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ABSTRACT

Aims. Clouds are expected to form in a broad range of conditions in the atmosphere of exoplanets given the variety of possible con-
densible species. This diversity, however, might lead to very different small-scale dynamics depending on radiative transfer in various
thermal conditions. Here, we aim to provide some insight into these dynamical regimes.
Methods. We performed an analytical linear stability analysis of a compositional discontinuity with a heating source term that
depends on a given composition. We also performed idealized two-dimensional simulations of an opacity discontinuity in a strati-
fied medium, using the ARK code. We used a two-stream gray model for radiative transfer and explored the brown-dwarf and Earth-like
regimes.
Results. We revealed the existence of a radiative Rayleigh-Taylor instability (RRTI, hereafter, which is a particular case of diabatic
Rayleigh-Taylor instability) when an opacity discontinuity is present in a stratified medium. This instability is similar in nature to
diabatic convection and relies only on buoyancy with radiative transfer heating and cooling. When the temperature is decreasing with
height in the atmosphere, a lower-opacity medium on top of a higher-opacity medium is shown to be dynamically unstable, whereas a
higher-opacity medium on top of a lower-opacity medium is stable. This stability-instability behavior is reversed if the temperature is
increasing with height.
Conclusions. The existence of a RRTI could have important implications for the stability of the cloud cover with regard to a wide
range of planetary atmospheres. In our Solar System, it could help explain the formation of mammatus cloud in Earth atmospheres
and the existence of the Venus cloud deck. Likewise, it suggests that stable and large-scale cloud covers could be ubiquitous in
strongly irradiated exoplanets, but might be more patchy in low-irradiated or isolated objects such as brown dwarfs and directly imaged
exoplanets.

Key words. methods: numerical – planets and satellites: atmospheres

1. Introduction

With an increasing number of observations of exoplanet atmo-
spheres taking place using transmission spectroscopy (e.g., Sing
et al. 2016), a growing concern regarding cloud cover has
been abound among the exoplanet community. Clouds may lead
to “flat” spectra of the atmosphere of super-Earths and mini-
Neptunes (Kreidberg et al. 2014), potentially reducing our ability
to obtain information about the gas phase but also providing
clues of where and how condensible materials are forming and
evolving.

Cloud modeling remains a very important challenge in exo-
planetology given the complexity of the phenomena that link
chemistry with complex microphysics, radiative transfer, and
hydrodynamics. Several complementary approaches have been
developed in the past few years in response to this challenge:
global 1D models with either simplified (e.g. Fortney et al. 2008;
Tan & Showman 2019) or complex (e.g. Helling et al. 2019)
microphysics; and 3D global circulation models (GCMs) with
passive (e.g. Parmentier et al. 2016) or active (e.g. Lines et al.
2018) clouds. Early studies such as that of Gierasch et al. (1973)
and more recent ones (e.g. Tan & Showman 2021a,b) have also
identified the key role of radiative instabilities at a global scale –

in planetary atmospheres (Venus, Jupiter) and in the atmosphere
of exoplanets and brown dwarfs.

However, all these approaches use a simplified approach
to hydrodynamics, either because they are 1D or because they
are global and cannot adequately capture small-scale, non-
hydrostatic buoyancy effects. We therefore propose in this paper
another complementary approach based on theory with the
inclusion of source terms in the Rayleigh-Taylor stability anal-
ysis in a similar way to the recent theoretical development of
diabatic convection proposed in Tremblin et al. (2019). The clas-
sical (incompressible) Rayleigh-Taylor instability is triggered by
a jump in density with a heavy fluid on top of a light fluid
(see Chandrasekhar 1961; Zhou 2017a,b), but cannot account for
the stabilizing-destabilizing effect of source terms similarly to
Schwarzschild convection. We then use local small-scale simu-
lations in order to properly study the interplay between buoyancy
and radiative transfer with opacity discontinuities and its impact
on the structure of clouds.

Tremblin et al. (2019) recently proposed a new paradigm for
the development of convective motions in the presence of com-
positional and thermal source terms, namely, via diabatic con-
vection. This paradigm can describe many convective systems,
such as moist convection in Earth atmosphere, thermohaline
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convection in Earth oceans, and CO/CH4 radiative convection
in the atmosphere of brown dwarfs and giant exoplanets. In this
paper, we study in a similar way the dynamical behavior of an
opacity discontinuity between a “higher-opacity” and “lower-
opacity” medium subject to radiative heating and cooling. Such
a discontinuity could be unstable or stable due to the impact of
radiative transfer on buoyancy similarly to the impact of thermal
source terms in diabatic convection. This radiative Rayleigh-
Taylor instability (RRTI, hereafter) is, however, an interface
instability that is different from diabatic convection, akin to the
difference between the standard Rayleigh-Taylor instability and
Schwarzschild convection in the adiabatic case.

In Sect. 2 and Appendix A, we present the linear stability
analysis predicting the RRTI growth rate and we present our
numerical setup in Sect. 3. In Sect. 4, we propose a first ide-
alized study in the brown-dwarf regime and provide a simplified
understanding of the RRTI mechanism. In Sect. 5, we study the
impact of the temperature gradient of the atmosphere on this
instability for an Earth-like idealized setup. In Sect. 6, we discuss
the possible implications of this instability on the cloud struc-
ture of different atmospheres. We then give our conclusions in
Sect. 7 and discuss the possible expectations for future exoplanet
observations.

2. Linear stability analysis for the radiative
Rayleigh-Taylor instability

We start from the equations of hydrodynamics with gravity and a
simple heating source term H(X,T ) in the total energy equation
that depends on temperature, T, and composition, X, to model
the radiation:

∂ρ

∂t
+ ∇ (ρu) = 0

∂ρu
∂t

+ ∇ (ρu ⊗ u + P) = ρg

∂ρX
∂t

+ ∇ (ρXu) = 0
∂ρE
∂t

+ ∇ (u (ρE + P)) = ρcpH(X,T ), (1)

with the total energy as E= e + u2/2 + φ, the internal energy,
e, the velocity u, the gravitational potential φ, along with the
equation of state (EOS) of an ideal gas as ρe(γ − 1) = P, and
the gravity as g=−∇φ (aligned with the y axis in the rest of the
paper). With the ideal gas law, the temperature and the (constant)
mean molecular weight are linked via P = ρkbT/µ. We assume an
hydrostatic background with:

∂P0

∂y
= − ρ0g, H(X0,T0) = 0, (2)

assuming a discontinuity of composition in two parts of the
domain with X+

0 in the upper half and X−0 in the lower half and
with a continuous density at the interface ρ0. We define HT,X
the partial derivative of the source term with respect to tempera-
ture and composition, respectively, and we assume for simplicity
(and for the linear stability analysis in Appendix A) that HT,X is
constant at the interface.

The classic Rayleigh-Taylor analysis predicts no instability
in the absence of density discontinuities. However, following
Tremblin et al. (2019), we show in Appendix A a linear stability
analysis of the diabatic Rayleigh-Taylor instability in the Boussi-
nesq regime, which gives a radiative Rayleigh-Taylor instability

for the system (1):

ω2 =
gk
2

HX

T0HT

(
X−0 − X+

0

)
, (3)

with k as the horizontal wavelength of the perturbation and ω the
growth rate of the instability. Equation (3) is a simplified version
of a more general diabatic Rayleigh-Taylor growth rate given in
appendix (see Eq. (A.30)). The effect of a stable stratification in
both side of the interface is neglected here but can be taken into
account in the more general growth rate. We refer to the appendix
for more details.

We highlight that this growth rate is the discontinuous ver-
sion of the continuous case studied in Tremblin et al. (2019), with
the criterion for diabatic convection without mean-molecular-
weight gradient nor compositional source terms: ∇XHX > 0 with
∇X = ∂ log X/∂ log P. Qualitatively, the instability in the contin-
uous and discontinuous cases are easy to understand and rely on
buoyancy: when a parcel of fluid moves upward, if a composi-
tional change during the motion induces heating, the temperature
increases and the density decreases, which is destabilizing rel-
ative to the buoyancy. On the contrary, if the compositional
change induces cooling, the temperature decreases and the den-
sity increases, which is stabilizing for an upward motion. To
trigger the instability in a stratified medium, the impact of the
source term has to induce heating for upward motions and cool-
ing for downward motions and also be sufficiently large to
overcome the stabilizing effect of a stable stratification.

Remarkably, we get an instability without a discontinuity
of density at the interface, but with a heating source term that
depends on composition with a discontinuity of composition.
This situation is typical of cloud interfaces in planetary atmo-
spheres and, therefore, we explore this instability with numerical
simulations in brown dwarf and rocky exoplanet regimes.

3. Numerical method and setup

We use the code ARK (Padioleau et al. 2019) to solve the hydro-
dynamics equations in two dimensions (x and y) with a radiative
source term as presented in Tremblin et al. (2019). In this paper,
we ignore changes in the mean molecular weight and we keep
it constant. Then we trace the opacity of the medium with
a scalar field, X. The equations solved in this setup are the
system Eq. (1) with

H(X,T ) =
4πκ(X)

cp
(J − σT 4/π), (4)

which is equivalent to the divergence of the radiative flux (see
Mihalas & Mihalas 1984). The opacity is κ(X) = Xκ1 + (1− X)κ2,
tracing gases with two different opacities, κ1 and κ2. The mean
gray intensity is J = (I↑ + I↓)/2 with I↑ and I↓ the upward and
downward intensities computed using the radiative transfer equa-
tion in a standard two-stream approximation (see Tremblin et al.
2019, for details). Here, we only treat absorption opacities and
scattering is ignored.

The hydrodynamics solver is a well-balanced and all-regime
solver extensively described and tested in Padioleau et al. (2019).
These properties of the numerical method are essential for this
study. The well-balanced property means that the method is able
to maintain the hydrostatic balance at machine precision. This
gives us a very precise control of the instability: even when it
is initialized on an unstable equilibrium, the simulation does not
develop velocities unless we explicitly add a perturbation. The
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all-regime property means that the solver has a low-Mach correc-
tion to reach a high accuracy in the regime of low velocities. This
low-Mach correction is activated in all the simulations presented
in this paper and is also essential for capturing the instability in
the regime we explore here.

There is no diffusivity, viscosity, or sub-grid turbulence in
the model. The dissipation relies only on the numerical diffu-
sion at the grid scale of the all-regime numerical method. Thanks
to the low-Mach correction, that dissipation is significantly
reduced, as shown in Padioleau et al. (2019).

The initial conditions are all chosen in a similar way: we ini-
tialized the scalar tracing opacities X = X0 to 0 and 1 or vice versa
in the upper and lower half of the domain. We then pre-compute
a pressure-temperature profile that satisfy the discrete version of
the hydrostatic balance and energy conservation in Eq. (2), start-
ing from an imposed base pressure Pbot. As explained above with
the well-balanced property, the simulation will remain static in
the absence of perturbations even if these initial conditions are
unstable.

The boundary conditions for the density and pressure are
imposed by a linear extrapolation of the temperature and an
extrapolation of the hydrostatic balance at the top and bottom
boundaries of the domain in the y direction. In addition, we
impose zero velocities. For the radiative variables, we impose the
downward radiative flux at the top πI↓top and the net radiative flux
at the bottom π(I↑bot − I↓bot). The downward radiative flux at the
top represents the emission of the layers of the atmosphere that
are above our computational domain. Imposing the net radiative
flux at the bottom implies that the downward intensity at the bot-
tom is re-emitted upward by deeper layers or a planetary surface.
The magnitude of these fluxes are chosen in conjunction with the
gray opacities, κ1 and κ2, to ensure a realistic temperature profile,
furthermore the adiabatic index, γ, is adjusted such that this ide-
alized setup is stable with regard to Schwarzschild convection,
and allows for the study of other instabilities. The boundary con-
ditions in the x direction are periodic. The initial perturbation is
adapted differently in the brown dwarf and Earth-like regimes;
thus, we provide details on this choice in Sects. 4 and 5.

4. RRTI in the brown dwarf regime

We first choose our parameters to model a stably stratified part
of the upper atmosphere of a L dwarf with effective temperature
Teff ∼ 1600 K and surface gravity log(g) = 5. All the parame-
ters including the opacities and radiative boundary conditions
are given in Table 1 and are set to reproduce a temperature gra-
dient decreasing with height stable to Schwarzschild convection.
We assume the presence of an opacity interface e.g. coming from
condensation of silicates or iron, with an opacity ratio of a factor
of 10. We use a perturbation in the initial vertical velocity:

u0,y(x, y) = Acs sin(mπx/xmax)e−(y−0.5ymax)2/(wymax)2
, (5)

with cs the local sound speed, xmax, ymax the horizontal and
vertical extent of the box, respectively.

Figure 1 shows the maps of the opacity tracer at t = tend when
we start from the higher-opacity medium on top of the lower-
opacity one (left panel) and vice versa (right panel), clearly
demonstrating that higher-opacity over lower-opacity is stable
while lower-opacity over higher-opacity is unstable. We high-
light that higher-opacity versus lower-opacity only refers to κ2
versus κ1 and not to an optically thick versus thin transition: in
this setup, both medium are optically thin and the total optical

Table 1. Parameters used for the simulations of an opacity interface in
a brown dwarf regime.

xmax, ymax [m] 250, 500
nx, ny 100, 200
tend [s] 60
log(g) 5
Pbot [bar] 0.1
γ 1.7
µ 2.4
πI↓top [erg s−1 cm−2] 2.87× 108 (T rad = 1500 K)

π(I↑bot − I↓bot) [erg s−1 cm−2] 3.72× 108 (T rad = 1600 K)
κ1 [cm2 g−1] 0.2
κ2 [cm2 g−1] 2.0
A (see Eq. (5)) 10−4

m (see Eq. (5)) 2
w (see Eq. (5)) 0.25
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Fig. 1. Final two-dimensional (2D) maps of the opacity tracer in a
brown-dwarf regime with a negative vertical temperature gradient. Sim-
ulations are started from: left, a higher-opacity medium (yellow) on top
of a lower-opacity medium (dark blue). Right, a lower-opacity medium
on top of an higher-opacity medium.

depth after crossing both media is 0.18. This instability can be
directly linked to the dependence of the opacity to a local tracer
given in Sect. 2.

We show in the top panel of Fig. 2, the initial and final
profile of potential temperature θ= T (Pref/P)(γ−1)/γ in the unsta-
ble simulation. It shows that the potential temperature is always
increasing with height, hence, the simulations are always stably
stratified, namely, they are stable with regard to thermal con-
vection. The bottom panel shows the evolution of the averaged
internal, gravitational, and kinetic energy in the simulation. We
can see that the kinetic energy is equal to the opposite of the
gravitational energy: this is expected for a buoyancy instability
that converts gravitational potential energy into kinetic energy.
The evolution of the internal energy is not conservative, which
is expected because of the radiative transfer source term. Its
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Fig. 2. Global properties of the simulations in the brown-dwarf regime.
Top: initial and final potential temperature profiles for the simulation
with a lower-opacity medium on top of a higher-opacity one. Bottom:
evolution of the averaged kinetic, gravitational and internal energies
during the simulation. We plot the evolution of the differences from
their initial values.

evolution leads to conditions prone to the RRTI instability, which
we will explore in more detail below.

In order to explore the link to RRTI, we show in Fig. 3 the
heating rate computed from our initial conditions when the inter-
face is artificially displaced by 10% up or down in the box. Since
the heating rate is exactly zero when the interface is at the middle
of the box, this artificial displacement allows us to probe numer-
ically the evolution of H with composition and get an estimate
of HX in our simulations. As explained above, we can expect
the flow to be unstable to buoyancy when an upward displace-
ment leads to heating and a downward displacement to cooling,
while upward displacements inducing cooling would correspond
to a stable situation. Indeed, Fig. 3 shows that vertical velocities
and the instability appear when the displacement of the interface
is unstable to buoyancy. We can provide a theoretical estimate
of the growth rate using Eq. (3) and by numerically computing
HX,T at the interface from the initial conditions. Such an estimate
gives a growth rate of 0.04 s−1 while the measured growth rate in
the simulation is 0.07 s−1 (70% higher, measured between t = 10
and t = 50 s before reaching saturation). The theoretical estimate
provides the correct order of magnitude and the agreement can
be considered as relatively good given the approximations in
the linear stability analysis that partly ignore the complexity and
non-locality of radiative transfer.

Figure 3 also shows that the displacement of the interface
leads to a non-local heating and cooling preferentially in the
higher-opacity medium. Such a non-locality is not surprising:
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Fig. 3. Brown-dwarf regime with a negative vertical temperature gradi-
ent. Top: higher-opacity over lower-opacity. Bottom: lower-opacity over
higher-opacity. Left: heating rate profiles when the position of the inter-
face is displaced up or down by 10% from the initial condition. Right:
mean vertical velocity profile in the simulation at t = tend/2.

when the medium is optically thin, a local modification of its
opacity has an impact in the entire domain. Heating and cool-
ing happens preferentially in the higher-opacity domain simply
because the heating rate is proportional to the opacity (see
Eq. (4)). The mean velocity profile shows that motions are indeed
appearing preferentially in the entire higher-opacity medium
and not only at the interface. This non-locality and asymme-
try between the two media can explain the rapidly non-linear
and strongly asymmetric development of the perturbations in
Fig. 1: the downward column is narrow and fast while the upward
motions are spatially large and slow.

In order to study this radiative heating and cooling more
in depth, we need to explore the evolution of the upward and
downward intensities as a function of the interface displace-
ment. We simplify the problem by assuming that the radiative
transfer equation leads to a simplified solution of the type
I(y) = e−κρ∆yI(y0) + (1− e−κρ∆y)σT (y)4/π,with a vanishing opac-
ity in the lower-opacity medium, namely, I(y) = I(y0) and a small
opacity in the higher-opacity medium, such that I(y) is in the
linear regime as a function of y. At equilibrium in the initial con-
dition, the radiative flux is constant and the heating rate is zero,
this implies that I↑ − I↓ is constant and (I↑ + I↓)/2 =σT 4/π, that
is, the intensity profiles increase or decrease with altitude simi-
larly to temperature. Under these assumptions, Fig. 4 shows the
typical equilibrium downward and upward intensity profiles in
gray when the temperature is decreasing with altitude. We detail
the two different cases.

Higher-opacity over lower-opacity: starting from the top
boundary, the downward intensity is increasing when going
down, which corresponds to emission in the higher-opacity
medium; it is then constant when propagating through the lower-
opacity medium. Then, starting from the bottom boundary the
upward intensity is constant through the lower-opacity medium,
its value being fixed by the net radiative flux boundary con-
dition, and then decrease in the higher-opacity medium which
corresponds to absorption. When the interface is moving up
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Fig. 4. Simplified downward and upward intensity profiles in an atmo-
sphere with a negative vertical gradient of temperature. Grey profiles
are those set for an initial condition at radiative equilibrium with the
interface at the middle of the box. Red and blue profiles corresponds to
intensities when the interface has been moved up and down.

(red curves), the optical path in the higher-opacity medium is
decreasing, corresponding to a decrease in emission for the
downward photons which decreases first the downward inten-
sity and then the upward intensity because of the imposed net
radiative flux at the bottom boundary. The decrease in both inten-
sities hence results in a decrease in the mean gray intensity J.
Using Eq. (4) together with the fact that T is constant indi-
cates that there is a net cooling of the atmosphere when the
interface is moving up, which has a stabilizing effect. Lower-
opacity over higher-opacity: starting from the top boundary, the
downward intensity is constant when going down in the lower-
opacity medium, then increases in the higher-opacity medium,
which corresponds to emission in the higher-opacity medium.
Then starting from the bottom boundary the upward intensity is
decreasing in the higher-opacity medium which corresponds to
absorption and is constant through the lower-opacity medium.
When the interface is moving up, the optical path in the higher-
opacity medium is increasing, corresponding to an increase in
emission for the downward photons which increases first the
downward intensity and then the upward intensity because of the
imposed net radiative flux at the bottom boundary. The increase
in both intensities hence results in an increase in the mean gray
intensity J. Using Eq. (4) together with the fact that T is con-
stant, means there is a net heating of the atmosphere when the
interface is moving up, which is destabilizing.

In summary, when the temperature is decreasing with alti-
tude, a decrease in the optical path in the higher-opacity medium
results in a decrease in emission hence radiative cooling and
an increase in the optical path results in an increase in emis-
sion hence radiative heating. Interestingly, it can be expected
from Fig. 4 that this behavior is inverted in the presence of
a temperature inversion. Figure 5 shows the expected intensity
profiles if the temperature is increasing with height. The same
analysis can be repeated but with the higher-opacity medium
absorbing the downward photons (since the intensity is decreas-
ing along the path). Consequently, a decrease in the optical path
in the higher-opacity medium results in a decrease in absorption
(hence, radiative heating), while an increase in the optical path
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Fig. 5. Simplified downward and upward intensity profiles in an atmo-
sphere with a positive vertical gradient of temperature. Grey profiles
are those set for an initial condition at radiative equilibrium with the
interface at the middle of the box. Red and blue profiles corresponds to
intensities when the interface has been moved up and down.

in the higher-opacity medium results in an increase in absorption
(hence, radiative cooling). It is then clear that we should expect
the instability to be inverted in that case, namely: when the tem-
perature is increasing with altitude, a higher-opacity medium on
top of a lower-opacity medium should be unstable and lower-
opacity over higher-opacity should be stable. We explore this
possibility in an Earth-like regime in the next section.

5. Earth-like regime: dependence on the
temperature gradient

In order to explore the behavior of the RRTI with a temperature
inversion, we performed simulations in an Earth-like regime for
which a positive vertical gradients of temperature could arise
either because of irradiation condensation and evaporation or
hydrodynamical effects. We therefore need to impose a temper-
ature inversion by adding a forcing term in the heating source
term

H(X,T ) =
4πκ(X)

cp
(J − σT 4/π) − T − Tforcing

τforcing
, (6)

with Tforcing an imposed profile with a positive vertical gradi-
ent and τforcing the timescale for the forcing. Prior to this, we
first considered a purely radiative setup (i.e., τforcing → ∞) and
adjusted the parameters (see Table 2) to reproduce the unsta-
ble behavior in a negative vertical gradient of temperature (see
Fig. 6). The radiative balance in Earth atmosphere is typically in
the infrared at wavelength around 10 µm. We assume a ratio of
opacity of 1000 for Earth clouds (Kokhanovsky 2004) and adjust
the radiative boundary conditions to get a temperature-pressure
profile that matches the international standard atmosphere (ISA)
values at 2 km altitude and is stable to Schwarzschild convection.
The instability appears to be weaker in the Earth-like regime
than in the brown-dwarf regime, a velocity perturbation in that
context tends to trigger sound waves that are reflected on the
boundaries of the domain and strongly interfere with the inter-
face. To overcome this numerical limitation, we have used an
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Table 2. Parameters used for the simulations of an opacity interface in
a Earth-like regime with a negative vertical gradient of temperature.

xmax, ymax [m] 50, 100
nx, ny 100, 200
tend [s] 1260
log g 2.99
Pbot [bar] 0.8
γ 1.5
µ 28.97
πI↓top [erg s−1 cm−2] 3.24× 105 (T rad = 275 K)

π(I↑bot − I↓bot) [erg s−1 cm−2] 5.19× 102 (T rad = 55 K)
κ1 [cm2 g−1] 10−3

κ2 [cm2 g−1] 1.0
τforcing [s] ∞
A (see Eq. (7)) 2× 10−2

m (see Eq. (7)) 2
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Fig. 6. Final 2D maps of the opacity tracer in an Earth-like regime
with a negative vertical temperature gradient. Simulations are started
from: (left) a higher-opacity medium (yellow) on top of a lower-
opacity medium (dark blue); (right) a lower-opacity medium on top of
a higher-opacity medium.

interface perturbation rather than a velocity perturbation:

yint(x) = 0.5ymax(1 + A sin(mπx/xmax)). (7)

This type of perturbation appears to have a much weaker interac-
tion with the boundaries of the simulation. Figure 6 shows that
we recover the behavior expected from the brown-dwarf setup:
higher-opacity over lower-opacity is stable and lower-opacity
over higher-opacity is unstable. Figure 7 shows the behavior of
the heating rate when we displace the interface in the initial con-
ditions and the velocity profile at the middle of the simulation.
The heating rate behaves similarly to the brown-dwarf regime: in
the lower-opacity over higher-opacity case, an upward displace-
ment of the interface results in radiative heating and a downward
displacement to radiative cooling, hence, the interface is unsta-
ble to buoyancy. The difference with the brown-dwarf regime is
that the opacity jump is larger and the higher-opacity medium
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Fig. 7. Earth-like regime with a negative vertical temperature gradi-
ent. Top: higher-opacity over lower-opacity. Bottom: lower-opacity over
higher-opacity. Left: heating rate profiles when the position of the inter-
face is displaced up or down by 10% from the initial condition. Right:
mean vertical velocity profile in the simulation at t = tend/2.

Table 3. Forcing parameters used for the simulations of an opacity
interface in an Earth-like regime with a positive vertical gradient of
temperature.

T forcing,top [K] 275
T forcing,bot [K] 270
τref [s] 875
κref [cm2 g−1] 1.0
tend [s] 4500

Notes. All the other parameters are similar to those in Table 2.

is optically thick. Indeed we can also see in Fig. 7 (left) that
heating and cooling are localized close to the interface which is
a consequence of optically-thick radiative transfer that degener-
ates to local thermal diffusion. The right panel also shows that
the motions tend to be localized closer to the interface. This
difference does not impact the general behavior of the instability.

In order to explore the behavior of the instability with a
temperature inversion, we used a simple Newtonian forcing as
proposed in Eq. (6). This Newtonian cooling is a very sim-
plified model to force a temperature inversion that could arise
from irradiation, phase change, or dynamics. The initial pro-
file is computed to be at equilibrium H = 0 for Eq. (6), that is,
including Newtonian cooling. We point out that the argument
(Sect. 4) meant to explain the instability in the presence of a
temperature inversion still applies here because Newtonian cool-
ing depends only on temperature. We use a linear forcing profile
with altitude and parameterize the top and bottom forcing tem-
perature (see Table 3). We also choose a forcing timescale of the
form τforcing = τref × (κref/κ(X)). This form allows us to invert the
higher-opacity and lower-opacity medium in the simulation and
keep a continuous temperature profile stable to Schwarzschild
convection. It is also reasonable to assume that irradiating and
dynamical forcing will be more efficient in the higher-opacity
medium. All the parameters for the forcing are listed in Table 3
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Fig. 8. Final 2D maps of the opacity tracer in an Earth-like regime
with a positive vertical temperature gradient. Simulations at left: higher-
opacity medium (yellow) on top of a lower-opacity medium (dark blue).
Right: lower-opacity medium on top of a higher-opacity medium.
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Fig. 9. Earth-like regime with a positive vertical temperature gradi-
ent. Top: higher-opacity over lower-opacity. Bottom: lower-opacity over
higher-opacity. Left: heating rate profiles when the position of the inter-
face is displaced up or down by 10% from the initial condition. Right:
mean vertical velocity profile in the simulation at t = tend/2.

and we show in Fig. 8 the opacity tracer at the end of the sim-
ulation. As expected from Fig. 5, the instability is inverted:
higher-opacity medium over lower-opacity medium is unstable
and lower over higher-opacity is stable when the temperature
is increasing with altitude. We also show in Fig. 9 the profiles
of the heating rate when the interface is displaced upward and
downward. It shows that in the higher-opacity over lower-opacity
case, an upward displacement results in radiative heating and
a downward displacement in radiative cooling and confirm the
instability regime. As in Fig. 7, we can also see that heating
and cooling are localized close to the interface because of the

A
lt

it
u

d
e

Higher-opacity cloud layer

Temperature profile

Higher-opacity cloud layer

Temperature profile

Temperature

A
lt

it
u

d
e

Higher-opacity cloud layer

Temperature profile

Temperature

Higher-opacity cloud layer

Temperature profile

Fig. 10. Schematics of the possible stable and unstable situations for
a higher-opacity cloud layer depending on the temperature structure of
the atmosphere.

optically thick regime in the higher-opacity medium similarly to
the motions triggered by the instability.

We schematically summarize in Fig. 10 all the different
possibilities of the stable and unstable regimes assuming the
presence of a higher-opacity cloud layer in an atmosphere with
different temperature structures. Essentially, the top part of the
cloud layer is unstable if the temperature decreases with alti-
tude, stable with a temperature inversion; whereas the base is
stable if the temperature decreases with height and unstable with
a temperature inversion. This might lead to the cloud cover being
patchy. Interestingly, there is only one case in which a cloud
cover would be stable: negative temperature gradient at the base
and a temperature inversion at the top. We discuss in the next
section the possible implications for cloud covers in different
objects.

6. Interpretations of the structure of cloud covers

6.1. Cold ice- and gas-giant planets

The first important distinction here is made by checking if clouds
are expected to be radiatively active or passive, meaning that
the radiative timescale is smaller or larger than the advective
timescale. If the radiative timescale is small, the RRTI will
develop quickly compared to other dynamical effects and will
strongly impact the shape of the clouds. If this timescale is
long, wind and convection will impact the higher-opacity layer
before the radiative instability develops and clouds can be seen
as radiatively passive scalar following the dynamics (ignoring for
the moment condensation or evaporation; see Sect. 7). We esti-
mate in Fig. 11 the radiative timescale and advective timescale
for the cloudy Solar System planets, the extrasolar giant planet
HD 209458b, and the T dwarf 2M 1047. We estimate the radia-
tive timescale with τrad = cp/κσT 3

1bar, assuming a cloud opacity at
κ = 1 cm2 g−1 and a temperature from the pressure/temperature
structure at 1 bar. The global advective timescale is estimated
with τadv = Rp/uwind with Rp the radius of the object and uwind
the typical wind velocities in the atmosphere. The wind veloc-
ity for 2M 1047 is taken from the recent wind measurement in
Allers et al. (2020). All the values used to get these estimations
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Fig. 11. Comparison between the radiative and advective timescale
for HD 209458b, the T dwarf 2M 1047, Venus, Earth, Jupiter, Saturn,
Uranus, and Neptune.

Table 4. Parameters used to estimate the radiative and advective
timescales plotted in Fig. 11.

cp [cgs] T1bar [K] uwind [cgs] Rp [cgs]

HD 209458b 1.5× 108 1500 3.5× 105 9.8× 109

2M 1047 1.5× 108 900 6× 104 5.5× 109

Venus 1.16× 107 360 1× 104 6× 108

Earth 1.1× 107 290 1× 104 6.3× 108

Jupiter 1.3× 108 150 1.5× 104 7× 109

Saturn 1.3× 108 120 4× 104 5.8× 109

Uranus 8× 107 75 2× 104 2.5× 109

Neptune 8× 107 70 4× 104 2.4× 109

are given in Table 4. We emphasize that this is an order-of-
magnitude estimation to assess roughly the relative importance
between radiative and dynamical effects.

We can see that the cold ice- and gas-giant planets in the
Solar System are essentially in the regime in which the advective
timescale is smaller than the radiative timescale which implies
that clouds are essentially radiatively passive and follow the flow
as a passive scalar. The radiative timescale is much smaller for
the giants than for Earth and Venus because they are colder,
but also because the specific heat capacity in these objects is
around one order of magnitude larger. As a result, the radiative
timescale is almost two orders of magnitude larger. Surprisingly,
HD 209b and the T dwarf 2M 1047 fall in a similar regime
as Earth and Venus, mainly because the radiative timescale is
small as a result of the high temperature that characterizes these
objects. Although the Solar System’s giant planets are often seen
as our closest analog to hot giant exoplanets and brown dwarfs,
they seem to be bad proxies with regard to understanding the
cloud dynamics on these objects compared to Earth and Venus,
at least as far as the RRTI is concerned. Similarly to the Solar
System giants, we can expect that cold exoplanets and cold Y
dwarfs, such as Wise 0855, will also be shown to have relatively
radiatively passive clouds.

6.2. Earth and Venus

The dynamics of clouds in the atmosphere of Earth and Venus
provides a possible test bench for a mechanism such as the RRTI
by comparing the correlation between stability or instability and
temperature gradients to Fig. 10.

Fig. 12. Appearance of mammatus clouds over Montparnasse tower in
Paris on the 21st of November 2016.
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Fig. 13. Pressure and temperature profiles of the atmosphere of Venus
measured by the Pioneer probes (Seiff 1983) and location of the main
cloud deck (Formisano et al. 2006).

Mammatus clouds in Earth’s atmosphere are opaque lobes
hanging at the base of a cloud, typically beneath the anvil part
of cumulonimbus when they overshoot the tropopause or also
at the base of thunderstorm clouds (see Fig. 12 and Winstead
et al. 2001). The understanding of the formation mechanism of
these unusual cloud structures remains a challenge and many
processes have been proposed so far based on evaporative
cooling, cloud-base radiative heating, dynamical instabilities
(Kelvin-Helmholtz, “standard” Rayleigh-Taylor) and many oth-
ers (Schultz et al. 2006, 2007; Garrett et al. 2010). However,
none of these processes seem to provide a definitive answer since
they do not seem to always lead to the formation of mammated
clouds. However, among all the observed properties of the mam-
matus, the correlation between their formation and the presence
of a temperature inversion is certainly the one that is shared
most conspicuously. This correlation was reported as early as
1911 by Clayton, using kite soundings at the Harvard College
Astronomical Observatory.

Another interesting case is the main cloud cover in the atmo-
sphere of Venus. Since a stable cloud deck is present, preventing
us from seeing the surface at visible wavelength, the RRTI would
predict this cloud cover to be stable only if a temperature inver-
sion is present at the top of the cloud deck. We provide in Fig. 13,
the pressure/temperature profiles measured by two of the four
Pioneer probes (Seiff 1983) and the location of the main cloud
deck (Formisano et al. 2006). It does appear that a temperature
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inversion is present at the location of the top boundary of the
clouds explaining the stability to the RRTI and the formation of
the cloud cover on the dayside of the planet. Yet such temperature
inversions are not possible without irradiation on the nightside
of the planet. We would therefore expect the top cloud cover
to be destabilized there. This is also what has been observed
by Venus Express with relatively recent analysis of the cloud
dynamics on the nightside of the planet (Peralta et al. 2017).
While the cloud cover is smooth and follows super-rotation on
the dayside (which is well reproduced by global circulation mod-
els (GCM) Lebonnois et al. 2016; Garate-Lopez & Lebonnois
2018), more complex dynamics and cloud structure with station-
ary wave patterns seems to be present on the nightside and is not
well reproduced by GCM simulations.

Interestingly, both types of phenomena seem to be qualita-
tively in agreement with our predictions for the behavior of the
RRTI as a function of the temperature gradient (see Fig. 10):
the base of a cloud cover would be unstable to the RRTI when
a temperature inversion is present (similar to the case of Mam-
matus) and the top of the cloud cover would be stable with a
temperature inversion (dayside of Venus), whereas it would be
unstable with temperature decreasing with height (nightside of
Venus). More detailed studies are needed to confirm this link,
such as with local convective simulations, as in Lefèvre et al.
(2017, 2018), where the RRTI mechanism could be identified and
characterized.

7. Discussion and conclusions

7.1. Speculations for exoplanets

Based on the insights provided by the RRTI and its possible
role in the dynamics of Earth and Venus clouds, we can provide
expectations for the cloud cover of irradiated rocky and giant
exoplanets. Similarly to the dayside of Venus, we could expect
a stable cloud cover to be possible only when irradiation create
a temperature inversion at the top of the clouds (this inversion
can be caused by the absorption of stellar light by the clouds
themselves). If the cloud cover can grow to a large vertical exten-
sion on the dayside, it can then be advected on the nightside
and survive the instabilities created at the top by the disappear-
ance of the temperature inversion and consequently cover the
entire planet. This possibility will strongly depend on the rota-
tion period and wind velocity: if locally the clouds are submitted
to a rapid day-night forcing they could be rapidly destabilized
before growing significantly at the planetary scale, while for
slow rotation or wind speed they could grow significantly on the
dayside and survive on the nightside. Our mechanism may con-
tribute to shaping certain cloud properties on Earth and Venus,
and on irradiated exoplanets in general, although multiple mech-
anisms are crucial in determining the weather system on Earth
and Venus.

For isolated objects such as brown dwarfs or low-irradiated
hot exoplanets as the type usually observed by direct imaging,
the formation of temperature inversions appears difficult and is
not really expected to take place. We therefore expect the top
of a cloud cover to be unstable to the RRTI everywhere in the
atmosphere of these objects. As a consequence of the RRTI,
patchy cloud covers may be ubiquitous in both L and T dwarfs
and not only at the L/T transition. To illustrate this point, we
show in Fig. 14 a simulation with an unstable cloud layer lead-
ing to patches of opacity. We perform this simulation on longer
time-scale to probe the saturated steady state, the solution does
not evolve much between 150 and 300 s, which is, therefore,
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Fig. 14. Opacity tracer in a simulation with an unstable cloud cover. Top
panel: initial state. Middle: at t = 150 s. Bottom: at t = 300 s.

much longer than the turnover timescale associated with the ini-
tial transitional phase. In that context, 1D atmospheric models
with homogeneous cloud cover may not be a sufficiently realistic
approximation.

7.2. Conclusions

By using an analytical stability analysis and 2D radiative-
hydrodynamical simulations, we have shown the existence of an
instability of an opacity discontinuity between a lower-opacity
and a higher-opacity medium: the Radiative Rayleigh-Taylor
instability, namely, a particular case of the general diabatic
Rayleigh-Taylor instability.

– In an atmosphere with a negative vertical gradient of tem-
perature, a lower-opacity medium on top of a higher-opacity
medium is unstable and a higher-opacity medium on top of
a lower-opacity medium is stable.

– In an atmosphere with a positive vertical gradient of tem-
perature, the behavior is inverted: a lower-opacity medium
on top of a higher-opacity medium is stable and an higher-
opacity medium on top of a lower-opacity medium is
unstable.

– Applied to a higher-opacity cloud layer, this mechanism pre-
dicts that the base of a cloud can be unstable in the presence
of a temperature inversion and a cloud cover can only be
stable if a temperature inversion is present at the top.

This mechanism could shed some light on the interpretation of
several cloud structures in different objects:
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– The radiative timescale of the ice- and gas-giant Solar Sys-
tem planets and cold exoplanets and Y dwarfs is long. In that
context, clouds can be expected to be radiatively passive and
they essentially follow the dynamics as long as only radiative
transfer is concerned.

– The RRTI predicts that the base of a cloud is unstable with
a temperature inversion, this could offer a possible mecha-
nism to explain the formation of mammatus clouds in Earth’s
and Earth-like atmospheres. Furthermore, a cloud cover can
only be stable with a temperature inversion at the top, which
seems to be the case for Venus dayside temperature profiles.
By generalizing this finding with regard to irradiated exo-
planets, we may expect stable large-scale cloud covers only
in irradiated planets with slow rotation or wind speed, so that
the cloud cover can grow on large scales on the dayside (and
possibly be advected on the nightside).

– Isolated and low-irradiated objects like brown dwarfs and hot
exoplanets observed by direct imaging are not expected to
have temperature inversions. In that context, patchy cloud
covers may be ubiquitous in their atmospheres.

We have, of course, used a very simplified setup in this paper.
Some limitations regarding our current approach are:

– We partly neglected condensation or evaporation leading to
the formation or destruction of the higher-opacity material
and irradiation. We only explored with a simplified thermal
forcing the possible formation of a temperature inversion
because of evaporative cooling or irradiation. As a conse-
quence, we have ignored the feedback of the instability on
the forcing causing the temperature inversion.

– We used a simplified approach for radiative transfer: a gray
model neglecting scattering. We also used the two-stream
approximation in column, which neglects lateral radiative
coupling.

– We used 2D simulations: further studies ought to consider
this instability in 3D and assess its impact on a opaque layer
of finite thickness. Longer timescales are also needed to
probe the turbulent steady state.

Some of these limitations might not be important, that is, con-
densation for the formation of the higher-opacity material might
happen in a first phase and be relatively negligible in the follow-
ing evolution governed by radiation hydrodynamics. Scattering
will probably not have much impact when the radiative balance
is mainly in the infrared, and in any case, it does not impact
radiative heating and cooling. However, a better modeling of
evaporation, irradiation, and 3D radiative transfer (e.g., with the
M1 model González et al. 2007) are certainly the next steps
toward a better understanding of the RRTI and cloud dynamics in

the context of exoplanets and brown dwarfs. With the upcoming
arrival of the James Webb Space Telescope and observational
data with a large spectral coverage, these types of models might
be essential for the understanding of clouds in the atmosphere of
giant and rocky exoplanets.
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Appendix A: Linear stability analysis of the
diabatic Rayleigh-Taylor instability

A.1. General equations

For the linear stability analysis, we will use the Boussinesq
approximation, following Tremblin et al. (2019). We decom-
pose all the fields as e.g. ρ(t, x, y, z) = ρ0(z) + δρ(t, x, y, z) and the
background state is given by the static equations:

∂P0

∂z
= −ρ0g

R(X0,T0) = 0
u = 0

H(X0,T0) = 0, (A.1)

with R(X,T ) the source term in the advection/reaction equation
of the fluid concentration, X, and ρCpH(X,T ) the source term in
the energy equation i.e. thermal conduction or radiative transfer
heating rate.

The linearized Boussinesq approximation leads to the follow-
ing system:

∇ (δu) = 0
∂δX
∂t

+ δu · ∇ (X0) =
∂R
∂X

δX +
∂R
∂T

δT

∂ρ0δu
∂t

+ ∇ (δP) − δρg = 0
∂δT
∂t

+ T0δu · ∇ log θ0 =
∂H
∂X

δX +
∂H
∂T

δT, (A.2)

with θ0 the potential temperature T0(Pref/P0)(γ−1)/γ (Pref is a ref-
erence pressure and γ the adiabatic index). The system is closed
with the equation of state for an ideal gas (by removing δP in the
Boussinesq limit):

0 =
δρ

ρ0
+
δT
T0
− ∂ log µ0

∂X
δX (A.3)

and we consider in the rest of the analysis an interface between
two sub-domains located in z = 0. Before going to the Boussinesq
regime, we recall first the demonstration in the incompressible
regime, without composition nor source terms in order to high-
light the modification of the demonstration for the Boussinesq
limit.

A.2. Incompressible limit

In the incompressible case, the system is reduced to:

∇ (δu) = 0 (A.4)
∂ρ0δu
∂t

+ ∇ (δP) − δρg = 0. (A.5)

And we can introduce an extra equation on the advection of
density:

∂δρ

∂t
+ δu∇ρ0 = 0. (A.6)

Then we assume the form exp(ωt + i(kxx + kyy)) for the distur-
bance:

ikxδu + ikyδv + ∂zδw = 0
ωρ0δu + ikxδP = 0
ωρ0δv + ikyδP = 0

ωρ0δw + ∂zδP + δρg = 0
ωδρ + δw∂zρ0 = 0, (A.7)

which is reduced to (defining k2 = k2
x + k2

y):

k2δP + ωρ0∂zδw = 0
ωρ0δw + ∂zδP + δρg = 0

ωδρ + δw∂zρ0 = 0. (A.8)

We then need to find the differential equation for δw:

ωρ0δw − ω∂z (ρ0∂zδw) /k2 + δρg = 0, (A.9)

with the relation that links δρ and δw in the incompressible limit:

ωδρ + δw∂zρ0 = 0. (A.10)

We explicitly keep the relation between δρ and δw here, because
this is what is going to change in the Boussinesq limit with
source terms. If we assume that in each subdomain, the density
is constant, the differential equation is then

∂2
zδw − k2δw = 0, (A.11)

which has the solution δw(0±)e∓kz and assuming the continuity
of velocity at the interface leads to δw(0±) = δw(0).

We now replace δρ in the differential equation Eq. (A.9) and
integrate around the interface between z = ±ε to get the jump
relation:

ω2k2
∫ +ε

−ε
ρ0δwdz − ω2[ρ0∂zδw]+ε

−ε − gk2
∫ +ε

−ε
δw∂zρ0dz = 0.

(A.12)

The first term can be decomposed as follow:

∫ +ε

−ε
ρ0δwdz =

∫ 0

−ε
ρ0δwdz +

∫ +ε

0
ρ0δwdz

≈ −ερ−δw(0) + ερ+δw(0), (A.13)

which tends to zero as ε tends to zero. This result holds for any
term that cannot be written as a derivative of a discontinuous
function: only those terms (i.e., Dirac functions) contribute to
the jump relation. The second term can be written as follows:

[ρ0∂zδw]+ε
−ε = −kρ0(ε)δw(ε)e−kε − kρ0(−ε)δw(−ε)e+k(−ε)
→ −kδw(0)(ρ− + ρ+), (A.14)

δw can be removed from the integral in the third term since it
is continuous at the interface and we can perfom the integration
similarly to the second term to obtain the classical result:

ω2 = gk
ρ+ − ρ−
ρ+ + ρ−

. (A.15)

We now introduce the Boussinesq limit, without composition
nor source terms.
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A.3. Boussinesq limit

In the Boussinesq limit, the differential equation in Eq. (A.9) is
the same but the link between δρ and δw is different. Assuming
no composition nor source terms, the Boussinesq limit adds the
following relations:

ωδT + δwT0∂z(log θ0) = 0
δρ/ρ0 = −δT/T0, (A.16)

which gives the following relation between δρ and δw:

ωδρ/ρ0 = δw∂z(log θ0), (A.17)

We note that the relation between δρ and δw is proportional to the
instability criterion in the continuous case (∂z log θ0 < 0). We
assume the log-density gradient and the log-potential tempera-
ture gradient constant in each subdomain. This assumption might
not be true depending on the equation of state but we will assume
that the wavelength of the perturbation is sufficiently small so
that both gradients can be considered constant. The differential
equation Eq. (A.9) with Eq. (A.17) then become:

ω2∂z(ρ0∂zδw) − ω2k2ρ0δw − gk2ρ0∂z(log θ0)δw = 0
∂2

zδw + ∂z(log ρ0)∂zδw − k2(1 + g∂z(log θ0)/ω2)δw = 0, (A.18)

whereby the solution is δw(0±)eq±z with

q± = − (∂z(log ρ0))±/2

∓
√

(∂z(log ρ0))±,2/4 + k2 (
1 + g(∂z(log θ0))±/ω2). (A.19)

We note that q± is independent of ω if the sub-domains are
neutral to buoyancy (∂z log θ0 = 0).

To write the jump conditions we need to write the non-
conservative product ρ0∂z log θ0, with discontinuous variables
only in the derivative (using the equation of hydrostatic equi-
librium):

ρ0∂z log θ0 = − ∂zρ0 − ρ2
0g/(P0γ). (A.20)

The second term can be discontinuous but involves no deriva-
tives, therefore, it does not contribute to jump relations (by
integration of this term on each side of the interface). It is only
the first term (equivalent to a dirac function) that contributes.
The jump condition by integration of Eq. (A.18) between ±ε is
then given by:

ω2[ρ0∂zδw]+ε
−ε + [ρ0]+ε

−εδw(0)gk2 = 0; (A.21)

hence, the growth rate in the Boussinesq limit is given by:

ω2 = gk2 ρ+ − ρ−
ρ−q− − ρ+q+

, (A.22)

We note that we recover the incompressible result if the log-
density and log-potential temperature gradients are negligible in
Eq. (A.19), that is, q± =∓k.

A.4. Diabatic Rayleigh-Taylor instability

Now we go back to the full system with composition and source
terms. We go on to add to Eq. (A.9) the following equations:

ωδX + δw∂zX0 = RXδX + RTδT
ωδT + δwT0∂z(log θ0) = HTδT + HXδX

δρ/ρ0 = −δT/T0 + ∂X(log µ0)δX. (A.23)

In that case,

(ω′T − ω)δw∂zX0 = (HT − ω + HX/(T0∂X log µ0))
× ((RX − ω)δX + RTδT )

(ω′X − ω)δw∂z(log θ0) = ((RX − ω)/T0 + RT∂X(log µ0))
× ((HT − ω)δT + HXδX)

δρ/ρ0 = −δT/T0 + ∂X(log µ0)δX, (A.24)

with ω′X = RX + RT T0∂X log µ0 and ω′T = HT + HX/(T0∂X log µ0).
This implies the relation between δρ and δw:

δρ/ρ0 = δw(αT∂z log µ0 − αX∂z(log θ0))
αT = (ω′T − ω)/((HT − ω)(RX − ω) − HXRT )
αX = (ω′X − ω)/((HT − ω)(RX − ω) − HXRT ). (A.25)

We then assume αT and αX constant in the whole domain. We
can then carry out the following redefinition:

logψ = −αX log θ0 + αT log µ0
δρ/ρ0 = δw∂z(logψ). (A.26)

The differential equation Eq. (A.9) with Eq. (A.26) then
becomes:

ω2∂z(ρ0∂zδw) − ω2k2ρ0δw − gk2ρ0ω∂z(logψ)δw = 0
∂2

zδw + ∂z(log ρ0)∂zδw − k2(1 + g∂z(logψ)/ω)δw = 0. (A.27)

In each sub-domain we can solve the differential equation in
δw to get δw(0±)eq±z, with

q± = −(∂z(log ρ0))±/2

∓
√

(∂z(log ρ0))±,2/4 + k2 (
1 + g(∂z(logψ))±/ω

)
. (A.28)

Remarkably, we can get a discontinuity (and instability) in
logψ with a continuous density at the interface. We therefore
assume ρ0 to be continuous at the interface. We also need to
employ this hypothesis in order to have a well-defined jump rela-
tion for the term ρ0∂z(logψ), with a discontinuous density as this
is a non-conservative product that is a-priori not well defined. We
highlight that this hypothesis asserts that the interface is neutral
to the classic Rayleigh-Taylor instability, but does not prevent the
medium from becoming stratified on each side of the interface
(with non-zero ∂z(log θ0)± in Eqs. (A.26) and (A.28).

The jump condition, via the integration of Eq. (A.27)
between ±ε, becomes:

ωρ0[∂zδw]+ε
−ε − [logψ]+ε

−ερ0δw(0)gk2 = 0, (A.29)

which gives the diabatic Rayleigh-Taylor growth rate for a
continuous density:

ω= gk2 logψ+ − logψ−

q+ − q−
. (A.30)

We note that this growth rate takes into account the stabi-
lizing effect of stratification in the medium ∂z(log θ0)± , 0. In
the limit of very large stratification q± → ∓k

√
g(∂z(logψ))±/ω,

which gives the following limit of the growth rate:

ω3/2 =
√
gk

logψ+ − logψ−√
(∂z(logψ))+ +

√
(∂z(logψ))−

. (A.31)

Within the limit of small source terms HX,T ,RX,T → 0,
we have (∂z(logψ))± → ((∂z(log θ0))± − (∂z(log µ0))±)/ω, which
shows that ω→ 0 when ∂z(log θ0))± → +∞.
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A.5. Radiative Rayleigh-Taylor instability

Assuming R = 0 and no mean molecular weight gradient, we get:

ωδX + δw∂zX0 = 0
ωδT + δwT0∂z(log θ0) = HTδT + HXδX

δρ/ρ0 = −δT/T0, (A.32)

assuming only a discontinuous composition X, we get

logψ = −HXX0/(ωT0(HT − ω))
δρ/ρ0 = δw∂z(logψ), (A.33)

which gives the growth rate, assuming continuous ρ0:

ω2 = gk2 HX

T0(HT − ω)
X−0 − X+

0

q+ − q−
. (A.34)

We can simplify this expression assuming ω � HT and neglect-
ing the log-density and logψ gradients such that q± = ∓ k. In this
limit, the radiative Rayleigh-Taylor growth rate is simply given
by:

ω2 =
gk
2

HX

T0HT

(
X−0 − X+

0

)
. (A.35)

A discontinuity of composition associated with a source term
that depends on composition (i.e., a discontinuity in XHX)
can therefore lead to an instability similar to the adiabatic
Rayleigh-Taylor instability even if the density is continuous at
the interface.
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