

A model of interchange turbulent transport across separatrix with sheared flows

Mathieu Peret¹, Nicolas Fedorczak¹, Laure Vermare², M. Ramisch³, B. Schmid³ Tore Supra & WEST teams

CEA, IRFM, F-13108 Saint-Paul-Lez-Durance, France ² LPP, Ecole Polytechnique, F-91128 Palaiseau, France ³IGVP, University of Stuttgart, 70569 Stuttgart, Germany

Context and motivations

- > Filamentary turbulent transport is thought to be responsible of the turbulent transport across flux surfaces in tokamak plasma edges and scrape-off layers (SOL) as proposed by the isolated filament model (IF model)[1-3]
- Link between turbulent transport and confinement properties as SOL width or energy confinement time not fully understood
- > Interplay between turbulence & shear flow: turbulence mitigation & shear flow generation through Reynolds stress → increase of confinement
- > Geometry strongly impacts both transport & edge shear flow generation: favourable/ unfavourable configuration [4]
- → Analytical model of edge transport with shear flows is needed

Spectral Filament Model

> TOKAM2D isothermal model: Braginskii's equation averaged on field line + flux conservation in scrape-off layer (SOL) [5]:

$$(\partial_t - D_{\perp} \Delta_{\perp}) n = [n, \Phi] - n \sigma_{||} e^{(\Lambda - \Phi)} + S$$

$$(\partial_t - \nu \Delta_{\perp}) \Delta_{\perp} \Phi = [\Delta_{\perp} \Phi, \Phi] + \sigma_{||} (1 - e^{(\Lambda - \Phi)}) - \frac{g \partial_y n}{n}$$

- Quantitative description of limiter SOL properties [1,2] for :
 - Intermittent transport (blob)
 - > Exponentially decaying equilibrium profiles
- > Model reduction via poloidal spectra inspired from isolated filament model [3]
 - Sheath loss & mode coupling saturation phenomena
 - Allows prediction for transport observables
- Verified with a 2D non-linear flux-driven simulation database

Sheared Spectral Filament Model

\triangleright Introduction of uniform shear σ_s + interchange recall \rightarrow Constant tilt

\triangleright Verified against simulations (colors = pairs of $[g, \sigma_{\parallel}]$)

Impacts of the geometry on turbulence

Shear layer of width $2\delta_s$

- Pedestal structure size ~ $10\rho_L$ ~1cm ~ shear layer width δ_S
- → Mitigation of structure tilt

> X-point or limiter :

Homogeneous shear

- → Non-zero flux surface average of magnetic shear induced tilt [8,9]
- → Magnetic shear induced Reynolds stress

1D flow generation model: comparison with experiment

- **Weak** to **strong** shear regime transition $@\sigma_s \tau \approx 0.4$ Reynolds stress increases with k [10] $\rightarrow k_0$ decreases
- Reynolds stress shows maximum at regime transition
- Similar radial flux drops in both regimes
- → weak impact of Reynolds stress Decrease flux by factor 2 needs : $|\sigma_s| \approx [0.5 - 1] \times 10^{-2} w_i \approx 10^6 s^{-1}$
- \rightarrow Corresponds to $\frac{10 \text{ km.s}^{-1}}{1 \text{ cm}}$ as for **L-H transition** in pedestal

- **WEST** experiments: → Impact of geometry on edge rotation
 - Unfav. config. (USN) deeper than fav. config. (LSN)
 - → Non standard feature
 - Difference vanishes @ high lp
 - > No clear well in unfav. config.
- Model recovers both lp & config. dependencies for edge rotation

Conclusion and persepectives

- Derivation of a model of edge turbulent transport verified against simulations & validated against experiment
- Derivation of a model of impact of background shear on interchange:
- > Spectral model + structure tilt model
- > Validation against 2D flux-driven simulations for turbulence properties (Φ_k, n_k, k_0)
- & transport (Γ_r, λ)
- Impact of shear on density and potential perturbations phase shift not treated
- → does not seem to be important in our simulations
- Spatial variation of shear taken into account
- →1D model on shear flow generation by Reynolds stress with magnetic shear :
- >Validation of the 1D model against WEST experiment
- Recovery of **geometry** and **Ip dependencies** of edge rotation

References

- [1] N. Fedorczak et al, Nuclear Materials and Energy [6] N. Fedorczak et al, Nuclear Materials and Energy (2019)
- 12 (2017) [2] N. Fedorczak et al, Contrib. Plasma Phys. (2018) [7] M. Peret et al, Nuclear Fusion (2021)
- [3] S.I. Krasheninnikov, Physics Letters A (2001) [8] N. Fedorczak et al, Physics of Plasmas (2012)
- [9] N. Fedorczak et al, Plasma Physics and Controlled [5] Y. Sarazin et al, Physics of Plasmas, Volume 5, 12 Fusion (2013)
 - [10] O. Gürcan, et al. Physical Review Letter (2012)

CEA, IRFM | M. Peret et al.

25th Joint EU-US TTF Meeting

mathieu.peret@cea.fr