
 TOKAM2D isothermal model : Braginskii’s equation averaged on field line + flux 

conservation in scrape-off layer (SOL) [5] :

 Quantitative description of limiter SOL properties [1,2] for :

 Intermittent transport (blob)

 Exponentially decaying equilibrium profiles

 Model reduction via poloidal spectra inspired from isolated filament model [3]

 Sheath loss & mode coupling saturation phenomena

 Allows prediction for transport observables

 Verified with a 2D non-linear flux-driven simulation database

 Recovers poloidal spectra from TJK discharge & Tore Supra transport 

observables [6,7]

 Introduction of uniform shear 𝝈𝒔+ interchange recall  Constant tilt

Saturation phenomena :

Sheath losses

Turbulent viscosity

Reynolds stress

𝑘2 spectral energy spreading

 Verified against simulations (colors = pairs of [𝑔, 𝜎∥])
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Context and motivations

 Filamentary turbulent transport is thought to be responsible of the turbulent 

transport across flux surfaces in tokamak plasma edges and scrape-off layers 

(SOL) as proposed by the isolated filament model (IF model)[1-3]

 Link between turbulent transport and confinement properties as SOL width or 

energy confinement time not fully understood 

 Interplay between turbulence & shear flow : turbulence mitigation & shear 

flow generation through Reynolds stress  increase of confinement

 Geometry strongly impacts both transport & edge shear flow generation : 

favourable/ unfavourable configuration [4]

Analytical model of edge transport with shear flows is needed
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Spectral Filament Model

Impacts of the geometry on turbulence

1D flow generation model : comparison with experiment
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TOKAM-2D density snapshot:

 Pedestal structure size ~ 10𝜌𝐿 ~1cm ~ shear layer width 𝛿𝑠
 Mitigation of structure tilt 

𝒌𝒙 = 𝒇(𝜸𝑬×𝑩, 𝜹𝒔, 𝒌𝒚, 𝝉)

 Weak to strong shear regime transition @𝜎𝑠𝜏 ≈ 0.4
 Reynolds stress increases with k [10]

𝒌𝟎 decreases

 Reynolds stress shows maximum at regime 

transition

 Similar radial flux drops in both regimes

 weak impact of Reynolds stress

 Decrease flux by factor 2 needs :

𝜎𝑠 ≈ 0.5 − 1 × 10−2𝑤𝑖 ≈ 106𝑠−1

Corresponds to 
10 𝑘𝑚.𝑠−1

1 𝑐𝑚
as for L-H transition in 

pedestal

 WEST experiments :

 Impact of geometry on edge rotation

 Unfav. config. (USN) deeper

than fav. config. (LSN)

Non standard feature

 Difference vanishes @ high Ip

 No clear well in unfav. config.

 Model recovers both Ip & config. 

dependencies for edge rotation

 X-point or limiter :

Non-zero flux surface average of 

magnetic shear induced tilt [8,9]

Magnetic shear induced Reynolds stress

Derivation of a model of edge turbulent transport verified against simulations & 

validated against experiment

Derivation of a model of impact of background shear on interchange :

 Spectral model + structure tilt model

Validation against 2D flux-driven simulations for turbulence properties (Φ𝑘 , 𝑛𝑘 , 𝑘0)

&  transport (Γ𝑟 , 𝜆)

 Impact of shear on density and potential perturbations phase shift not treated

 does not seem to be important in our simulations

Spatial variation of shear taken into account

1D model on shear flow generation by Reynolds stress with magnetic shear :

Validation of the 1D model against WEST experiment

Recovery of geometry and Ip dependencies of edge rotation
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