead,
the same SNR based on the re-aligned traces emphasized some peaks. Thanks to
the works of Mangard et al. [26,27] and Oswald et al. [28], we can already draw the
following conclusions: Aauto will not succeed with less than N?

a =100,000 queries,
whereas ACPA, AgT and ACNN are likely to succeed within the same amount of queries.

2.6 CNN-Based Profiling Attacks

As mentioned in Subsection 2.5, CNN attacks may require some human expertise
to properly set the model architecture. This section is devoted at describing the



whole settings used to train the CNNs used in the attack scenario ACNN, in order
to tackle the challenge of large-scale traces. We quickly review the guidelines in the
SCA literature, and argue why they are not suited to our traces. We then present
the used architecture, and we detail the training parameters.

The Literature Guidelines. Though numerous papers have proposed CNN archi-
tectures [25,10,7], the state-of-the-art CNNs are currently given by Kim et al. [23]
and Zaid et al. [45]. Their common point is to rely on the so-called VGG-like
architecture [37]:

s◦λ◦[σ◦λ]n1◦[δp◦σ◦µ◦γw,k]
n2◦µ , (1)

where γw,k denotes a convolutional layer made of k filters of size w, µ denotes a batch-
normalization layer [22], σ denotes an activation function i.e. a non-linear function,
called ReLU, applied element-wise [18], δp denotes an average pooling layer of size p, λ
denotes a dense layer, and s denotes the softmax layer.5 Furthermore, the composition
[δp◦σ◦µ◦γw,k] is denoted as a convolutional block. Likewise, [σ◦λ] denotes a dense
block. We note n1 (resp. n2) the number of dense blocks (resp. convolutional blocks).

An intuitive approach would be to directly set the parameters or our architecture
to the ones used by Kim et al. or by Zaid et al. Unfortunately, we argue in both case
that such a transposition is not possible.

Kim et al. propose particular guidelines to set the architecture [23]. They rec-
ommend to fix w=3, p=2, i.e., the minimal possible values, and to set n2 so that
the time dimensionality at the output of the last block is reduced to one. Since each
pooling divides the time dimensionality by p, n2≤ logp(D).6 Meanwhile they double
the number of filters for each new block compared to the previous one, without
exceeding 256. Unfortunately, using these guidelines is likely to increase n2 from 10
in Kim et al.’s work to at least 17 in our context. As explained by He et al. [19],
stacking such a number of layers is likely to make the training harder to tweak the
learning parameters to optimal values. That is why an alternative architecture called
Resnet has been introduced [19], and starts to be used in SCA as well [47,17]. This
possibility will be discussed in Section 4. Second, due to the doubling number of
filters at each new block, the number of learning parameters would be around 1.8 M,
i.e. 10 folds more than the number of traces. In such a configuration, over-fitting is
likely to happen [36], which degrades the performance of CNNs.

In order to improve the Kim et al.’s architecture, Zaid et al. [45] proposed thumb
rules to set the filter size in the convolutional and the pooling layers depending on the
maximum temporal amplitude of the de-synchronization. Unfortunately, it assumes
to know the maximum amplitude of the de-synchronization, which is not possible
here since it is hard to guess how many times those transformations are applied in
the polymorphic instance.

5 The softmax outputs a normalized vector of positive scalars. Hence, it is similar to a
discrete probability distribution that we want to fit with the actual leakage model.

6 We recall that D denotes the dimensionality of the traces, i.e. D=80,000 for the mbedTLS
implementation and D=160,000 for the AES 8-bit.



Our Architecture. The drawbacks of Kim et al.’s and Zaid et al.’s guidelines in
our particular context justify why we do not directly use them. Instead, we propose
to take the Kim et al.’s architecture as a baseline, on which we modify some of the
parameters as follows. First, we set the number of filters in this first block to k0=10,
we decrease the maximal number of filters from 256 to kmax=100, and we slightly
change the way the number of filters is computed in the intermediate convolutional
layers, according to Table 2 in Section A. Likewise, we remove the dense block (i.e.
n1=0). This limits the number of learning parameters, and thus avoids over-fitting.
Second, we increase the pooling size to p=5. This mechanically allows to decrease the
minimal number of convolutional blocks n2 from 17 to 6 for the mbedTLS traces and
to 7 for the AES 8-bit ones. To be sure that this growth in p does not imply any loss of
information in the pooling layers, we set the filter size to w=2p+1=11. Eventually,
since with such numbers of convolutional blocks the output dimensionality is not equal
to one yet, we add a global average pooling δG at the top of the convolutional blocks,
which will force the reduction without adding any extra learning parameter [46]. Such
an architecture would represent 177,500 learning parameters, when targeting the
mbedTLS implementation and 287,500 for the AES 8-bit. As a comparison, we would
expect at least 1.8M parameters if we apply the Kim et al.’s guidelines to our context.

First Convolutional Block. To decrease further the number of learning parame-
ters, an attacker may even tweak the first convolutional block, by exploiting the
properties of the input signal. Figure 4 sketches an EM trace chunk of about one
clock cycle. We make the underlying assumption that the relevant information
to extract from the traces is contained in the patterns that occur around each
clock, mostly due to the change of states in the memory registers storing the sen-
sitive variables [27].7 Moreover, no additional relevant pattern is assumed to be
contained in the trace until the next clock cycle, appearing T =50 samples later.8

w0 w0

T

Fig. 4: Two
EM patterns
separated by one
clock cycle.

By carefully setting w0 to the size of the EM patterns, and p0 such
that w0≤p0≤T , we optimally extract the relevant information
from the patterns while avoiding the entanglement between two of
them. In our experiments, we arbitrarily set p0=25. This tweaked
first convolutional block has then the same receptive field than one
would have with two normal blocks of parameters (w=11,p=5).
Therefore, we spare one block (i.e. the last one), which decreases
the number of learning parameters: our architecture now represents
84,380 (resp. 177,500) learning parameters for the model attacking
the mbedTLS implementation (resp. AES 8-bit). Table 2 in Sec-
tion A provides a synthesis of the description of our architecture,
along with a comparison with the Kim et al. and Zaid et al.’s works.

Training Settings The source code is implemented in Python
thanks to the Pytorch [32] library and is run on a workstation
7 This assumption has somewhat already been used for the pattern extraction re-alignment

in Subsection 2.4.
8 We recall that despite the effect of code polymorphism, and in absence of hardware jitter,

the duration of the clock period, in terms of samples, is roughly constant.



with a Nvidia Quadro M4000 GP-GPU with 8 GB memory and
1664 cores. For each experiment, the whole data-set is split into
a training and a test subsets, containing respectively 95,000 and 5,000 traces. The
latter ones are used to simulate a key recovery based on the scores attributed to each
hypothetical value of the sensitive target variable by the trained model. Moreover,
the SH100 data augmentation method is applied to the training traces, following the
description given in [10]: each trace is randomly shifted of maximum 100 points,
which represents 2 clock cycles.9

The training is done by minimizing the Negative Log Likelihood (NLL) loss quanti-
fying a dissimilarity between the output discrete probability distribution given by the
softmax layer and the labels generated by the output of the SubBytes operation,with
the Adam optimizer [24] during 200 epochs10 which approximately represents a
16-hour long training for each targeted byte. The learning rate of the optimizer is
always set to 10−5.

2.7 Performance Metrics

This section explains how the performance metrics are computed in order to give a
fair comparison between the different attack scenarios considered in this evaluation.

Based on an (eventually partially) trained model, we proceed a key recovery, by
aggregating the output scores given by the softmax layer, computed from a given
set of attack traces coming from the 5,000 test traces into a maximum likelihood
distinguisher [21]. This outputs a scalar score for each key hypothesis. We evaluate
the performance of a model during and after the training by computing its Success
Rate (SR), namely the probability that the key recovery outputs the highest score
to the right key hypothesis. In the following, if the success rate is at least β=90%,
we will say that the attack was successful. Eventually, N?

a will denote the required
number of queries to the cryptographic primitive (i.e., the number of traces) in order
to obtain a successful attack.11

3 Results

Once the different threat models and their corresponding parameterization have
been introduced in Section 2, we can now present the results of each attack, also
summarized in Table 1.

As argued in Subsection 2.4, we can directly conclude from the SNRs given by
Figure 1 (bottom) and Figure 3 (bottom) that the fully automatized attack Aauto
cannot succeed within the maximum amount of collected traces, i.e., N?

a>105, for
both implementations.

Figure 5a depicts the performances of ACPA against the mbedTLS implementation,
on each state byte at the output of the SubBytes operation. It can be seen that the
9 This data augmentation is not applied on the attack traces.

10 One epoch corresponds to the number of steps necessary to pass the whole training
data-set through the optimization algorithm once.

11 More details are given in Appendix C.



100 101 102 103 104 105

Na

0.0

0.2

0.4

0.6

0.8

1.0

S
R β = 90%

(a) ACPA on mbedTLS

100 101 102 103 104 105

Na

0.0

0.2

0.4

0.6

0.8

1.0

S
R

β = 90%

(b) AgT on mbedTLS

Fig. 5: Success Rate with respect to the number of attack traces. Vertical attacks on
mbedTLS. The different colors denote the different targeted bytes.

re-alignment enables a first-order CPA to succeed within N?
a ≈103 for the byte 1,

and N?
a ∈J104,105K for the others.12 Those results are in line with the rule of thumb

stating that the higher the SNR on Figure 2, the faster the success rate convergence
towards 1 on Figure 5a [27]. Since we argued in Subsection 2.4 that the proposed
re-alignment technique was not relevant on the AES 8-bit traces, we conclude that
ACPA would require more that 105 queries on those traces.13

Figure 5b summarizes the outcomes of the attack AgT. One can remark that the
attack is successful for all the target bytes within 2,000 queries, which represents
an improvement by one order of magnitude as compared to the scenario ACPA. In
other words, the access to an open sample provides a substantial advantage to AgT
compared to ACPA. As for the latter one, and for the same reasons, we conclude that
the attack AgT would fail with 105 traces of the AES 8-bit implementation.

Figure 6 presents the results of the CNN attack ACNN. In particular, Figure 6a
shows that training the CNN for 200 epochs allows to recover a secret byte in less than
20 traces in the case of the mbedTLS implementation. Likewise, Figure 6b shows that
a successful attack can be done in less than 10 traces on the AES 8-bit implementation.
Moreover, both curves in Figure 6 show that the latter observations can be generalized
for each byte targeted in the attack ACNN.14 Finally, one can remark that training
the CNNs during a lower number of epochs (e.g., 100 for mbedTLS, 50 for AES 8-bit),
still leads to the same order of magnitude for N?

a .
Based on these observations, one can make the following interpretations. First,

the attack ACNN leads to the best attack among the tested ones, by one or several
orders of magnitude. Second, such attacks are reliable, since the results do not differ
from one implementation to another, and from one targeted byte to another. Third,

12 Targeting the output of the AddRoundKey operation instead of the output of the SubBytes
operation has also been considered without giving better results.

13 Section 4 discusses the possibility of relevant re-alignment techniques for the AES 8-bit
implementation.

14 Additional experiments realized on a setup close to ACNN confirm that the results can
be generalized to any of the 16 state bytes.



50 100 150 200
Epochs

100

101

102

N
? a

Byte 0

Byte 3

Byte 7

Byte 15

(a) mbedTLS

50 100 150 200
Epochs

100

101

102

N
? a

Byte 0

Byte 3

Byte 7

Byte 15

(b) AES 8-bit

Fig. 6: Evolution of N?
a with respect to the number of training epochs during the

open sample profiling by the CNN (attack ACNN).

Table 1: Minimal number N?
a of required queries to recover the target key bytes.

Scenario mbedTLS AES 8-bit

Aauto >105 >105

ACPA 3.103−105 >105

AgT 20−103 >105

ACNN <20 <10

the training time for CNNs, currently set to roughly 16 hours for each byte (see
Subsection 2.6), can be halved or even quartered without requiring too much more
queries to succeed the attack. Since in this scenario the profiling phase is here the
critical (i.e. the longest) task, it might be interesting to find a trade-off between the
training time and the resulting N?

a , depending on the attacker’s abilities.

4 Discussion

So far Section 3 has presented and summarized the results of the attacks, depending
on the threat models defined in Subsection 2.5, against two implementations of a
cryptographic primitive, protected by a given configuration of code polymorphism.
This section proposes to discuss these results, the underlying assumptions behind the
attacks, and eventually the consequences of them.

Choice of our CNN Architecture. The small amount of queries to succeed the
attack ACNN, conducted on both implementations, shows the relevance of our choice
of CNN architecture. This illustrates that an end-to-end attack with CNNs is possible
when targeting large scale traces, without necessarily requiring very deep architectures.
We emphasize that there may be other choices of parameters for the convolutional
giving relevant results as well, if not better. Yet, we do not find necessary to further
investigate this way here. The obtained minimal number of queries N?

a was low



enough so that any improvement in the CNN performances is not likely to change
our interpretations of the vulnerability of the targets against ACNN.

In particular, the advantage of Resnets [19] broadly used in image recognition
typically relies on the necessity to use deep convolutional architectures in this field [37]
and promising results have been obtained over the past few months with Resnets in
SCA [47,17]. However, we demonstrate that we can take advantage of the distinctive
features of side-channel traces to constrain the depth of our model and avoid typical
issues related to deep architectures (i.e. vanishing gradient).

On the Re-alignment Technique. The re-alignment technique used in this
work is based on the detection of PoIs by thresholding. Other re-alignment tech-
niques [29,44,16] may be used. Therefore, the results of ACPA and AgT might be
improved. However, none of the re-alignment techniques in the literature provides
strong theoretical guarantees of optimality, especially regarding the use of code
polymorphism.

On the Security of Code Polymorphism Our study exhibits the attacks Aauto
and ACPA with high N?

a enough to enable a key refreshing period reasonably high,
without compromising the confidentiality of the key. Unfortunately, this is not
possible in presence of a stronger attacker that may have access to an open sample,
as emphasized by attacks AgT and ACNN, where a secret key can be recovered within
the typical duration of a session key. This may be critical at first sight since massive
IoT applications often rely on Commercially available Of The Shelf (COTS) devices,
which implies that open samples may be easily accessible to any adversary.

More generally, this issue can be viewed from the perspective of the problem
discussed by Bronchain et al. about the difficulty to prevent side-channel attacks
in COTS devices, even with sophisticated counter-measures [9]. First, our experi-
mental target is intrinsically highly vulnerable to SCA. Second, the use of software
implementations of cryptographic primitives offers a large attack surface, which
remains highly difficult to protect especially with a hiding countermeasure alone. This
underlines the fact that a component may need to use hiding in combination with
other counter-measures, e.g., masking, to be secured against a strong side-channel
attacker model.

5 Conclusion

So far, this paper answers two questions that may help both developers of secure
implementations, and evaluators.

From a developer’s point of view, this paper has studied the effect of two imple-
mentations of a code polymorphism counter-measure against several side channel
attack scenarios, covering a wide range of potential attackers. In a nutshell, code poly-
morphism as an automated tool, is able to provide a strong protection against threat
models considering automated and layman attackers, as the evaluated implementa-
tions were secure enough against our first attacker models. Yet, the implementations



evaluated are not sound against stronger attacker models. The soundness of software
hiding countermeasures, if used alone, remains to be demonstrated against state-of-
the-art attacks, for example by using other configurations of the code polymorphism
toolchain, or by proposing new code transformations. All in all, our results under-
line again, if need be, the necessity to combine the hiding and masking protection
principles in a secured implementation.

From an evaluator’s point of view, this paper illustrates how to leverage CNN
architectures to tackle the problem of large-scale side-channel traces, thereby narrowing
the gap between SCA literature and concrete evaluations of secure devices. The idea
lies in slight adaptations of the CNN architectures already used in SCA, eventually by
exploiting the signal properties of the SCA traces. Surprisingly, our results emphasize
that, though the use of more complex CNN architectures have been shown to be
sound to succeed SCAs, their use might not be a necessary condition in a SCA
context.

Acknowledgements

This work was partially funded thanks to the French national program "Programme
d’Investissement d’Avenir IRT Nanoelec" ANR-10-AIRT-05. The authors would like
to thank Emmanuel Prouff and Pierre-Alain Moëllic for their fruitful feedbacks and
discussions on this work.

References

1. Small portable AES128 in C. https://github.com/kokke/tiny-AES-c (2020)
2. Agosta, G., Barenghi, A., Pelosi, G.: A code morphing methodology to automate power

analysis countermeasures. In: DAC (2012). https://doi.org/10.1145/2228360.2228376
3. Agosta, G., Barenghi, A., Pelosi, G., Scandale, M.: The MEET Approach: Securing

Cryptographic Embedded Software Against Side Channel Attacks. TCAD (2015).
https://doi.org/10.1109/TCAD.2015.2430320

4. ARMmbed: 32-bit t-table implementation of aes for mbed tls. https://github.com/
ARMmbed/mbedtls/blob/master/library/aes.c (2019)

5. Becker, G., Cooper, J., De Mulder, E., Goodwill, G., Jaffe, J., Kenworthy, G., et al.:
Test Vector Leakage Assessment (TVLA) Derived Test Requirements (DTR) with AES.
In: International Cryptographic Module Conference (2013)

6. Belleville, N., Couroussé, D., Heydemann, K., Charles, H.: Automated soft-
ware protection for the masses against side-channel attacks. TACO (2019).
https://doi.org/10.1145/3281662

7. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for side-channel
analysis and introduction to ASCAD database. Journal of Cryptographic Engineering
(2019). https://doi.org/10.1007/s13389-019-00220-8

8. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In:
CHES (2004). https://doi.org/10.1007/978-3-540-28632-5_2

9. Bronchain, O., Standaert, F.X.: Side-channel countermeasures’ dissection and
the limits of closed source security evaluations. IACR TCHES 2020(2) (2020).
https://doi.org/10.13154/tches.v2020.i2.1-25

https://github.com/kokke/tiny-AES-c
https://doi.org/10.1145/2228360.2228376
https://doi.org/10.1109/TCAD.2015.2430320
https://github.com/ARMmbed/mbedtls/blob/master/library/aes.c
https://github.com/ARMmbed/mbedtls/blob/master/library/aes.c
https://doi.org/10.1145/3281662
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.13154/tches.v2020.i2.1-25


10. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmentation
against jitter-based countermeasures - profiling attacks without pre-processing. In: CHES
(2017). https://doi.org/10.1007/978-3-319-66787-4_3

11. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: CARDIS (2013).
https://doi.org/10.1007/978-3-319-08302-5_17

12. Coron, J., Kizhvatov, I.: An efficient method for random delay generation in embedded
software. In: CHES (2009). https://doi.org/10.1007/978-3-642-04138-9_12

13. Coron, J.S., Kizhvatov, I.: Analysis and Improvement of the Random Delay
Countermeasure of CHES 2009. In: CHES (2010), http://dx.doi.org/10.1007/
978-3-642-15031-9_7

14. Couroussé, D., Barry, T., Robisson, B., Jaillon, P., Potin, O., Lanet, J.L.: Runtime
Code Polymorphism as a Protection Against Side Channel Attacks. In: WISTP (2016).
https://doi.org/10.1007/978-3-319-45931-8

15. Daemen, J., Rijmen, V.: AES and the wide trail design strategy. In: EUROCRYPT
(2002). https://doi.org/10.1007/3-540-46035-7_7

16. Durvaux, F., Renauld, M., Standaert, F., van Oldeneel tot Oldenzeel, L., Veyrat-
Charvillon, N.: Efficient removal of random delays from embedded software implemen-
tations using hidden markov models. In: CARDIS (2012). https://doi.org/10.1007/978-
3-642-37288-9_9

17. Gohr, A., Jacob, S., Schindler, W.: Efficient solutions of the CHES 2018 AES challenge
using deep residual neural networks and knowledge distillation on adversarial examples.
IACR Cryptology ePrint Archive 2020, 165 (2020), https://eprint.iacr.org/2020/
165

18. Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep Learning. MIT Press (2016), http:
//www.deeplearningbook.org/

19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
CVPR (2016). https://doi.org/10.1109/CVPR.2016.90

20. Heuser, A., Genevey-Metat, C., Gerard, B.: Physical side-channel analysis on
stm32f{0,1,2,3,4}. https://silm.inria.fr/silm-seminar (2020)

21. Heuser, A., Rioul, O., Guilley, S.: Good is not good enough - deriving optimal distin-
guishers from communication theory. In: CHES (2014). https://doi.org/10.1007/978-3-
662-44709-3_4

22. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: ICML (2015), http://jmlr.org/proceedings/
papers/v37/ioffe15.html

23. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. unleashing the
power of convolutional neural networks for profiled side-channel analysis. IACR TCHES
2019(3) (2019). https://doi.org/10.13154/tches.v2019.i3.148-179

24. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR (2015),
http://arxiv.org/abs/1412.6980

25. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using
deep learning techniques. In: SPACE (2016). https://doi.org/10.1007/978-3-319-49445-
6_1

26. Mangard, S.: Hardware countermeasures against DPA ? A statistical analysis of their
effectiveness. In: CT-RSA (2004). https://doi.org/10.1007/978-3-540-24660-2_18

27. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks - revealing the secrets of
smart cards. Springer (2007)

28. Mather, L., Oswald, E., Bandenburg, J., Wójcik, M.: Does my device leak information?
an a priori statistical power analysis of leakage detection tests. In: ASIACRYPT (2013).
https://doi.org/10.1007/978-3-642-42033-7_25

https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-08302-5_17
https://doi.org/10.1007/978-3-642-04138-9_12
http://dx.doi.org/10.1007/978-3-642-15031-9_7
http://dx.doi.org/10.1007/978-3-642-15031-9_7
https://doi.org/10.1007/978-3-319-45931-8
https://doi.org/10.1007/3-540-46035-7_7
https://doi.org/10.1007/978-3-642-37288-9_9
https://doi.org/10.1007/978-3-642-37288-9_9
https://eprint.iacr.org/2020/165
https://eprint.iacr.org/2020/165
http://www.deeplearningbook.org/
http://www.deeplearningbook.org/
https://doi.org/10.1109/CVPR.2016.90
https://silm.inria.fr/silm-seminar
https://doi.org/10.1007/978-3-662-44709-3_4
https://doi.org/10.1007/978-3-662-44709-3_4
http://jmlr.org/proceedings/papers/v37/ioffe15.html
http://jmlr.org/proceedings/papers/v37/ioffe15.html
https://doi.org/10.13154/tches.v2019.i3.148-179
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-540-24660-2_18
https://doi.org/10.1007/978-3-642-42033-7_25


29. Nagashima, S., Homma, N., Imai, Y., Aoki, T., Satoh, A.: DPA using phase-
based waveform matching against random-delay countermeasure. In: ISCAS (2007).
https://doi.org/10.1109/ISCAS.2007.378024

30. Nassar, M., Souissi, Y., Guilley, S., Danger, J.: RSM: A small and fast countermea-
sure for AES, secure against 1st and 2nd-order zero-offset SCAs. In: DATE (2012).
https://doi.org/10.1109/DATE.2012.6176671

31. National Institute of Standards and Technology: Advanced encryption standard (AES).
https://doi.org/10.6028/NIST.FIPS.197

32. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., et al., G.C.: Pytorch: An
imperative style, high-performance deep learning library. In: NeurIPS (2019)

33. Prouff, E., Rivain, M.: Masking against side-channel attacks: A formal security proof.
In: EUROCRYPT (2013). https://doi.org/10.1007/978-3-642-38348-9_9

34. Renaudin, M.: Asynchronous circuits and systems : a promising design alternative.
Microelectronic Engineering 54(1) (2000)

35. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: CHES (2010).
https://doi.org/10.1007/978-3-642-15031-9_28

36. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learn-
ing: From Theory to Algorithms. Cambridge University Press (2014).
https://doi.org/10.1017/CBO9781107298019

37. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. In: ICLR (2015), http://arxiv.org/abs/1409.1556

38. Standaert, F., Archambeau, C.: Using subspace-based template attacks to compare
and combine power and electromagnetic information leakages. In: CHES (2008).
https://doi.org/10.1007/978-3-540-85053-3_26

39. Standaert, F., Malkin, T., Yung, M.: A unified framework for the analysis of side-channel
key recovery attacks. In: EUROCRYPT (2009). https://doi.org/10.1007/978-3-642-
01001-9_26

40. STMicroelectronics: NUCLEO-F303RE. https://www.st.com/content/st_com/en/
products/evaluation-tools/product-evaluation-tools/mcu-mpu-eval-tools/
stm32-mcu-mpu-eval-tools/stm32-nucleo-boards/nucleo-f303re.html

41. Suzuki, D., Saeki, M.: Security evaluation of DPA countermeasures using dual-rail
pre-charge logic style. In: CHES (2006). https://doi.org/10.1007/11894063_21

42. Timon, B.: Non-profiled deep learning-based side-channel attacks with sensitivity analysis.
IACR TCHES 2019(2) (2019). https://doi.org/10.13154/tches.v2019.i2.107-131

43. Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F.X.: Shuffling against
Side-Channel Attacks: A Comprehensive Study with Cautionary Note. In: ASIACRYPT
(2012), http://dx.doi.org/10.1007/978-3-642-34961-4_44

44. van Woudenberg, J.G.J., Witteman, M.F., Bakker, B.: Improving differential
power analysis by elastic alignment. In: Kiayias, A. (ed.) CT-RSA (2011).
https://doi.org/10.1007/978-3-642-19074-2_8

45. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for effi-
cient cnn architectures in profiling attacks. IACR TCHES 2020(1) (2019).
https://doi.org/10.13154/tches.v2020.i1.1-36

46. Zhou, B., Khosla, A., Lapedriza, À., Oliva, A., Torralba, A.: Learning deep features for
discriminative localization. In: CVPR (2016). https://doi.org/10.1109/CVPR.2016.319

47. Zhou, Y., Standaert, F.X.: Deep learning mitigates but does not annihilate the need of
aligned traces and a generalized ResNet model for side-channel attacks. J. Cryptographic
Engineering (2019). https://doi.org/10.1007/s13389-019-00209-3

https://doi.org/10.1109/ISCAS.2007.378024
https://doi.org/10.1109/DATE.2012.6176671
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1017/CBO9781107298019
http://arxiv.org/abs/1409.1556
https://doi.org/10.1007/978-3-540-85053-3_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mcu-mpu-eval-tools/stm32-mcu-mpu-eval-tools/stm32-nucleo-boards/nucleo-f303re.html
https://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mcu-mpu-eval-tools/stm32-mcu-mpu-eval-tools/stm32-nucleo-boards/nucleo-f303re.html
https://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mcu-mpu-eval-tools/stm32-mcu-mpu-eval-tools/stm32-nucleo-boards/nucleo-f303re.html
https://doi.org/10.1007/11894063_21
https://doi.org/10.13154/tches.v2019.i2.107-131
http://dx.doi.org/10.1007/978-3-642-34961-4_44
https://doi.org/10.1007/978-3-642-19074-2_8
https://doi.org/10.13154/tches.v2020.i1.1-36
https://doi.org/10.1109/CVPR.2016.319
https://doi.org/10.1007/s13389-019-00209-3


A Summary of the CNN Architecture Parameters

In the Zaid et al.’s methodology, T denotes the maximum assumed amount of random
shift in the traces, and I denotes the assumed number of PoIs in the traces.

Table 2: Our architecture and the recommendations from the literature.
Kim et al. [23] This paper Zaid et al. [45]

n1 1 0 2
n2 logp(D) logp(D) 3
p 2 5(p0=25) 2,T

2
,D
I

w 3 11(w0=10) 1,T
2
,D
I

kn min(k0×2n,kmax) 10,20,40,40,80,100(100) k0×2n
k0 8 10 8,32

kmax 256 100 -

B Signal-to-Noise Ratio (SNR)

To assess whether there is trivial leakage in the traces, one may compute a Signal-
to-Noise Ratio (SNR) [27]. For each time sample t, it is estimated by the following
statistics:

SNR[t] ,
V
Z

(
E[X[t]|Z=z]

)
V(X[t])

, (2)

where X[t] is the random continuous variable denoting the EM emanation measured
at date t, Z is the random discrete variable denoting the sensitive target variable, E
denotes the expected value and V denotes the variance. When the sample t does not
carry any informative leakage, X[t] does not depend on Z so the numerator is zero,
and inversely.

C Performance Metric Computation

Let (pi)i≤Na the plaintexts of the Na traces of an attack set, encrypted with varying
keys (ki)i≤Na, and let (yi)i≤Nv

be the corresponding outputs of the CNN softmax.
Let k̂ be in the key chunk space. A score for the value k̂ is defined by the maximum
likelihood distinguisher [21] as: dNa

[k̂] =
∑Na

i=1 log(yi[zi]) where zi = SubBytes[pi⊕
ki⊕k̂]. The key is considered as recovered within Na queries if the distinguisher dNa

outputs the highest score for k̂=0.
To assess the difficulty of attacking a target device with profiling attacks (which

is assumed to be the worst-case scenario for the attacked device), it has initially been



suggested to measure or estimate the minimum number of traces required to get a
successful key recovery [27]. Observing that many random factors may be involved
during the attack, the latter measure has been refined to study the probability that
the right key is ranked first according to the scores. This metric is called the Success
Rate [39]: SR(Na)=Pr

[
argmaxk̂∈KdNa[k̂]=0

]
.

In practice, to estimate SR(Na), sampling many attack sets may be very prohibitive
in an evaluation context, especially if we need to reproduce the estimations for many
values of Na until we find the smallest value N?

a such that for Na≥N?
a the success

rate is higher than a given threshold β. One solution to circumvent this problem is,
given a validation set of Nv traces, to sample some attack sets by permuting the
order of the traces into the validation set (e.g. 500 times in our experiments). dNa

can then be computed with a cumulative sum to get a score for each Na∈J1,NvK.
For each value of Na, the success rate is estimated by the occurrence frequency of the
event “argmaxk̂∈KdNa

[k̂]=0”. While this trick gives good estimations for Na�Nv,
one has to keep in mind that the estimates become biased when Na→Nv. Hopefully,
in our experiments, the validation set size remains much higher than Na afterwards:
Nv=100,000 for Aauto, ACPA, Nv=20,000 for AgT, and Nv=5,000 for ACNN.


	Deep Learning Side-Channel Analysis on Large-Scale Traces

