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Abstract We introduce a deep learning framework able to deal with strong pri-
vacy constraints. Based on collaborative learning, differential privacy and homo-
morphic encryption, the proposed approach advances state-of-the-art of private
deep learning against a wider range of threats, in particular the honest-but-curious
server assumption. We address threats from both the aggregation server, the global
model and potentially colluding data holders. Building upon distributed differen-
tial privacy and a homomorphic argmax operator, our method is specifically de-
signed to maintain low communication loads and efficiency. The proposed method
is supported by carefully crafted theoretical results. We provide differential privacy
guarantees from the point of view of any entity having access to the final model,
including colluding data holders, as a function of the ratio of data holders who
kept their noise secret. This makes our method practical to real-life scenarios where
data holders do not trust any third party to process their datasets nor the other
data holders. Crucially the computational burden of the approach is maintained
reasonable, and, to the best of our knowledge, our framework is the first one to
be efficient enough to investigate deep learning applications while addressing such
a large scope of threats. To assess the practical usability of our framework, ex-
periments have been carried out on image datasets in a classification context. We
present numerical results that show that the learning procedure is both accurate
and private.
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1 Introduction

Application scenarios. We consider n hospitals, each of which owns a (personal)
labelled database composed of medical records from its patients and a model (e.g.
neural network) trained on this database to predict if a new patient is victim of a
given disease, say cancer. The hospitals’ goal is to collaborate in order to improve
the early detection of cancer. Building a model from a larger dataset than the
personal databases would lead to improved detection capabilities. Nevertheless,
these medical databases are highly-sensitive and the information they contain
about the patients cannot be disclosed [37]. In such a setting, the hospitals wish
to collaboratively train a global model while preserving confidentiality of their
records. To do so, the idea is to rely on an aggregating institution (e.g. the World
Health Organisation). This would amount to creating a three-party architecture:
hospitals, aggregating institution, global model. Note that in our example, and in
many real-world settings, all the training data providers may be recipients of the
global model, or the global model may even be totally public. Hence, the global
model may be exposed to attacks like membership inference attacks [45] that
could indicate with high accuracy the probability that one patient was present in
a database. Also, given a set of instances, the risk of a model inversion attack [49]
which tries to infer sensitive attributes on the instances from a supposedly non-
sensitive (often white-box) access to the model, is to be seriously taken into account
as it would allow to infer for example that some of the hospital databases contain
more ill patients than others. Besides, the aggregating institution might be the
target of cyberattacks aimed at stealing data from it. For all these reasons, the
three-party architecture we consider has to be resistant to threats coming from
both the aggregation server and the global model recipients.

Another motivating example, from the field of cybersecurity, is when several
actors each hold a database of cybersecurity incident signatures that have occurred
on their customer networks. The actors would rely on a third-party server to
train the global model. In this scenario, it is a great security issue if the global
model suffers from an attack (e.g. if the model features can be inferred [46, 48,
50] with limited access to the model). In this case, this would clearly leak some
information on the detection capabilities of the actors, giving a clear advantage to
cyberattackers on the networks they supervise.

Deployment scenario and threat model. To perform the aggregation in a private
way, we work in the tripartite setting summarised in Figure 1 and formally detailed
in Section 4. The student (who holds the global model, a.k.a. the student model) is
the owner of the homomorphic encryption scheme under which encrypted-domain
computations will be performed by the aggregation server. This means that the
student generates and knows both the encryption and decryption keys pk and
sk. Then, when being submitted an unlabelled input, the data holders (a.k.a. the
teachers) noise the predictions from their personal models, encrypt them under
pk and send these encryptions to the server. The server has the responsibility to
homomorphically perform the aggregation in order to produce an encryption of
the output (e.g. a label) which will be sent back to the student and used by the
latter for learning, after due decryption. Homomorphic encryption thus provides a
countermeasure to confidentiality threats on the teachers’ predictions from the ag-
gregation server, while the noise introduced by the actor addresses, via differential
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SPEED: Secure, PrivatE, and Efficient Deep learning 3

privacy, the issue of attacks against the student model. In this setting, we assume
that the student model is public or at least available to all the actors of the proto-
col, namely the teachers, the aggregation server and, of course, the student. Our
mechanism is differentially private in this context, and our guarantees still hold
against a malicious teacher, who has the information of the noise she generated,
or even against colluding teachers (see Section 5). On the contrary, we do not ad-
dress threats whereby the student and the aggregation server collude in the sense
that the student does not share sk with the server (in which case they would both
get access to the teachers’ predictions). We do not consider either threats where
the aggregation server behaves maliciously, e.g. to prevent the student model from
effectively learning from the teachers, leading to more or less stealthy forms of
denial-of-service, or to perform a chosen ciphertext attack via selected queries to
the student model. This is the typical scenario in which homomorphic encryption
intervenes and our setting thus covers the threat model whereby the aggregation
server is assumed to operate properly but may perform computations on observed
data to retrieve information. This threat model is commonly known as the honest-
but-curious model [7, 24,26].

n teacher
models

Server Student

PRIVATE PUBLIC

Labeled
public
dataset

Unlabeled
public
dataset

ENCRYPTED

Labels

Queries

Training

Noised
predictions

Encryption

Decryption

Fig. 1 SPEED - Teacher models send to the aggregation server their encrypted noisy answers
to the student’s queries. The server homomorphically performs the aggregation in the encrypted
domain and sends the result to the student model which decrypts it and uses it for training

Our contribution. In this paper, we present a complete collaborative learning pro-
tocol which is secure along the whole workflow regarding a large scope of threats.
We ensure protection of the data against any malicious actor of the protocol during
the learning phase and prevent indirect information leakage from the final model
using both homomorphic encryption and differential privacy. While our framework
is agnostic to the kind of models used by both the teachers and the student, to
the best of our knowledge this is the first work with this level of protection to be
efficient enough to apply to deep learning, therefore allowing very good accuracy
on difficult tasks such as image classification, as shown by the experiments we ran.
Our framework is also bandwidth-efficient and does not require more interactions
than required by the baseline protocol.

Outline of the paper. Section 2 relates our work to the literature. In Section 3, we
give some technical background on differential privacy and homomorphic encryp-
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4 Arnaud Grivet Sébert et al.

tion. We describe our SPEED framework in Section 4 and analyse its differential
privacy guarantees in Section 5. Section 6 presents our experimental results -
SPEED achieves state-or-the-art accuracy and privacy with a mild computational
overhead w.r.t previous works. Section 7 concludes the paper and states some open
questions for further works.

2 Related work

Differential privacy (DP). Recent works considered to use differential privacy in
collaborative settings close to the one we consider [5, 6, 12, 20, 35, 36]. Among
them, the most efficient technique in terms of accuracy and privacy guarantees
is Private Aggregation of Teacher Ensembles (PATE) first presented in [35] and
refined in [36]. PATE uses semi-supervised learning to transfer to the student
model the knowledge of the ensemble of teachers by using a differentially private
aggregation method. This approach considers a setting very close to ours with the
notable difference that the aggregation server is trusted. Hence, applying PATE
in our scenario makes the teacher models vulnerable. To tackle this issue, our
work builds upon PATE idea with two key differences: we let the responsibility of
generating the noise to the teachers and we add a layer of homomorphic encryption
in order for the overall learning to be kept private. Another difference can also be
noted. To derive privacy guarantees, PATE assumes that two databases d and
d′ are adjacent if only one sample of the personal database di of one teacher i
changes, with the hypothesis that the personal databases di are disjoint. We do
not need this hypothesis and we only consider the teacher models, not the personal
databases they use to train them. This leads us to a more powerful definition of
adjacency: two databases d and d′ are adjacent if they differ by one teacher.

Homomorphic Encryption (HE). HE allows to perform computations over en-
crypted data. In particular, this can be used so that the model can perform both
training and prediction without handling cleartext data. In terms of learning, the
naive approach would be to have the training sets homomorphically encrypted,
sent to a server for training to be done in the encrypted domain and the re-
sulting (encrypted) model sent back to the participants for decryption. However,
putting aside many subtleties, even by deploying all the arsenal available in the
HE practitioner toolbox (batching, transciphering, etc.) this would be impractical
as “classical” learning is both computation and know-how intensive and HE oper-
ations are intrinsically costly. As a consequence, there are only very few works that
capitalise on HE for private training [24, 25, 32] and inference [21, 27] of machine
learning tasks. Moreover, since some attacks can be performed in a black-box set-
ting, the system is still vulnerable to attacks from the end user who has access
to the decryption key. In our framework, we do not use HE directly to build the
model, we use it as a mean for the aggregation to be kept private. That way, we
are protected against potential threats from the aggregation server, which does
not have the decryption key, and we keep a manageable computational overhead.

Federated learning. Federated learning approaches gather several users who own
data and make them collaborate in an iterative workflow in order to train a global
model. The most famous federated learning algorithm is federated averaging [33]
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SPEED: Secure, PrivatE, and Efficient Deep learning 5

which is a parallelised stochastic gradient descent. In a context of sensitive user
data, several works proposed privacy-preserving federated learning or closely re-
lated distributed learning that make use of differential privacy [20, 44], crypto-
graphic primitives [7,8,39] or both [12,40,41]. These methods require online com-
munication between the parties whereas our solution takes advantage of homo-
morphic encryption and the existence of personal trained models to avoid online
communication and drastically limit the interactions, that are both bandwidth-
consuming and vulnerable to attacks.

Private aggregation. Several approaches have been considered to limit the need
for a trusted server when applying differential privacy, for example by considering
local differential privacy [15, 28, 29]. In practice it often results in applying too
much noise, and maintaining utility can be difficult [29, 47] especially for deep
learning applications. In order to recover more accuracy while keeping privacy,
some works combined decentralised noise distribution (a.k.a. distributed differen-
tial privacy [43]) and encryption schemes [2,22,38,43] in the context of aggregation
of distributed time-series. Our work contributes to this line of research. However,
our framework is the first one to be efficient enough to investigate deep learning
applications while combining distributed DP and HE. Another advantage of our
solution concerns fault tolerance regarding the added noise. Some works addressed
the problem of fault tolerance by making the server generate the noise that some
users did not generate [4] while other works assume that the users themselves
adapt the noise they generate to the possible failures [11]. In our setting, because
of the encryption and the absence of communication between the teachers, we
cannot suppose that any honest entity knows if some failures occurred. Moreover,
the addition of noise to compensate a failure does not solve the problem of collud-
ing teachers who may still send noise but do not keep it secret. In our protocol,
the task of an honest actor (teacher or server) does not depend on the number of
failures and we provide privacy guarantees as a function of the number of failures
(see Section 5) - it then suffices to assume an upper bound on this number to
ensure a privacy guarantee.

Secure Multi-Party Computation (SMPC). Secure Multi-Party Computation is a
general approach that enables several parties to collaboratively perform a given
computation without revealing to the other parties any more information than the
result of this computation. In particular, secure aggregation regroups approaches
which use SMPC techniques as one-time pads masking [7,8] or secret-sharing [14]
to perform aggregation over sensitive data. Although these approaches are very
close in intent to FHE-based ones, as the present one, they achieve different trade-
offs. In a nutshell, when FHE is computation-intensive and non-interactive, SMPC
puts more stress on protocol interactions. SMPC requires a lot of communication
(garbled circuit generation and evaluation, oblivious input key retrieval, secret key
sharing), both time-consuming and vulnerable to attacks, and needs in general that
all teachers play their role in the protocol for it to terminate - or fixing the fault
tolerance issue implies additional rounds of communication [7,8]. On the contrary,
the FHE approach is more versatile, requires no interaction among the teachers
and is robust to temporary teacher unavailability. Still, at the time of writing, it
is the authors’ opinion that both approaches are worth investigating in their own
right (and this paper obviously belongs to the FHE thread of research).
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6 Arnaud Grivet Sébert et al.

3 Preliminaries

3.1 Differential privacy

Differential privacy [16] is a gold standard concept in privacy preserving data
analysis. It provides a guarantee that under a reasonable privacy budget (ε, δ), two
adjacent databases produce statistically indistinguishable results. In this section,
two databases d and d′ are said adjacent if they differ by at most one example.

Definition 1 A randomised mechanism A with output range R satisfies (ε, δ)-
differential privacy if for any two adjacent databases d, d′ and for any subset of
outputs S ⊂ R one has

P [A(d) ∈ S] ≤ eεP
[
A(d′) ∈ S

]
+ δ.

Let us also present a famous and widely used differentially private mechanism,
known as the report noisy max mechanism.

Definition 2 Let K ∈ N∗, and let X be a set that can be partitioned into K
subsets X1, . . . , XK . The mechanism that, given a database d of elements of X ,
reports argmaxk∈[K] [nk + Yk] , where [K] := {1, . . . ,K}, nk := |d∩Xk| and Yk is

a Laplace noise with mean 0 and scale 1
γ , γ ∈ R∗+, is called report noisy max.

Theorem 1 ( [17]) Let A be the report noisy max as above. Then A is (2γ, 0)-
differentially private.

We now define the notion of infinite divisibility that we will use to implement
distributed differential privacy.

Definition 3 A random variable Y is said to be infinitely divisible if, for any m ∈
N∗, we can find a family (Xm,i)i∈[m] of independent and identically distributed
(i.i.d.) random variables such that Y has the same distribution as

∑m
i=1Xm,i.

The following proposition from [30] claims that the Laplace distribution is in-
finitely divisible 1, enabling to distribute its generation among an arbitrary number
of agents.

Proposition 1 ( [30]) Let m ∈ N and γ ∈ R∗+. Let G
(i)
p , for (i, p) ∈ [m]× [2], be

i.i.d. random variables following the Gamma distribution of shape 1
m and scale 1

γ .

Then
∑m
i=1

(
G

(i)
1 −G

(i)
2

)
follows the Laplace distribution of mean 0 and scale 1

γ .

The Laplace distribution is said to be infinitely divisible.

Definition 4 Let A be a randomised mechanism with output range R and d, d′

a pair of adjacent databases. Let aux denote an auxiliary input. For any o ∈ R,
the privacy loss at o is defined as

c(o;A, aux, d, d′) := log

(
P[A(aux, d) = o]

P[A(aux, d′) = o]

)
.

1 Another well-known example of infinitely divisible probability distribution is the Gaussian
distribution which can be seen as the sum of Gaussian distributions of well chosen scale pa-
rameter. In a possible further work, we could indeed replace the (distributed) Laplace noise
by a (distributed) Gaussian noise.
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SPEED: Secure, PrivatE, and Efficient Deep learning 7

We define the privacy loss random variable C(A, aux, d, d′) as

C(A, aux, d, d′) := c(A(d);A, aux, d, d′)

i.e. the random variable defined by evaluating the privacy loss at an outcome
sampled from A(d).

In order to determine the privacy loss of our protocol, we use a traditional
two-fold approach. First of all, we determine the privacy loss per query and, in a
second step, we compose the privacy losses of each query to get the overall loss.
The classical composition theorem (see e.g. [17]) states that the guarantees ε of
sequential queries add up. Nevertheless, training a deep neural network, even with
a collaborative framework as presented in this paper, requires a large amount of
calls to the databases, precluding the use of this classical composition. Therefore,
to obtain reasonable DP guarantees, we need to keep track of the privacy loss with
a more refined tool, namely the moments accountant [1] that we introduce here,
deferring the details of the method in Section A.1 of the appendix.

Definition 5 With the same notations as above, the moments accountant is de-
fined for any l ∈ R∗+ as

αA(l) := max
aux,d,d′

αA(l; aux, d, d′)

where the maximum is taken over any auxiliary input aux and any pair of adja-
cent databases (d, d′) and αA(l; aux, d, d′) := log

(
E
[
exp(lC(A, aux, d, d′))

])
is the

moment generating function of the privacy loss random variable.

3.2 Homomorphic encryption

Let us consider Λ and Ω which respectively are the set of cleartexts (a.k.a. the clear
domain) and the set of ciphertexts (a.k.a. the encrypted domain). A homomorphic
encryption system first consists in two algorithms Encpk : Λ −→ Ω and Decsk :
Ω −→ Λ where pk and sk are data structures which represent the public encryption
key and the private decryption key of the cryptosystem.

Homomorphic encryption systems are by necessity probabilistic, meaning that
some randomness has to be involved in the Enc function and that the ciphertexts
set Ω is significantly much bigger than the cleartexts set Λ. Any (decent) homo-
morphic encryption scheme possesses the semantic security property meaning that,
given Enc(m) and polynomially many pairs (mi,Enc(mi)) it is hard2 to gain any
information on m with a significant advantage over guessing. Most importantly, a
homomorphic encryption scheme offers two other operators ⊕ and ⊗ where

– Enc(m1)⊕ Enc(m2) = Enc(m1 +m2) ∈ Ω
– Enc(m1)⊗ Enc(m2) = Enc(m1m2) ∈ Ω

2 “Hard” means that it requires solving a reference (conjectured) computationally hard
problem on which the security of the cryptosystem hence depends. From a practical viewpoint,
given a security target λ, the concrete parameters of a homomorphic scheme are chosen such
that the best known (exponential-time) algorithms for solving the underlying reference problem
require an order of magnitude of 2λ nontrivial operations.
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8 Arnaud Grivet Sébert et al.

When these two operators are supported without restriction by a homomor-
phic scheme, it is said to be a Fully Homomorphic Encryption (FHE) scheme. A
FHE with Λ = Z2 is Turing-complete and, as such, is in principle sufficient to per-
form any computation in the encrypted domain with a computational overhead
depending on the security target3. In practice, though, the ⊕ and ⊗ are much
more computationally costly than their clear domain counterparts which has led
to the development of several approaches to HE schemes design each with their
pros and cons.

Somewhat HE (SHE). Somewhat homomorphic encryption schemes, such as BGV
[10] or BFV [18], provide both operators but with several constraints. Indeed, in
these cryptosystems the ⊗ operator is much more costly than the ⊕ operator
and the cost of the former strongly depends on the multiplicative depth of the
calculation, that is the maximum number of multiplications that have to be chained
(although this depth can be optimised [3]). Interestingly, most SHE schemes offer
a batching capability by which multiple cleartexts can be packed in one ciphertext
resulting in (quite massively) parallel homomorphic operations i.e.,

Enc(m1, ...,mκ)⊕ Enc(m′1, ...,m
′
κ) = Enc(m1 +m′1, ...,mκ +m′κ) (1)

(and similarly so for ⊗). Typically, several hundreds such slots are available which
often allows to significantly speed up encrypted-domain calculations.

Fully HE (FHE). Fully homomorphic encryption schemes offer both the ⊕ and ⊗
operators without restrictions on multiplicative depth. At the time of writing, only
the FHE-over-the-torus approach, instantiated in the TFHE cryptosystem [13], of-
fers practical performances. In this cryptosystem, ⊕ and ⊗ have the same constant
cost. On the downside, TFHE offers no batching capabilities. To get the best of
all worlds, the TFHE scheme is often hybridised with SHE by means of operators
allowing to homomorphically switch among several ciphertext formats [9, 32] to
perform each part of calculation with the most appropriate scheme (see e.g. [51]).

4 SPEED: Secure, Private, and Efficient Deep Learning

4.1 A distributed learning architecture

Let us consider a set of n owners (a.k.a. teachers) each holding a personal sensitive
model fi. We assume that we also have an unlabelled public database D. The
goal is to label D using the knowledge of the private (teacher) models to train a
collaborative model (a.k.a. student model) mapping an input space X to an output
space [K] = {1, . . . ,K}. To do so while keeping the process private, we follow the
setting illustrated by Figure 1 relying on a (distrusted) aggregation server:

1. For every sample x of the public database D, the student sends x to the
aggregator requesting it to output label for x. The aggregator forwards this
request to the n teachers.

3 Polynomial in λ.
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2. Each teacher i labels x using its own private model fi. Then each teacher adds
noise to the label (see Section 4.2) and encrypts the noisy label before sending
it to the aggregation server.

3. The aggregator performs a homomorphic aggregation of the noisy labels and
returns the result to the student model, namely the most common answered
label (see Section 4.3).

4. The student, who owns the decryption key, decrypts the aggregated label and
is then able to use the labelled sample to train its model.

Our framework addresses two kinds of threats using two complementary tools.
On one hand, differential privacy protects the sensitive data from attacks against
the student model. Indeed, some model inversion attacks [49] might disclose the
training data of the student model, and especially the labels of database D. But
differential privacy ensures that the noise applied to the teachers’ answers prevents
the aggregated labels from leaking information about the sensitive models fi

4. On
the other hand, the homomorphic encryption of the teachers’ answers prevents the
aggregator to learn anything about the sensitive data while enabling it to blindly
compute the aggregation.

4.2 Noise generation and threat models

When requested to label a sample x, each owner i uses its model fi to infer the
label of x. In order for the aggregator to compute the most common label in the
secret domain, the owner must send a one-hot encoding of the label. That is,
rather than sending fi(x), the i-th teacher sends a K-dimensional vector, say z(i),
whose fi(x)-th coordinate is an encryption of 1 while all the other coordinates are
encryptions of 0. To guarantee differential privacy (see Section 5 for the formal

analysis), the owner adds to this one-hot encoding a noise drawn from G
(i)
1 −G

(i)
2

where the G
(i)
1 and G

(i)
2 are 2n i.i.d. K-dimensional random variables following

the Gamma distribution of shape 1
n and scale 1

γ , where γ ∈ R∗+. Then, i sends

the (encrypted) noisy one-hot encoded vector whose k-th coordinate corresponds

to z
(i)
k +G

(i)
k,1 −G

(i)
k,2.

Assuming that the aggregator has access to the student model, distributing the
responsibility of adding the noise among all the teachers instead of delegating this
task to the aggregator (see paragraph on centralised noise below) is necessary to
protect the data against an honest-but-curious aggregator. Indeed, such an aggre-
gator could use the information of the noise it generated to break the differential
privacy guarantees and, potentially, recover the sensitive data by model inversion
on the student model. Note that such an attack does not break the honest-but-
curious assumption since the aggregator still performs its task correctly.

Beyond the honest-but-curious model In a model that would go beyond the honest-
but-curious aggregator hypothesis, the capability for the aggregator to add it own
noise is even more harmful for the privacy (and of course, the accuracy) than not
using noise at all. Indeed it gives the aggregator much more freedom to attack. As
an example, think about a malicious aggregator that wants to know a characteristic

4 Thanks to the DP guarantees, the labels of D could actually be published as well.
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10 Arnaud Grivet Sébert et al.

χ on a particular teacher, called its victim. Given a query, for all k ∈ [K], we write
nk := |{i : fi(x) = k}| and call it the number of votes for class k. Let us suppose
that, for a given query, changing the value of the victim’s characteristic χ from
χ0 to χ1 also changes the victim’s vote from a class k0 to a class k1. Hence, by
denoting nk0

= ν0 and nk1
= ν1 if χ = χ0 we get nk0

= ν0 − 1 and nk1
= ν1 + 1

if χ = χ1. Then, if the aggregator knows all the nk for k ∈ [K] \ {k0, k1} and
knows ν0 and ν1 (which are the classical hypotheses in differential privacy), it
can add just as much noise as needed for the class k0 to be the argmax if and
only if χ = χ0

5. The result from the homomorphic argmax would then leak the
information about the value of the victim’s characteristic χ.

Centralised noise generation In a context in which the student model is kept pri-
vate and, especially, not available to the aggregator, we can consider a centralised
way of generating the noise. If we do not trust the teachers to generate the noise,
we can charge the aggregator to do it, since it will not be able to use the knowledge
of the noise to attack the sensitive data via the student model. The aggregator
only needs to generate a Laplace noise (in the clear domain), and homomorphically
add it to the unnoisy encryption of nk it receives from the teachers. The infinite
divisibility of the Laplace distribution (Proposition 1) shows that the resulting
noise is the same as in the case presented above in which each teacher generates
an individual noise drawn from the difference of two Gamma distributions. The
privacy cost of one request is simply the privacy cost of the report noisy max,
namely 2γ (Theorem 1).

In a nutshell, we can consider the following different threat models:

– honest (H) : the aggregation server performs its tasks properly and do not try
to retrieve information from the data it has access to

– honest-but-curious (HBC) : the aggregation server performs its tasks properly
but it may compute the available data to get sensitive information

– beyond honest-but-curious (BHBC) : the aggregation server performs the ag-
gregation correctly but cannot be trusted to properly generate the noise nec-
essary to the DP guarantees

Table 1 summarises against which kind of server our protocol is protected,
depending on the access the server has to the student model and on the way the
noise is generated. As already emphasised, we focus on the case where the student
model is public and the noise is distributively generated by the teachers because
it is the most general model among the realistic threat models and thus gives the
better tradeoff between flexibility and security.

Table 1 Robustness of our framework depending on the availability of the student model and
the noise generation

Private model Public model
Centralised noise HBC H
Distributed noise BHBC BHBC

5 For example, add ν0 − 1
2
− nk to all the classes except k0 and k1, ν0 − 1− ν1 to the class

k1 and nothing to the class k0.
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4.3 Technical details on the homomorphic aggregation

Summing the noisy counts The aggregation server receives the n encrypted noisy
labels and sums them up in the secret domain. Due to the infinite divisibility of
the Laplace distribution, the server obtains a K-dimensional vector whose k-th
(k ∈ [K]) coordinate is an encryption of:

n∑
i=1

(
z
(i)
k +G

(i)
k,1 −G

(i)
k,2

)
= nk + Yk

where nk := |{i : fi(x) = k}| and Yk is a Laplace noise with mean 0 and scale 1
γ .

So far, we have only needed homomorphic addition which is a good start. Then
an argmax operator must be performed after the summation. However, efficiently
handling the highly nonlinear argmax function by means of FHE is much more
challenging.

Computing the argmax. Most prior work on secure argmax computations use some
kind of interaction between a party that holds a sensitive vector of values and a
party that wants to obtain the argmax over those values. The non-linearity of the
argmax operator presents unique challenges that have mostly been handled by
allowing the two interested parties to exchange information. This means increased
communication costs and, in some cases, information leakage. This is with the ex-
ception of [51]. They provide a fully non-interactive homomorphic argmax compu-
tation scheme based on the TFHE encryption. We implemented and parametrised
their scheme to fit the specific training problems presented in Section 6. We present
here the main idea behind this novel FHE argmax scheme. For more details, see
the original paper. The TFHE encryption scheme provides a bootstrap operation
that can be applied on any scalar ciphertext. Its purpose is threefold: switch the
encryption key; reduce the noise; apply a non-linear operation on the underlying
plaintext value. This underlying operation can be seen as a function

gt,a,b(x) =

{
a if x > t

b if x < t.

One notable application is that of a ”sign” bootstrap: we can extract the sign
of the input with the underlying function g0,1,0(x). The argmax computation in
the ciphertext space is made as follows. For every k, k′, k 6= k′, we compare
the values nk + Yk and nk′ + Yk′ with a subtraction (nk + Yk − nk′ − Yk′) and
application of a sign bootstrap operation. This yields θk,k′ , a variable with value 1
if nk +Yk > nk′ +Yk′ and 0 otherwise. Therefore the complexity will be quadratic
in the number of classes. For a given k we can then obtain a boolean truth value
(0 or 1) for whether nk + Yk is the maximum value. To this end, we compute

Θk =
∑
i6=k

θk,i.

nk is the max if and only if, for all i one has θk,i = 1 i.e. Θk = K − 1. We can
therefore apply another bootstrap operation with gK− 3

2
,1,0. If Θk = K − 1, the

boostrap will return an encryption of 1, and return an encryption of 0 otherwise.
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12 Arnaud Grivet Sébert et al.

Once decrypted, the position of the only non-zero value is the argmax. Because
the underlying function gt,a,b is applied homomorphically, its output is inherently
probabilistic. In the FHE scheme used, an error is inserted in all the ciphertexts
at encryption time to ensure an appropriate level of security. This means that
if two values are too close, then the sign bootstrap operation might return the
wrong result over their difference. The exact impact of this approximation on the
accuracy is evaluated in Section 6.

Remark. Another solution would be to send the noisy histogram nk + Yk of the
counts for each class k to the student and let her process the argmax in the clear
domain. This could indeed be performed with a plain-old additively-homomorphic
cryptosystem such as Paillier or (additive-flavored) ElGamal, avoiding the ma-
chinery of the homomorphic argmax. Nevertheless, this approach was put aside
because sending the whole histogram instead of the argmax would provide much
worse DP guarantees.

5 Differential privacy analysis

In this section, we will give privacy guarantees considering that two databases d
and d′ are adjacent if they differ by one teacher i.e. there exists i0 ∈ [n] such
that fi0 6= f ′i0 and, for all i ∈ [n] \ {i0}, fi = f ′i . This definition of adjacency is
quite conservative and is strictly larger than the definition of adjacency from [35]
(indeed, in the assumption whereby the personal teacher databases di are disjoint,
changing one sample from a personal database changes at most one teacher).

Robustness against colluding teachers. As we have decided not to trust the aggre-
gation server to generate the noise necessary to the privacy guarantees, we may
also assume that a subset of teachers might be malicious and collude by com-
municating their generated noise, which gives the same DP guarantees from the
point of view of a colluding teacher as if they would have not generated any noise
and, to this extent, our protocol, which addresses this issue, is fault tolerant. The
following theorem quantifies the privacy cost of such failures.

In the following, we call A the aggregation mechanism that outputs the argmax
of the noisy counts. A(d,Q) is the output of A for the database d and the query
Q. Let γ ∈ R∗+ be the inverse scale parameter of the distributed noise. Considering
the DP guarantees from the point of view of an entity E , let τ ∈ (0, 1) be the ratio
of the teachers whose noise is ignored by E .

Theorem 2 Let us define I : v ∈ R∗+ 7→
∫+∞
0

(t+ v)τ−1 tτ−1e−2tdt and g : t ∈

R 7→
∫ +∞
γt

e−vI(v)dv∫ +∞
γ(t+2)

e−vI(v)dv
.

Then, from E’s point of view, A is (ε, 0)-differentially private, with

ε = log

(
1 + 2

∫ γ
0
e−vI(v)dv∫+∞

2γ
e−vI(v)dv

)
.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



SPEED: Secure, PrivatE, and Efficient Deep learning 13

Moreover, if τ > 1
2 , g is differentiable in 0 and A is (ε′, 0)-differentially private,

with

ε′ = min
[
ε, log

(
g(0)− g′(0)

)]
where g′(0) = γ

Γ (τ)2

2
e−2γI(2γ)−I(0)

∫ +∞
2γ

e−vI(v)dv

(
∫ +∞
2γ

e−vI(v)dv)
2 .

Sketch of proof. Adapting the proof of the privacy cost of the report noisy max
from [17], we first show that, if we can find a function M of γ and τ such that, for
any t ∈ R, g(t) ≤ M , then A is (log(M), 0)-differentially private. This motivates
us to find an upper bound of g.

To do so, we prove that g has a maximum on R and that this maximum is
reached on the interval [−1; 0]. On one hand, we show that, for all t ∈ [−1; 0],

g(t) ≤ 1 + 2
∫ γ
0
e−vI(v)dv∫ +∞

2γ
e−vI(v)dv

. On the other hand, we prove that, if besides τ > 1
2 ,

then g is concave on [argmax(g); 0] and thus, for all t ∈ [−1; 0], g(t) ≤ g(0)− g′(0)
(note that g is not differentiable in 0 if τ ≤ 1

2 ). ut
Denoting S the subset of teachers who are honest (i.e. do not collude), this

theorem allows us to control the privacy cost by the ratio τ of the teachers who
kept their noise secret, from the point of view of both:

– a colluding teacher, taking τ = |S|
n

– an honest teacher, taking τ = n−1
n

– any entity who has access to the student model but is not a teacher, taking
τ = 1

Note that we can also use Theorem 2 in the hypothesis whereby the colluding
teachers publish their noise (to the whole world), adapting τ in consequence 6. For
τ = 1, the privacy guarantee is given by lim

τ→1
ε′ which, as shown by Proposition 2,

is the classical bound of the report noisy max with a centralised Laplace noise.

Proposition 2 For all γ ∈ R∗+, lim
τ→1

[
log(g(0)− g′(0))

]
= 2γ.

Furthermore, Proposition 3 shows that, naturally, the privacy cost tends to be
null when the noise becomes infinitely large (γ approaches 0).

Proposition 3 For all τ ∈ (0, 1), lim
γ→0

[
log

(
1 + 2

∫ γ
2

0 e−vI(v)dv∫ +∞
γ

e−vI(v)dv

)]
= 0.

Let us also give an upper bound of the probability that the noisy argmax is
different from the true argmax.

Proposition 4 Let k∗ be the class corresponding to the true argmax.
If τ ∈ (1

2 ; 1),

P[A(d;Q) 6= k∗] ≤
∑
k 6=k∗

e−γ∆k
[

1

2
+

(γ∆k)2τ−1

τ24τ−2Γ (τ)2

]

where ∆k := nk∗ − nk for any k ∈ [K] and Γ : β ∈ R∗+ 7→
∫+∞
0

tβ−1e−tdt is the
gamma function.

6 e.g. the privacy guarantee for an honest teacher would be computed with τ =
|S|−1
n

.
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14 Arnaud Grivet Sébert et al.

If τ ∈ (0; 1
2 ],

P[A(d;Q) 6= k∗] ≤
∑
k 6=k∗

e−γ∆k

[
1

2
+

(γ∆k)
τ
2

τ2
5
2
τ−1Γ (τ)2

×
(

3

2
τ

) 3
2
τ (

2

τ
− 3

)1− 3
2
τ
]
.

Sketch of proof. The event (A(d;Q) 6= k∗) is the union of the events (nk + Yk ≥
nk∗ + Yk∗), for k ∈ [K] \ {k∗}, and thus P[A(d;Q) 6= k∗] ≤

∑
k 6=k∗ P(nk + Yk ≥

nk∗ + Yk∗). We remark that, for any k ∈ [K] \ {k∗},

P(nk + Yk ≥ nk∗ + Yk∗) = P(Yk∗ ≤ Yk −∆k)

=

∫ 0

−∞
f(t)F (t−∆k)dt+

∫ ∆k

0

f(t)F (t−∆k)dt+

∫ +∞

∆k

f(t)F (t−∆k)dt

where f : u ∈ R∗ 7→ γ
Γ (τ)2 e

−γ|u|I(γ|u|) and F : t ∈ R 7→
∫ t
−∞ f(u)du.

We show that
∫+∞
∆k

f(t)F (t − ∆k)dt ≤ 3
8e
−γ∆k and

∫ 0

−∞ f(t)F (t − ∆k)dt ≤
1
8e
−γ∆k . Moreover, using Hölder’s inequality, we show that, for all q ∈ ( 1

1−τ ; +∞),

calling p := 1
1− 1

q

,
∫∆k
0

f(t)F (t−∆k)dt ≤ e−γ∆k

τ2
4τ−2+ 1

q Γ (τ)2
× (γ∆k)

2τ−1+ 1
q

p
1
p [q(1−τ)−1]

1
q

. For τ > 1
2 ,

we take the particular (and classic) case of the limit of the previous bound when
q tends to +∞. For τ ≤ 1

2 , we take q = 1
1− 3

2
τ

. ut
Theorem 2 and Proposition 4 serve as building blocks to which we apply the

following theorem from [35].

Theorem 3 ( [35]) Let ε, l ∈ R∗+. Let A be a (ε, 0)-differentially private mech-
anism and q ≥ P[A(d) 6= k∗] for some outcome k∗. If q < eε−1

e2ε−1 , then for any

additional information aux and any pair (d, d′) of adjacent databases, A satisfies

αA(l; aux, d, d′) ≤ min

[
εl,
ε2l(l + 1)

2
, log

(
(1− q)

(
1− q

1− eεq

)l
+ qeεl

)]
.

As in [35], Theorem 3 coupled with some properties of the moments accountant
(composability and tail bound) allows one to devise the overall privacy budget
(ε, δ) for the learning procedure (see Section 6 for numerical results). We refer
the interested reader to Section A of the appendix for more details and for the
extended proofs of our claims.

Influence of the cryptographic layer. One must be aware that the cryptographic
layer perturbates the noisy votes because the computation of the homomorphic
argmax has a small probability of error. Although this topic deserves further in-
vestigations, we make the assumption that these perturbations are negligible and
that they do not change the privacy guarantees as they basically constitute an
additional noise on the votes. We further discuss this point in Appendix A.3.

6 Experimental results

The experiments presented below enable us to validate the accuracy of our frame-
work on well-known image classification tasks and illustrate the practicality of
our method in terms of performance, since the computational overhead due to
the homomorphic layer remains reasonable. The source codes necessary to run the
following experiments are available on https://github.com/Arnaud-GS/SPEED.
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HE time overhead. We implemented the homomorphic argmax computation pre-
sented in Section 4.3. Without parallelizing, a single argmax query requires just
under 4 seconds to compute on an Intel Core i7-6600U CPU. Importantly, this
does not depend on the input data. The costliest operation is the computation of
θ. Any other part of the scheme is negligible in comparison. Therefore, once the
parameters are set, the time performance depends solely on the number of classes
(the number of bootstrap comparisons is quadratic in the number of classes). As
such, 100 queries require 6.5 minutes and 1000 queries 65 minutes. Of course, the
queries can be performed in parallel to decrease the latency allowing for much
more challenging applications.

Homomorphic argmax accuracy. As we mention in Section 4.3, the homomorphic
computation of the argmax is inherently probabilistic. This is due both to the
noise added to any ciphertext at encryption time, and to limitations of the boot-
strapping operation in terms of accuracy. On MNIST dataset [31], we evaluate the
method with τ = 1/0.9/0.7 and compare the cleartext argmax to our homomor-
phic argmax. Our implementation of the HE argmax has an average accuracy of
99.4%, meaning that it retrieves the cleartext argmax 99.4% of the time.
To obtain a more general and conservative measure of the inherent accuracy of
the HE argmax (which can be applied on any dataset), we make the teachers give
uniformly random answers to the queries. In this setting, most counts nk are likely
to be close to one another, which makes even a classical argmax useless. This kind
of scenario can be seen as worst-case, since the teacher voting is adversarial to
argmax computation. Even in this scenario, and with the same parameters as for
MNIST, our implementation of the HE argmax algorithm still produces an aver-
age accuracy of 90%. Hence, an accuracy of 90% can be considered a lower bound
for any adaptation of this argmax technique to other datasets. Yet in practice a
tweaking of the parameters can yield a better accuracy even for this worst-case
scenario, at the cost of time efficiency.

Learning setup. To evaluate the performances of our framework, we test our method
on MNIST [31] and SVHN [34] datasets. To represent the data holders, we divide
the training set in 250 equally distributed and disjoint subsets, keeping the test
set for learning and evaluation of the student model. Then we apply the following
procedures. We refer the interested reader to Section C of the appendix for more
details on the hyper-parameters and learning procedure.

– Teacher models. For MNIST, given a dataset, a data holder builds a local model
by stacking two convolutional layers with max pooling and a fully connected
layer with ReLu activations. Two additional layers have been added for SVHN.

– Student model. Following the idea from [35], we train the student in a semi-
supervised fashion. Unlabelled inputs are used to estimate a good prior distri-
bution using a GAN-based technique first introduced in [42]. Then we use a
limited amount of queries (100 for MNIST, 500 for SVHN) to obtain labelled
examples which we use to fine tune the model.

For MNIST experiments, as the student model can substantially vary based
on the selected subset of labelled examples, the out-of-sample accuracy has been
evaluated 15 times, with 100 labelled examples sampled from a set of 9000 ones.
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For each experiment, the remaining 1000 examples have been used to evaluate the
student model accuracy. For SVHN, the computations being much more heavy, the
out-of-sample accuracy has been evaluated 3 times, with 500 examples sampled
from a set of 10000 ones. We used 16032 examples to test the student model
accuracy.

Performances on MNIST. Table 2 displays our experimental results for SPEED
with MNIST and compares them to a non-private baseline (without DP or HE) and
to the framework that we call Trusted which assumes that the server is trusted and
thus only involves DP and not HE. Trusted can be considered as PATE framework
from [35] with some subtle differences: the noise is generated in a distributed way
in Trusted and the notion of adjacency is larger. Even if the inverse noise scale γ
we use is greater than the one in [35] (0.1 instead of 0.05), which should lead to
a worse DP guarantee, an argmax-specific analysis of the privacy cost per query
allowed us to provide a better DP guarantee (ε = 1.41 instead of ε = 2.04 with
δ = 10−5 and 100 queries). To be more conservative in terms of accuracy, the
experiments were run considering that the colluding teachers did not generate any
noise, which does not change anything in terms of DP. That is why, in spite of
the variability of the accuracy, we observe a tradeoff between accuracy and DP.
Indeed, even if the reported average accuracy does not vary much across conditions,
consistent rankings of the methods have been observed, confirming the expected
average rank of the method based on the amount of added noise. As expected, the
best DP guarantee (ε = 1.41) is obtained when all the teachers generated noise
(τ = 1), but this is the case where the accuracy is the lowest. On the contrary, when
some teachers failed to generate noise (τ = 0.9 and τ = 0.7), the counts are more
precise, leading to a slightly better accuracy but worse DP guarantees. It should
also be noted that the variance is high in each condition. It masks the fact that
the distribution is highly skewed, with a majority of results in the 97.5%− 98.5%
range, and a few samplings yielding an out-of-sample accuracy around 90%.

Table 2 Results for MNIST dataset with 250 teachers and 100 student queries. We used an
inverse noise scale γ = 0.1. The DP guarantees, computed by composability with the moments
accountant method over the 100 queries, are given for δ = 10−5.

Framework ε Acc. (± std) [%] HE overhead

Non-private - 96.22 (±2.27) -
Trusted 1.41 95.95 (±2.97) -

τ = 1 1.41 95.91 (±2.57)
6.5 minτ = 0.9 1.66 96.02 (±2.92)

τ = 0.7 2.37 96.06 (±2.61)

Figure 2 shows the evolution of our DP guarantee as a function of γ, with
τ = 0.9 fixed. Note that the privacy cost decreases for γ ≥ 2 which may seem
counterintuitive but the reason is thoroughly explained in Section A.4 of the ap-
pendix. Anyway, we observed empirically that the privacy cost has a finite limit
in +∞ (approximately 2.87) and remains greater than this limit for any γ ≥ 2.
The asymptote is shown by a dashed line on Figure 2.
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Fig. 2 Differential privacy guarantees for
MNIST as a function of γ, with τ = 0.9
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Fig. 3 Differential privacy guarantees for
MNIST as a function of τ , with γ = 0.1

Figure 3 shows the evolution of the DP guarantee as a function of τ , with
γ = 0.1 fixed. As explained before, the greater τ , the better the DP guarantee.

Performances on SVHN. Table 3 presents our experimental results on SVHN
dataset 7. The variance on the accuracy is much smaller than for MNIST dataset
because the test set is constituted of 16032 samples. Similarly to the MNIST ex-
periment, the accuracy and the privacy cost increase when less noise is applied
because less teachers noised their votes (i.e. when τ is small). The DP guarantees
are not as good as for MNIST, this is due to the high amount of queries (500)
necessary to obtain a good accuracy because the learning task is more complex.

Table 3 SVHN experimental results for 500 queries, with noise inverse scale γ = 0.1, δ = 10−5

Framework ε Acc. [%] HE overhead

Non-private - 84.7 -
Trusted 4.73 83.7 -

τ = 1 4.73 83.5

32.5 min
τ = 0.9 5.59 83.8
τ = 0.7 8.16 84.6

7 Conclusion and open questions for further works

Our framework allows a group of agents to collaborate and put together their
sensitive knowledge while protecting it via two complementary technologies - dif-
ferential privacy and homomorphic encryption - against any entity contributing to
the learning or having access to the final model. Crucially, our experiments showed
that our method is practical for deep learning applications, combining high accu-
racy, mild computational overhead and privacy guarantees adapting to the number
of malicious teachers.

7 Note that our DP guarantee ε for Trusted cannot be directly compared with PATE’s one
since we do not use the same δ.
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An interesting further work could investigate the fault tolerance of the pri-
vacy guarantees with other noises (e.g. Gaussian noise) or other infinite divisions
(Laplace distribution can also be infinitely divided using individual Gaussian noises
or individual Laplace noises [23]). A more ambitious direction towards collabora-
tive deep learning with privacy would be to design new aggregation operators, more
suitable to FHE performances yet still providing good DP bounds. In particular,
a linear or quadratic aggregation operator would be amenable to almost negligi-
ble homomorphic computations overhead. This lighter homomorphic layer would
enable to extend the applicability of our framework to more complex datasets.
Such aggregation operators would also allow to associate homomorphic calcula-
tions with verifiable computing techniques (e.g. [19]) whereby the server would
provide an encrypted aggregation result along with a formal proof that aggrega-
tion was indeed done correctly. These perspectives would then allow to address
threats beyond the honest-but-curious model.
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Arnaud Grivet Sébert · Rafaël Pinot ·
Martin Zuber · Cédric Gouy-Pailler ·
Renaud Sirdey

Received: date / Accepted: date

A DP analysis of the learning procedure

In this section, we describe the procedure that computes the overall DP guarantees
of the student model learning stage. We summarise this procedure in Section A.1,
and demonstrate the theorems we use in Sections A.2 and A.4.

We call A the aggregation mechanism that outputs the argmax of the noisy
counts. A(d,Q) is the output of A for the database d and the query Q.

Let γ ∈ R∗+ be the inverse scale parameter of the distributed noise. Considering
the DP guarantees from the point of view of an entity E , let τ ∈ (0, 1) be the ratio
of the teachers whose noise is ignored by E . Typically, from the point of view of a
colluding teacher, τ is the ratio of the teachers who do not collude.

A.1 Analysis algorithm

Let us suppose that for every query Q from the student model, we have a pri-
vacy guarantee using Theorem 2 and that we can upperbound the probability
P[A(d;Q) 6= k∗] that A outputs some specific output k∗ (in practice we choose k∗

to be the unnoisy argmax). Then, Theorem 3 gives us an upperbound on the mo-
ments accountant per query1. The computation of these building blocks is detailed
in Sections A.2 and A.4, and the procedure is summarised in Algorithm 1.

Let us recall the definition of the moments accountant.

Definition 5 The moments accountant of a mechanism M is defined for any
l ∈ R∗+ as

αM(l) := max
aux,d,d′

αM(l; aux, d, d′)

Arnaud Grivet Sébert, Rafaël Pinot, Martin Zuber, Cédric Gouy-Pailler, Renaud Sirdey
Université Paris-Saclay, CEA, List, F-91120 Palaiseau, France

Rafaël Pinot
Université Paris-Dauphine, PSL Research University, CNRS, LAMSADE, Paris, France

1 Note that only the third value over which the minimum is taken in Theorem 3 is data-
dependent and, as such, requires this upperbound of P[A(d;Q) 6= k∗].
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where the maximum is taken over any auxiliary input aux and any pair of adja-
cent databases d, d′ and αM(l; aux, d, d′) := log

(
E
[
exp(lC(M, aux, d, d′))

])
is the

moment generating function of the privacy loss random variable.

Theorem 3 ([8]) Let ε, l ∈ R∗+. Let M be a (ε, 0)-differentially private mecha-
nism and q ≥ P[M(d) 6= k∗] for some outcome k∗. If q < eε−1

e2ε−1 , then for any aux

and any pair d, d′ of adjacent databases, M satisfies

αM(l; aux, d, d′) ≤ min

(
εl,
ε2l(l + 1)

2
, log

(
(1− q)

(
1− q

1− eεq

)l
+ qeεl

))
.

3
Using the moments accountant per query, we evaluate the overall moments

accountant by composability, applying the following theorem from [1].

Theorem 4 ([1]) Let p ∈ N∗. Let us consider a mechanism M defined on a set
D that consists of a sequence of adaptive mechanisms M1, . . . ,Mp where, for any
i ∈ [p], Mi :

∏i−1
j=1Rj ×D 7→ Ri. Then, for any l ∈ R∗+,

αM(l) ≤
p∑
i=1

αMi
(l).

Finally, parameter δ being chosen, the privacy guarantee is derived from the
overall moments accountant applying the tail bound property, stated in Theorem 5
from [1].

Theorem 5 ([1]) For any ε ∈ R∗+, the mechanism M is (ε, δ)-differentially pri-
vate for

δ = min
l∈N∗

exp(αM(l)− lε).

Algorithm 1: Algorithm to determine the overall privacy guarantee of
the learning procedure

Input : number of teachers n, number of classes K, ratio τ of teachers
with secret noise, set of queries Q, unnoisy teachers’ counts nk,
inverse noise scale γ, lmax

a, δ
Output: ε
for l in [lmax] do

α(l)← 0
for query Q in Q do

Compute the privacy cost of Q and an upperbound of
P[A(d;Q) 6= k∗];

Derive the moments accountant αQ(l) with Theorem 3;
α(l)← α(l) + αQ(l);

end

ε(l)← α(l)−δ
l ;

end
ε← minl∈[lmax] ε(l);

a To determine the DP guarantees presented in the paper, we took lmax = 25 because it
seems empirically that it captures the best moments accountant in every case.
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A.2 DP guarantee per query in the BHBC framework

Preliminaries on the generalised Laplace distribution. For every teacher j who did

send noise and whose noise is secret, the noise sent by j is distributed as G
(j)
1 −G

(j)
2

where G
(j)
1 and G

(j)
2 are two i.i.d. random variables with gamma density u 7→

1(
1
γ

) 1
n Γ( 1

n )
u

1
n
−1e−γu and characteristic function t 7→

(
1

1−i t
γ

) 1
n

(see [6]). Hence,

the characteristic function of G
(j)
1 −G

(j)
2 is ψ : t 7→

(
1

1+
(
t
γ

)2

) 1
n

. By summing over

all the teachers who did send a secret noise, we get a total noise whose characteristic

function is ψτn : t 7→

(
1

1+
(
t
γ

)2

)τ
. The corresponding moment generating function

is t 7→

(
1

1−
(
t
γ

)2

)τ
. According to [7], this is the moment generating function of a

generalised Laplace distribution whose density is

fγ,τ : u ∈ R∗ 7→


1(

1
γ

)2τ
Γ (τ)2

eγu
∫+∞
u

tτ−1 (t− u)τ−1 e−2γtdt if u > 0

1(
1
γ

)2τ
Γ (τ)2

eγu
∫+∞
0

tτ−1 (t− u)τ−1 e−2γtdt if u < 0

which is actually

u ∈ R∗ 7→ 1(
1
γ

)2τ
Γ (τ)2

eγ|u|
∫ +∞

|u|
tτ−1 (t− |u|)τ−1 e−2γtdt

=
γ2τ−1

Γ (τ)2
eγ|u|

∫ +∞

0

(
v

γ
+ |u|

)τ−1 (
v

γ

)τ−1

e−2(v+γ|u|)dv

(by the substitution v = γ(t− |u|))

= Lγ,τe
−γ|u|Iτ (γ|u|)

where Iτ : v ∈ R∗+ 7→
∫+∞
0

(x+ v)τ−1 xτ−1e−2xdx and Lγ,τ = γ
Γ (τ)2

.

Let us remark that, since τ − 1 ≤ 0, Iτ is decreasing on R∗+.

As a density function, fγ,τ is integrable on R (it can also be proved using
Lemma 4). We call Fγ,τ the associated cumulative distribution function:

Fγ,τ : t ∈ R 7→
∫ t

−∞
fγ,τ (u)du

Note that, lim
+∞

Fγ,τ = 1 and, since fγ,τ is pair, Fγ,τ (0) = 1
2 and

∀t ∈ R, Fγ,τ (t) + Fγ,τ (−t) = 1. (1)

If there is no ambiguity on the parameters γ and τ , we will only write f , F , I
and L.
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4 Arnaud Grivet Sébert et al.

Lemma 1 Let r be a random variable following the generalised Laplace distribu-
tion as defined above. Suppose that we can find a function M of γ and τ such that,
for any t ∈ R, P[r≥t]

P[r≥t+2] ≤M .

Then A is (log(M), 0)-differentially private.

Proof We will mimic the proof of the privacy guarantee of the report noisy max
from [5] (Claim 3.9), but with two key adaptations.

First of all, let us warn that our definition of the adjacence of two databases
is different from the one of [5]. Changing one teacher is analogous to changing
one individual in the counting queries context. This is why the hypotheses must
be adapted. Indeed, d and d′ being two adjacent databases (in our sense), since
at most one teacher will change its vote between d and d′, we have the property
|nk − n′k| ≤ 1 for any k ∈ [K] but we do not have the property of monotonicity of
the counts used in [5] 2.

The second difference is that, r being a random variable following the gen-
eralised Laplace distribution, we have to substitute the classical upperbound e2γ

(valid for the Laplace distribution) of P[r≥t]
P[r≥t+2] by M .

We consider a query Q. Let k0 ∈ [K].
For any event E, we write P[E|r−k0

] the probability of E under the condition
that the draw from the (K−1)-dimensional generalised Laplace distribution, used
for all the noisy counts except the k0-th count, is equal to r−k0

. We now suppose
this draw r−k0

fixed.
We define r∗ = min{rk0

|∀k ∈ [K] \ {k0}, nk0
+ rk0

≥ nk + rk}. Note that,
whatever is the tie-breaking policy, r−k0

being fixed, k0 is the output of A for
database d if rk0

> r∗ and k0 is not the output of A if rk0
< r∗. Since P[rk0

=
r∗] = 0, we have P[A(d,Q) = k0|r−k0

] = P[rk0
> r∗] = P[rk0

≥ r∗]. Moreover, for
all k ∈ [K] \ {k0},

n′k0
+ r∗ + 2 ≥ nk0

+ r∗ + 1 (because |nk0
− n′k0

| ≤ 1)

≥ nk + rk + 1 (by definition of r∗)

≥ n′k + rk (because |nk0
− n′k0

| ≤ 1)

We deduce that, if rk0
> r∗ + 2, then k0 is the output of A for database d′.

Therefore, P[A(d′, Q) = k0|r−k0
] ≥ P[rk0

> r∗ + 2] = P[rk0
≥ r∗ + 2].

Since P[rk0
≥ r∗] ≤ MP[rk0

≥ r∗ + 2] by assumption, we can deduce that
P[A(d,Q) = k0|r−k0

] ≤ MP[A(d′, Q) = k0|r−k0
]. This being true for any draw

r−k0
, the law of total probability gives us P[A(d,Q) = k0] ≤MP[A(d′, Q) = k0].

As d and d′ play perfectly symmetric roles (unlike in the proof of the report
noisy max guarantee from [5]), we also have P[A(d′, Q) = k0] ≤ MP[A(d,Q) =
k0]. Since this is true for any query Q, we can conclude that A is (log(M), 0)-
differentially private. ut

By definition of F , r being a random variable following the generalised Laplace
distribution, for all t ∈ R,

P[r ≥ t] = 1− F (t).

2 We could have consider a database d̃ such that d is adjacent to d̃ and d′ is adjacent to d̃
with Dwork’s definition. Then we could have applied twice the result of [5] (using M instead

of eγ as upper bound of
P[r≥t]

P[r≥t+2]
for (d, d̃) and (d̃, d′)). Nevertheless, we performed numerical

experimentations that make us believe that it would have given worse privacy guarantees than
the present result.
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SPEED: Secure, PrivatE, and Efficient Deep learning 5

Let a ∈ R∗+.

In the following, we exhibit upper bounds of g : t ∈ R 7→ 1−F (t)
1−F (t+a) (Proposi-

tions 5 and 6) to derive privacy guarantees for A (Theorem 2) taking a = 2. Let
us first state some useful lemmas.

Lemma 2 Let β ∈ R+. The application h : v ∈ R∗+ 7→ I(v)
I(v+β) is decreasing.

Proof We will prove that h is differentiable and that its derivative is non-positive.

Let φ : (v, t) ∈ (R∗+)2 7→ (t+ v)τ−1 tτ−1e−2γt. φ has a partial derivative in the

first variable and, for all (v, t) ∈ (R∗+)2, ∂φ∂v (v, t) = (τ − 1) (t+ v)τ−2 tτ−1e−2γt. φ

and ∂φ
∂v are continuous in both variables.

Let b ∈ R∗+. For all (v, t) ∈ [b,+∞)×R∗+, |∂φ∂v (v, t)| ≤ ψ(t) where ψ : t ∈ R∗+ 7→
(1− τ) (t+ b)τ−2 tτ−1e−2γt. ψ is continuous and integrable on [b,+∞). Applying
Leibniz’s theorem, we deduce that I is differentiable on [b,+∞) and that, for all

v ∈ [b,+∞), I ′(v) =
∫+∞
0

(τ − 1) (t+ v)τ−2 tτ−1e−2γtdt. Since this is true for
all b ∈ R∗+, we know that I is differentiable on R∗+ and that, for all v ∈ R∗+,

I ′(v) =
∫+∞
0

(τ − 1) (t+ v)τ−2 tτ−1e−2γtdt. As a consequence, h is differentiable

on R∗+ and, for all v ∈ R∗+, h′(v) = I(v+β)I′(v)−I(v)I′(v+β)
I(v+β)2 .

Let v ∈ R∗+.

I(v + β)I ′(v)− I(v)I ′(v + β)

=

∫ +∞

0

(x+ v + β)τ−1 xτ−1e−2xdx×
∫ +∞

0

(τ − 1) (y + v)τ−2 yτ−1e−2ydy

−
∫ +∞

0

(y + v)τ−1 yτ−1e−2ydy ×
∫ +∞

0

(τ − 1) (x+ v + β)τ−2 xτ−1e−2xdx

= (τ − 1)

[∫ +∞

0

(x+ v + β)τ−1 xτ−1e−2x

∫ +∞

0

(y + v)τ−2 yτ−1e−2ydydx

−
∫ +∞

0

(x+ v + β)τ−2 xτ−1e−2x

∫ +∞

0

(y + v)τ−1 yτ−1e−2ydydx

]
= (τ − 1)

[∫ +∞

0

∫ +∞

0

(x+ v + β)τ−1 (y + v)τ−2 (xy)τ−1e−2(x+y)dydx

−
∫ +∞

0

∫ +∞

0

(x+ v + β)τ−2 (y + v)τ−1 (xy)τ−1e−2(x+y)dydx

]
= (τ − 1)

∫ +∞

0

∫ +∞

0

(xy)τ−1e−2(x+y)

×
[
(x+ v + β)τ−1 (y + v)τ−2 − (x+ v + β)τ−2 (y + v)τ−1

]
dydx

= (τ − 1)

∫ +∞

0

∫ +∞

0

(x+ v + β)τ−2 (y + v)τ−2 (xy)τ−1e−2(x+y)

× [(x+ v + β)− (y + v)] dydx

= (τ − 1)

∫ +∞

0

∫ +∞

0

(x+ v + β)τ−2 (y + v)τ−2 (xy)τ−1e−2(x+y)

× (x+ β − y) dydx
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6 Arnaud Grivet Sébert et al.

≤ (τ − 1)

∫ +∞

0

∫ +∞

0

(x+ v + β)τ−2 (y + v)τ−2 (xy)τ−1e−2(x+y)(x− y)dydx

(2)

(because τ − 1 ≤ 0 and β ≥ 0)

Similarly, we show that

I(v + β)I ′(v)− I(v)I ′(v + β)

=

∫ +∞

0

(y + v + β)τ−1 yτ−1e−2ydy ×
∫ +∞

0

(τ − 1) (x+ v)τ−2 xτ−1e−2xdx

−
∫ +∞

0

(x+ v)τ−1 xτ−1e−2xdx×
∫ +∞

0

(τ − 1) (y + v + β)τ−2 yτ−1e−2ydy

= (τ − 1)

[∫ +∞

0

(x+ v)τ−2 xτ−1e−2x

∫ +∞

0

(y + v + β)τ−1 yτ−1e−2ydydx

−
∫ +∞

0

(x+ v)τ−1 xτ−1e−2x

∫ +∞

0

(y + v + β)τ−2 yτ−1e−2ydydx

]
= (τ − 1)

∫ +∞

0

∫ +∞

0

(xy)τ−1e−2(x+y)

×
[
(x+ v)τ−2 (y + v + β)τ−1 − (x+ v)τ−1 (y + v + β)τ−2

]
dydx

= (τ − 1)

∫ +∞

0

∫ +∞

0

(x+ v)τ−2 (y + v + β)τ−2 (xy)τ−1e−2(x+y)

× (y + β − x)dydx

≤ (τ − 1)

∫ +∞

0

∫ +∞

0

(x+ v)τ−2 (y + v + β)τ−2 (xy)τ−1e−2(x+y)(y − x)dydx

(3)

Alternatively, we can use 2 to deduce 3 directly using Fubini’s theorem and
exchanging the roles of x and y.

From 2 and 3, we get:

2×
[
I(v + β)I ′(v)− I(v)I ′(v + β)

]
≤ (τ − 1)

∫ +∞

0

∫ +∞

0

(x+ v + β)τ−2 (y + v)τ−2 (x− y) (xy)τ−1e−2(x+y)dydx

+ (τ − 1)

∫ +∞

0

∫ +∞

0

(x+ v)τ−2 (y + v + β)τ−2 (y − x) (xy)τ−1e−2(x+y)dydx

= (τ − 1)

∫ +∞

0

∫ +∞

0

(x− y) (xy)τ−1e−2(x+y)

×
[
(x+ v + β)τ−2 (y + v)τ−2 − (x+ v)τ−2 (y + v + β)τ−2

]
dydx

Let (x, y) ∈ (R∗+)2.
Note that (x+ v + β) (y + v)− (x+ v) (y + v + β) = β(y − x) and then

(x+ v + β)τ−2 (y + v)τ−2 ≥ (x+ v)τ−2 (y + v + β)τ−2
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SPEED: Secure, PrivatE, and Efficient Deep learning 7

⇔ (x+ v + β) (y + v) ≤ (x+ v) (y + v + β) (because τ − 2 < 0)

⇔ x ≥ y.

We deduce that[
(x+ v + β)τ−2 (y + v)τ−2 − (x+ v)τ−2 (y + v + β)τ−2

]
(x− y) ≥ 0.

This inequality being true for all (x, y) ∈ (R∗+)2 and, since τ − 1 ≤ 0, we have:

(τ − 1)

∫ +∞

0

∫ +∞

0

[
(x+ v + β)τ−2 (y + v)τ−2 − (x+ v)τ−2 (y + v + β)τ−2

]
× (x− y) (xy)τ−1e−2(x+y)dydx ≤ 0

Finally, I(v + β)I ′(v)− I(v)I ′(v + β) ≤ 0 and h′(v) ≤ 0.
Since this is true for any v ∈ R∗+, we can conclude that h is decreasing on

R∗+. ut

Lemma 3 The function g has a maximum on R, and this maximum is reached in
the interval [−a2 ; 0].

Proof Since f is defined on R∗, F is differentiable on R∗. Thus g is differentiable
on R∗ \ {−a} and, for all t ∈ R∗ \ {−a},

g′(t) =
(1− F (t))f(t+ a)− (1− F (t+ a))f(t)

(1− F (t+ a))2
.

First of all, let us prove that g is increasing on (−∞;−a2 ). For all t ∈ (−∞;−a),
|t| = −t ≥ −t − a = |t + a| and, for all t ∈ (−a;−a2 ), |t| = −t ≥ t + a = |t + a|.
Let t ∈ (−∞;−a) ∪ (−a;−a2 ). Then, since x 7→ e−γxI(γx) is decreasing on R∗+,

e−γ|t|I(γ|t|) ≤ e−γ|t+a|I(γ|t + a|) which means f(t) ≤ f(t + a). Besides, F is
increasing then, since a ≥ 0, 1−F (t+ a) ≤ 1−F (t). Since f(t), f(t+ a), 1−F (t)
and 1 − F (t) are all positive quantities, we deduce that g′(t) ≥ 0. Then, g is
increasing on (−∞;−a) and on (−a;−a2 ) and since g is defined and continuous in
−a, g is increasing on (−∞;−a2 ).

Let us now prove that g is decreasing on R+. Let t ∈ R∗+.

(1− F (t+ a))2

L2
g′(t)

=
1

L2
[(1− F (t))f(t+ a)− (1− F (t+ a))f(t)]

= e−γ|t+a|I(γ|t+ a|)
∫ +∞

t

e−γ|u|I(γ|u|)du

− e−γ|t|I(γ|t|)
∫ +∞

t+a

e−γ|u|I(γ|u|)du

= e−γ(t+a)I(γ(t+ a))

∫ +∞

t

e−γuI(γu)du− e−γtI(γt)

∫ +∞

t+a

e−γuI(γu)du

= e−γ(t+a)I(γ(t+ a))

∫ +∞

t

e−γuI(γu)du
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8 Arnaud Grivet Sébert et al.

− e−γtI(γt)

∫ +∞

t

e−γ(v+a)I(γ(v + a))dv

(by the substitution v = u− a)

= e−γ(t+a)
[∫ +∞

t

e−γu [I(γ(t+ a))I(γu)− I(γt)I(γ(u+ a))] du

]
For any u ∈ [t; +∞), Lemma 2 with β = γa tells us that I(γu)

I(γ(u+a)) ≤
I(γt)

I(γ(t+a))

which means I(γ(t+ a))I(γu)− I(γt)I(γ(u+ a)) ≤ 0.

Therefore,
∫+∞
t

e−γu [I(γ(t+ a))I(γu)− I(γt)I(γ(u+ a))] du ≤ 0 and finally
g′(t) ≤ 0. This being valid for all t ∈ R∗+ and g being continuous in 0, we deduce
that g is decreasing on R+.

From the two previous discussions and from the fact that g is continuous on
[−a2 ; 0], we conclude that g has a maximum on R and that this maximum is reached
in [−a2 ; 0]. ut

Proposition 5 For all t ∈ [−a2 ; 0],

g(t) ≤ 1 + 2

∫ γa
2

0 e−vI(v)dv∫+∞
γa

e−vI(v)dv
.

Proof For all t ∈ [−a2 ; 0],

g(t) = 1 +
F (t+ a)− F (t)

1− F (t+ a)
.

Calling φ : t ∈ [−a2 ; 0] 7→ F (t + a) − F (t), we know that φ is differentiable on

[−a2 ; 0) and that φ′ : t ∈ [−a2 ; 0) 7→ f(t + a) − f(t). Since x ∈ R∗+ 7→ e−xI(x) is
decreasing, we have, for all t ∈ [−a2 ; 0),

φ′(t) ≥ 0⇔ e−γ|t+a|I(γ|t+ a|) ≥ e−γ|t|I(γ|t|)
⇔ |t+ a| ≤ |t|
⇔ t+ a ≤ −t (because t+ a ≥ 0 and t ≤ 0)

⇔ t ≤ −a
2

Since φ is continuous in 0, we deduce that φ is decreasing on [−a2 ; 0] and then,
for all t ∈ [−a2 ; 0], F (t+a)−F (t) ≤ F (a2 )−F (−a2 ). Moreover, since F is increasing,
for all t ∈ [−a2 ; 0], 1− F (t+ a) ≥ 1− F (a).

Finally, for all t ∈ [−a2 ; 0],

g(t) ≤ 1 +
F (a2 )− F (−a2 )

1− F (a)

= 1 +
L
∫ a

2

− a
2
e−γ|u|I(γ|u|)du

L
∫+∞
a

e−γ|u|I(γ|u|)du

= 1 +

L
γ

∫ γa
2

− γa
2

e−|v|I(|v|)dv
L
γ

∫+∞
γa

e−|v|I(|v|)dv
(by the substitutions v=γu)
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= 1 +

∫ 0

− γa
2

e−|v|I(|v|)dv +
∫ γa

2
0 e−|v|I(|v|)dv∫+∞

γa
e−|v|I(|v|)dv

= 1 +

∫ γa
2

0 e−|v
′|I(|v′|)dv′ +

∫ γa
2

0 e−|v|I(|v|)dv∫+∞
γa

e−|v|I(|v|)dv
(by the substitution v′=−v)

= 1 +
2
∫ γa

2
0 e−|v|I(|v|)dv∫+∞

γa
e−|v|I(|v|)dv

= 1 + 2

∫ γa
2

0 e−vI(v)dv∫+∞
γa

e−vI(v)dv

ut

Proposition 6 Let us suppose that τ > 1
2 .

For all t ∈ [−a2 ; 0],

g(t) ≤ g(0)− a

2
g′(0).

with

g′(0) = γ

Γ (τ)2

2 e−γaI(γa)− I(0)
∫+∞
γa

e−vI(v)dv(∫+∞
γa

e−vI(v)dv
)2 .

Proof The result basically comes from the fact that g is concave on [argmax(g); 0]
which we prove hereafter.

From the proof of Lemma 3 we know that g is differentiable on [−a2 ; 0) and

g′ : t 7→ (1−F (t))f(t+a)−(1−F (t+a))f(t)
(1−F (t+a))2 = g(t)f(t+a)−f(t)

1−F (t+a) . In the proof of Lemma 2,

we saw that I is differentiable on R∗+ and thus f is differentiable on R∗+. Finally,
we get that g′ is differentiable on (−a; 0) and, for all t ∈ (−a; 0),

g′′(t) =
1

(1− F (t+ a))2
[
(1− F (t+ a))[g′(t)f(t+ a) + g(t)f ′(t+ a)− f ′(t)]

+f(t+ a)[g(t)f(t+ a)− f(t)]]

=
1

(1− F (t+ a))2
[
(1− F (t+ a))[g′(t)f(t+ a) + g(t)f ′(t+ a)− f ′(t)]

+(1− F (t+ a))f(t+ a)g′(t)
]

= 2g′(t)
f(t+ a)

1− F (t+ a)
+

(1− F (t+ a))[g(t)f ′(t+ a)− f ′(t)]
(1− F (t+ a))2

= 2g′(t)
f(t+ a)

1− F (t+ a)
+

(1− F (t))f ′(t+ a)− (1− F (t+ a))f ′(t)

(1− F (t+ a))2
.

Since I ′ is strictly negative on R∗+, for all u < 0, f ′(u) = Lγ[eγuI(−γu) −
eγuI ′(−γu)] > 0 and, for all u > 0, f ′(u) = Lγ[−e−γuI(γu) + e−γuI ′(γu)] < 0.
Then, for all t ∈ (−a; 0), f ′(t) > 0 and f ′(t+ a) < 0 and, since 1− F (t) > 0 and
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10 Arnaud Grivet Sébert et al.

1− F (t+ a) > 0, (1− F (t))f ′(t+ a) < 0 and (1− F (t+ a))f ′(t) > 0. We deduce
that, for all t ∈ (−a; 0),

g′′(t) < 2g′(t)
f(t+ a)

1− F (t+ a)
+

(1− F (t))f ′(t+ a)

(1− F (t+ a))2
(4)

where 2 f(t+a)
1−F (t+a) > 0 and (1−F (t))f ′(t+a)

(1−F (t+a))2 < 0.

According to Lemma 3, g has a maximum, which is reached on [−a2 ; 0]. Let
tmax = argmax(g). If tmax 6= 0, we can argue that g′(tmax) = 0 and then, from
Inequation 4, g′′ is strictly negative on a neighbourhood of tmax. This implies that
g′ is decreasing on a neighbourhood of (tmax)+ and then strictly negative on a
neighbourhood of (tmax)+.

Removing the assumption that tmax 6= 0, we need to be slightly more subtle
since g′ is not differentiable in 0 (because I is not differentiable in 0).

Since τ > 1
2 , v 7→ v2τ−2e−2v is integrable on R∗+ and we can extend the

definition of I to R+. This implies in particular that F and then g are differentiable

on the whole interval (−a; +∞) (with g′(0) = (1−F (0))f(a)−(1−F (a))f(0)
(1−F (a))2 ). Then

g′(tmax) = 0 and, from Inequation 4, lim
(tmax)+

g′′ < (1−F (tmax))f
′(tmax+a)

(1−F (tmax+a))2
< 0. Thus

g′′ (not defined in 0) is strictly negative on a neighbourhood of (tmax)+. Then g′

is strictly decreasing on a neighbourhood of (tmax)+ and, by continuity in tmax,
strictly negative on a neighbourhood of (tmax)+.

Let us suppose that g′′(t) ≥ 0 for a t in [tmax; 0) (trivially false if tmax = 0
since [tmax; 0) is empty in this case). We fix such a t and call it t0. Then, from
Inequation 4, g′(t0) > 0 and we can fix t1 = inf{t ∈ [tmax; t0]|g′(t) ≥ 0}. g′ is
non-negative on a neighbourhood of (t1)+ thus t1 > tmax. We also know that
g′ is non-positive on [tmax; t1) by definition of t1. This implies g′(t1) = 0. Since
g′(t1) = 0, from Inequation 4, we know that g′′(t1) < 0 and then g′ is strictly
negative on a neighbourhood of (t1)+. We get a contradiction so g′′(t) < 0 for all
t ∈ [tmax; 0). We deduce that g′ is decreasing on [tmax; 0).

Thus, for all t ∈ [tmax; 0), g′(t) ≥ g′(0). As a consequence, since tmax ≤ 0,
g(tmax) ≤ g(0) + tmaxg

′(0). Besides, tmax ≥ −a2 and g′(0) ≤ g′(tmax) = 0, thus
g(tmax) ≤ g(0)− a

2 g
′(0). Finally, by definition of tmax, for all t ∈ R,

g(t) ≤ g(0)− a

2
g′(0)

with

g′(0) =
(1− F (0))f(a)− (1− F (a))f(0)

(1− F (a))2

=
1
2Le

−γaI(γa)− L2I(0)
∫+∞
a

e−γuI(γu)du(
L
∫+∞
a

e−γuI(γu)du
)2

=
1
2Le
−γaI(γa)− I(0)

∫+∞
a

e−γuI(γu)du(∫+∞
a

e−γuI(γu)du
)2

=

Γ (τ)2

2γ e−γaI(γa)− 1
γ I(0)

∫+∞
γa

e−vI(v)dv(
1
γ

∫+∞
γa

e−vI(v)dv
)2 (by the substitutions v=γu)

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



SPEED: Secure, PrivatE, and Efficient Deep learning 11

= γ

Γ (τ)2

2 e−γaI(γa)− I(0)
∫+∞
γa

e−vI(v)dv(∫+∞
γa

e−vI(v)dv
)2 .

ut

Theorem 2 The aggregation mechanism A is (ε, 0)-differentially private, with

ε = log

(
1 + 2

∫ γ
0
e−vI(v)dv∫+∞

2γ
e−vI(v)dv

)
.

Moreover, if τ > 1
2 , g is differentiable in 0 and A is (ε′, 0)-differentially private,

with

ε′ = min
[
ε, log

(
g(0)− g′(0)

)]
.

Proof Thanks to Lemma 3, we can use Propositions 5 and 6 to upper bound g,
for a = 2. We then just have to apply Lemma 1 to conclude. ut

Lemma 4 For all v ∈ R∗+, I(v) ≤ vτ−1 Γ (τ)
2τ .

Proof Let v ∈ R∗+.

I(v) =

∫ +∞

0

(t+ v)τ−1 tτ−1e−2tdt

≤ vτ−1

∫ +∞

0

tτ−1e−2tdt (because τ − 1 ≤ 0)

= vτ−1

∫ +∞

0

(u
2

)τ−1
e−u

du

2
(by the substitution u = 2t)

= vτ−1Γ (τ)

2τ

ut

Proposition 3 For all τ ∈ (0, 1), lim
γ→0

[
log

(
1 + 2

∫ γ
0
e−vI(v)dv∫+∞

2γ
e−vI(v)dv

)]
= 0.

Proof For all v ∈ R∗+, e−vI(v) > 0 thus, supposing γ ∈ (0, 1],
∫+∞
2γ

e−vI(v)dv ≥∫+∞
2

e−vI(v)dv > 0. Therefore, it suffices to prove that lim
γ→0

[∫ γ
0
e−vI(v)dv

]
= 0

to deduce the announced result.
Applying Lemma 4, we get∫ γ

0

e−vI(v)dv ≤ Γ (τ)

2τ

∫ γ

0

e−vvτ−1dv

≤ Γ (τ)

2τ

∫ γ

0

vτ−1dv

=
Γ (τ)

2τ
γτ

τ

which gives lim
γ→0

[∫ γ
0
e−vI(v)dv

]
= 0. ut
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12 Arnaud Grivet Sébert et al.

Proposition 2 For all γ ∈ R∗+, lim
τ→1

[
log
(
g(0)− g′(0)

)]
= 2γ.

Proof We use the dominated convergence theorem to determine the limit of f and
F when τ approaches 1. Let us suppose in the following that τ ∈ (3

4 ; 1).

First of all, we determine the limit of I and deduce the one of f . Let v ∈ R+.

For all x ∈ (0; 1], (x + v)τ−1xτ−1e−2x ≤ x2τ−2e−2x ≤ x−
1
2 e−2x. As x 7→

x−
1
2 e−2x is integrable on (0; 1], and, for all x ∈ (0; 1],

lim
τ→1

[
(x+ v)τ−1xτ−1e−2x

]
= e−2x, by the dominated convergence theorem we get

that lim
τ→1

[∫ 1

0
(x+ v)τ−1xτ−1e−2xdx

]
=
∫ 1

0
e−2xdx.

Similarly, as, for all x ∈ [1; +∞), (x+ v)τ−1xτ−1e−2x ≤ e−2x and
lim
τ→1

[
(x+ v)τ−1xτ−1e−2x

]
= e−2x, by the dominated convergence theorem,

lim
τ→1

[∫+∞
1

(x+ v)τ−1xτ−1e−2xdx
]

=
∫+∞
1

e−2xdx.

From the two points above, we deduce that

lim
τ→1

I(v) = lim
τ→1

[∫ 1

0

(x+ v)τ−1xτ−1e−2xdx+

∫ +∞

1

(x+ v)τ−1xτ−1e−2xdx

]
=

∫ 1

0

e−2xdx+

∫ +∞

1

e−2xdx

=

∫ +∞

0

e−2xdx

=
1

2

and, for any u ∈ R, lim
τ→1

f(u) = lim
τ→1

[
γ

Γ (τ)2 e
−γ|u|I(γ|u|)

]
= 1

2γe
−γ|u|.

Let us now determine the limit of F .

Let u0 ∈ [0; 1
γ ] and u1 ∈ [0; 1

γ ] such that u0 < u1. According to Lemma 4,

for all u ∈ (u0;u1], e−γuI(γu) ≤ e−γu(γu)τ−1 Γ (τ)
2τ ≤ e−γu(γu)−

1
4
Γ ( 3

4
)

2
3
4

because

γu ≤ 1 and Γ is decreasing on (0; 1]. Since u 7→ e−γu(γu)−
1
4
Γ ( 3

4
)

2
3
4

is integrable

on (u0;u1] and, for all u ∈ (u0;u1], lim
τ→1

[
e−γuI(γu)

]
= e−γu

2 , by the dominated

convergence theorem, lim
τ→1

[∫ u1

u0
e−γuI(γu)du

]
=
∫ u1

u0

e−γu

2 du.

Let u0 ∈ [ 1γ ; +∞) and u1 ∈ [ 1γ ; +∞) ∪ {+∞} such that u0 < u1. Similarly,

as, for all u ∈ [u0;u1), e−γuI(γu) ≤ e−γu(γu)τ−1 Γ (τ)
2τ ≤ e−γu

Γ ( 3
4
)

2
3
4

. Since u 7→

e−γu
Γ ( 3

4
)

2
3
4

is integrable on [u0;u1) and, for all u ∈ [u0;u1), lim
τ→1

[
e−γuI(γu)

]
=

e−γu

2 , by the dominated convergence theorem,

lim
τ→1

[∫ u1

u0
e−γuI(γu)du

]
=
∫ u1

u0

e−γu

2 du.

We deduce that, whatever are the bounds u0 ∈ [0; +∞) and u1 ∈ [0; +∞) ∪
{+∞} with u0 < u1, lim

τ→1

[∫ u1

u0
e−γuI(γu)du

]
=
∫ u1

u0

e−γu

2 du. By substitution, we

also have lim
τ→1

[∫ u1

u0
eγuI(−γu)du

]
=
∫ u1

u0

eγu

2 du for any u0 ∈ (−∞; 0] ∪ {−∞} and

u1 ∈ (−∞; 0] with u0 < u1.
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Finally, for any u0 ∈ (−∞; 0] ∪ {−∞} and u1 ∈ [0; +∞) ∪ {+∞} such that

u0 < u1, we have lim
τ→1

[∫ u1

u0
e−γ|u|I(γ|u|)du

]
=
∫ u1

u0

e−γ|u|

2 du. In particular, for all

z ∈ R,

lim
τ→1

F (z) = lim
τ→1

(L)×
∫ z

−∞

e−γ|u|

2
du

= γ

∫ z

−∞

e−γ|u|

2
du

=

{
1
2e
γz if z < 0

1− 1
2e
−γz if z ≥ 0

which is actually the expression of the Laplace cumulative distribution function.
From what precedes we can conclude that, with a = 2,

lim
τ→1

[
g(0)− g′(0)

]
= lim
τ→1

[
1− F (0)

1− F (2)
− (1− F (0))f(2)− (1− F (2))f(0)

(1− F (2))2

]
=

1
2

1
2e
−2γ
− 1

2

1
2 ×

1
2γe
−2γ − 1

2e
−2γ × 1

2γ

(1
2e
−2γ)2

= e2γ

ut

A.3 Influence of the HE layer on the DP guarantee per query

The computation of the homomorphic argmax induces some perturbations on the
noisy counts and, as such, could harm the DP guarantees that we just gave. The
three kinds of perturbations due to the HE layer are:

– the addition of (Gaussian) noise at the time of TFHE encryption which is
inherently probabilistic

– the addition of a constant value A on the noisy counts to ensure that all the
noisy counts are positive (with high probability) (see Section B)

– a possible mistake on the argmax if two noisy counts are too close (see Section
6 of the main paper)

While these perturbations can be seen as some postprocessing applied on the
clear noisy histogram, they cannot be seen as a postprocessing on the clear noisy
argmax on which we showed DP guarantees in Section A.2. Nevertheless, if we
can prove that these perturbations consist of an addition of noise on the clear his-
togram, the upper bound on P[r≥t]

P[r≥t+2] , r being the total noise (generalised Laplace

noise and HE perturbations) applied to the histogram of the nk’s, would still hold,
leading to the same DP guarantees. The additions of Gaussian noise and constant
A at encryption have, by commutativity, the same effect as the addition of a sum
of Gaussian noises and nA after summation and they will anyway change the out-
put of the homomorphic argmax with very low probability. However, some further
work needs to be done in order to check whether the third kind of perturbation
can be simulated as a noise addition on the histogram.
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14 Arnaud Grivet Sébert et al.

A.4 Upper bound of the probability of a report noisy max mistake

In this subsection, we give an upper bound of the probability that A outputs
a wrong argmax because of the added noise following the generalised Laplace
distribution.

Lemma 5 Let u0 ∈ R+. Let q ∈
(

1
1−τ ; +∞

)
and p := 1

1− 1
q

.

We have ∫ +∞

u0

e−γuI(γu)du ≤ Γ (τ)

2τγ

e−γu0

p
1
p

(γu0)
τ−1+ 1

q

[q(1− τ)− 1]
1
q

.

Proof Let u0 ∈ R+. Let (p, q) ∈ (R∗+)2 such that 1
p + 1

q = 1 and q > 1
1−τ .

∫ +∞

u0

e−γuI(γu)du

≤ Γ (τ)

2τ

∫ +∞

u0

e−γu(γu)τ−1du (according to Lemma 4)

=
Γ (τ)

2τγ

∫ +∞

γu0

e−vvτ−1dv (by the substitution v = γu)

By assumption, q > 1
1−τ so, since τ < 1, q(τ−1) < −1 and then v ∈ R∗+ 7→ vq(τ−1)

is integrable in the neighbourhood of +∞. Then we can apply Hölder’s inequality
in the following manner:∫ +∞

u0

e−γuI(γu)du

≤ Γ (τ)

2τγ

(∫ +∞

γu0

e−pvdv

) 1
p
(∫ +∞

γu0

vq(τ−1)dv

) 1
q

=
Γ (τ)

2τγ
×
(
e−pγu0

p

) 1
p

×

(
−(γu0)q(τ−1)+1

(q(τ − 1) + 1)

) 1
q

=
Γ (τ)

2τγ
× e−γu0

p
1
p

× (γu0)
τ−1+ 1

q

[q(1− τ)− 1]
1
q

ut

Lemma 6 Let us consider a query Q. Let k∗ ∈ [K] be the unnoisy argmax (for
all k ∈ [K], nk∗ ≥ nk). For all k ∈ [K], we define ∆k := nk∗ − nk ≥ 0. Then, for
all q ∈ ( 1

1−τ ; +∞), calling p := 1
1− 1

q

,

P[A(d,Q) 6= k∗] ≤
∑
k 6=k∗

e−γ∆k

[
1

2
+

1

τ2
4τ−2+ 1

q Γ (τ)2
× (γ∆k)

2τ−1+ 1
q

p
1
p [q(1− τ)− 1]

1
q

]
.
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SPEED: Secure, PrivatE, and Efficient Deep learning 15

Proof In the following, we will assume that ∆k > 0 and the upper bound for
∆k = 0 is obtained by continuity.

For any k ∈ [K], let us denote Yk the random variable following the generalised
Laplace distribution generated by the sum of the τn individual noises.

Let k ∈ [K].

P(nk + Yk ≥ nk∗ + Yk∗)

= P(Yk∗ ≤ Yk −∆k)

=

∫ +∞

−∞
f(t)F (t−∆k)dt

=

∫ 0

−∞
f(t)F (t−∆k)dt+

∫ ∆k

0

f(t)F (t−∆k)dt

+

∫ +∞

∆k

f(t)F (t−∆k)dt (5)

We will now upper bound each one of the three above integrals separately. The
two extreme integrals can be nicely bounded by decreasing exponentials in ∆k:∫ +∞

∆k

f(t)F (t−∆k)dt

=

∫ +∞

0

f(v +∆k)F (v)dv (by the substitution v = t−∆k)

= L

∫ +∞

0

e−γ|v+∆k|I(γ|v +∆k|)F (v)dv

= L

∫ +∞

0

e−γ(v+∆k)I(γ(v +∆k))F (v)dv

= Le−γ∆k
∫ +∞

0

e−γvI(γ(v +∆k))F (v)dv

≤ Le−γ∆k
∫ +∞

0

e−γvI(γv)F (v)dv (because I is decreasing)

= Le−γ∆k
∫ +∞

0

e−γ|v|I(γ|v|)F (v)dv

= e−γ∆k
∫ +∞

0

f(v)F (v)dv

= e−γ∆k ×
lim
+∞

F 2 − F (0)2

2

= e−γ∆k ×
1− 1

4

2

=
3

8
e−γ∆k (6)

and

∫ 0

−∞
f(t)F (t−∆k)dt
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16 Arnaud Grivet Sébert et al.

= L

∫ 0

−∞
f(t)

∫ t−∆k

−∞
e−γ|u|I(γ|u|)dudt

= L

∫ 0

−∞
f(t)

∫ t−∆k

−∞
eγuI(−γu)dudt

= L

∫ 0

−∞
f(t)

∫ t

−∞
eγ(v−∆k)I(γ(∆k − v))dudt

(by the substitution v = u+∆k)

= Le−γ∆k
∫ 0

−∞
f(t)

∫ t

−∞
eγvI(γ(∆k − v))dudt

≤ Le−γ∆k
∫ 0

−∞
f(t)

∫ t

−∞
eγvI(−γv)dudt (because I is decreasing)

= Le−γ∆k
∫ 0

−∞
f(t)

∫ t

−∞
e−γ|v|I(γ|v|)dudt

= e−γ∆k
∫ 0

−∞
f(t)F (t)dt

= e−γ∆k ×
F (0)2 − lim

−∞
F 2

2

=
1

8
e−γ∆k . (7)

As for the middle integral, we have∫ ∆k

0

f(t)F (t−∆k)dt

= L

∫ ∆k

0

f(t)

∫ t−∆k

−∞
e−γ|u|I(γ|u|)dudt

= L

∫ ∆k

0

f(t)

∫ +∞

∆k−t
e−γ|v|I(γ|v|)dvdt (by the substitution v = −u)

= L

∫ ∆k

0

f(t)

∫ +∞

∆k−t
e−γvI(γv)dvdt

Since, for all t ∈ [0;∆k], 0 ≤ ∆k − t, we can apply Lemma 5. Let q ∈(
1

1−τ ; +∞
)

and p = 1
1− 1

q

. We have, for all t ∈ (0;∆k),
∫+∞
∆k−t

e−γvI(γv)dv ≤
Γ (τ)
2τγ ×

1

p
1
p [q(1−τ)−1]

1
q
× e−γ(∆k−t)[γ(∆k − t)]τ−1+ 1

q . Since τ − 1 + 1
q > −1, t 7→

[γ(∆k − t)]τ−1+ 1
q is integrable on a neighbourhood of (∆k)− and then, since t 7→

f(t)e−γ(∆k−t) is bounded on a neighbourhood of ∆k, t 7→ f(t)e−γ(∆k−t)[γ(∆k −
t)]
τ−1+ 1

q is integrable on a neighbourhood of (∆k)−.

Thus, we can write∫ ∆k

0

f(t)F (t−∆k)dt
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≤ LΓ (τ)

2τγ
× 1

p
1
p [q(1− τ)− 1]

1
q

×
∫ ∆k

0

f(t)e−γ(∆k−t)[γ(∆k − t)]τ−1+ 1
q dt

= L2Γ (τ)

2τγ
× 1

p
1
p [q(1− τ)− 1]

1
q

×
∫ ∆k

0

e−γ|t|I(γ|t|)e−γ(∆k−t)[γ(∆k − t)]τ−1+ 1
q dt

=
γ

2τΓ (τ)3
× 1

p
1
p [q(1− τ)− 1]

1
q

×
∫ ∆k

0

e−γtI(γt)e−γ(∆k−t)[γ(∆k − t)]τ−1+ 1
q dt

=
e−γ∆k

2τΓ (τ)3
× γ

p
1
p [q(1− τ)− 1]

1
q

×
∫ ∆k

0

I(γt)[γ(∆k − t)]τ−1+ 1
q dt

t 7→ (γt)τ−1 is integrable on a neighbourhood of 0+ because τ − 1 > −1.

Therefore, t 7→ (γt)τ−1 Γ (τ)
2τ [γ(∆k − t)]τ−1+ 1

q is integrable on (0;∆k) so we can
apply Lemma 4:∫ ∆k

0

f(t)F (t−∆k)dt

≤ e−γ∆k

2τΓ (τ)3
× γ

p
1
p [q(1− τ)− 1]

1
q

×
∫ ∆k

0

(γt)τ−1Γ (τ)

2τ
[γ(∆k − t)]τ−1+ 1

q dt

=
e−γ∆k

22τΓ (τ)2
× γ∆k

p
1
p [q(1− τ)− 1]

1
q

×
∫ 1

0

(γ∆ku)τ−1[γ(∆k −∆ku)]
τ−1+ 1

q du

(by the substitution u =
t

∆k
)

=
e−γ∆k

22τΓ (τ)2
× (γ∆k)

2τ−1+ 1
q

p
1
p [q(1− τ)− 1]

1
q

×
∫ 1

0

uτ−1(1− u)
τ−1+ 1

q du

Note that∫ 1

0

uτ−1(1− u)
τ−1+ 1

q du

=

∫ 1
2

0

uτ−1(1− u)
τ−1+ 1

q du+

∫ 1

1
2

uτ−1(1− u)
τ−1+ 1

q du

≤
∫ 1

2

0

uτ−1 1

2
τ−1+ 1

q

du+

∫ 1

1
2

1

2τ−1
(1− u)

τ−1+ 1
q du

(because τ − 1 +
1

q
< 0 and τ − 1 < 0)

=
1

2
τ−1+ 1

q

∫ 1
2

0

uτ−1du+
1

2τ−1

∫ 1
2

0

v
τ−1+ 1

q dv

(by the substitution v = 1− u)
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=
1

2
τ−1+ 1

q

× 1

τ2τ
+

1

2τ−1
× 1

(τ + 1
q )2

τ+ 1
q

=
1

2
2τ−1+ 1

q

(
1

τ
+

1

τ + 1
q

)

≤ 1

τ2
2τ−2+ 1

q

Therefore∫ ∆k

0

f(t)F (t−∆k)dt ≤ e−γ∆k

τ2
4τ−2+ 1

q Γ (τ)2
× (γ∆k)

2τ−1+ 1
q

p
1
p [q(1− τ)− 1]

1
q

. (8)

Using 5, 6, 7 and 8, we get

P(nk + Yk ≥ nk∗ + Yk∗) ≤ e−γ∆k
[

1

2
+

1

τ2
4τ−2+ 1

q Γ (τ)2
× (γ∆k)

2τ−1+ 1
q

p
1
p [q(1− τ)− 1]

1
q

]
.

The overall upper bound for P[A(d;Q) 6= k∗] is obtained using the fact that
the event (A(d;Q) 6= k∗) is the union of the events (nk + Yk ≥ nk∗ + Yk∗), for
k ∈ [K] \ {k∗}, and then P[A(d;Q) 6= k∗] ≤

∑
k 6=k∗ P(nk + Yk ≥ nk∗ + Yk∗). ut

Proposition 4 If τ ∈ (1
2 ; 1),

P[A(d;Q) 6= k∗] ≤
∑
k 6=k∗

e−γ∆k
[

1

2
+

(γ∆k)2τ−1

τ24τ−2Γ (τ)2

]
.

If τ ∈ (0; 1
2 ],

P[A(d;Q) 6= k∗] ≤
∑
k 6=k∗

e−γ∆k

[
1

2
+

(γ∆k)
τ
2

τ2
5
2
τ−1Γ (τ)2

×
(

3

2
τ

) 3
2
τ (

2

τ
− 3

)1− 3
2
τ
]
.

Proof Let us distinct two cases according to the value of τ .
First case: τ > 1

2
Taking the limit when q approaches +∞ in 8 (which actually amounts to

substitute vτ−1 by its upper bound (γu0)τ−1 in the integral
∫+∞
γu0

e−vvτ−1dv of

the proof of Lemma 5, without needing Hölder’s inequality), we get

P[A(d;Q) 6= k∗] ≤
∑
k 6=k∗

e−γ∆k
[

1

2
+

(γ∆k)2τ−1

τ24τ−2Γ (τ)2

]
Second case: τ ≤ 1

2
By convention, if τ = 1

2 , we have 1
1−2τ = +∞.

We take q < 1
1−2τ (it is possible since 1

1−2τ > 1
1−τ ) and write q = 1

1−2τ+ε ,

with 0 < ε < τ . Then, 1
p = 1− 1

q = 2τ − ε and we get

P[A(d;Q) 6= k∗]

≤
∑
k 6=k∗

e−γ∆k

[
1

2
+

(2τ − ε)2τ−ε

τ22τ−1+εΓ (τ)2
×
(

1− 2τ + ε

τ − ε

)1−2τ+ε

× (γ∆k)ε
]
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For example, with ε = τ
2 (i.e. q = 1

1− 3
2
τ

), we have

P[A(d;Q) 6= k∗]

≤
∑
k 6=k∗

e−γ∆k

[
1

2
+

1

τ2
5
2
τ−1Γ (τ)2

×
(

3

2
τ

) 3
2
τ (

2

τ
− 3

)1− 3
2
τ

× (γ∆k)
τ
2

]

ut

Note that, whatever is the value of τ ∈ (0; 1), our upper bound of P(nk +Yk ≥
nk∗ + Yk∗) tends to 0 when ∆k approaches +∞ which follows the intuition that
P(nk+Yk ≥ nk∗+Yk∗) tends to 0 when the true argmax k∗ has a much higher count
than k. The upper bound tends to 1

2 when ∆k approaches 0, which is consistent
with the actual value of the probability P(nk + Yk ≥ nk∗ + Yk∗) when the counts
nk∗ and nk are equal.

Similarly, the upper bound tends to 0 when γ tends to +∞ and to 1
2 when

γ approaches 0. These are the expected values of the probability P(nk + Yk ≥
nk∗ + Yk∗) when there is no noise or an infinitely wide noise respectively.

Finally, let us remark that we recover the upper bound P[A(d;Q) 6= k∗] ≤∑
k 6=k∗

2+γ∆k
4eγ∆k

from [8] (obtained with a centralised Laplace noise) when we con-
sider the limit when τ tends to 1.

Remark. The data-dependent bound αA(l; aux, d, d′)≤ log

(
(1−q)

(
1−q

1−eεq

)l
+qeεl

)
from Theorem 3 is non-monotonic in γ. This may appear counter-intuitive since
a smaller noise (greater γ) usually gives worse privacy guarantees and, as one
would expect, a bigger moments accountant. Nevertheless, a smaller noise means
that the probability of outputting the true (unnoisy) argmax is closer to 1, which
may lower the moments accountant. Indeed, two adjacent databases will both
output the true argmax with high probability, giving less chance to an adversary
to distinguish them. This non-monotonicity of the data-dependent bound induces
the non-monotonicity of the overall privacy cost ε. This is illustrated in Figure 2 of
the paper on which we can see, however, that choosing a small γ still gives better
guarantees.

B FHE argmax implementation details

We implemented the FHE argmax algorithm using the C++ TFHE library [4].
Table 1 presents all of the parameters needed to reproduce our results and build
a fully homomorphic argmax scheme using the TFHE library. The first two lines
present our values for the standard TFHE parameters: the first line for initial
ciphertext encryption; the second line for the two bootstrapping keys we use.
Given the parameters that we use here, we achieve a security parameter of 110.
We base the security of our scheme on the lwe-estimator3 script. The estimator
is based on the work presented in [2] and is consistently kept up to date.

The third line presents parameters that are specific to our implementation.
Because of the use of Gamma distributions, the values sent by the teachers can

3 https://bitbucket.org/malb/lwe-estimator/raw/HEAD/estimator.py
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Table 1 Parameters for our implementation. The top line presents the overall security (λ),
and the parameters for the initial encryption: σ is the Gaussian noise parameter and N is the
size of polynomials. In the TFHE encryption scheme, there is a parameter k (different from
the one used in this paper) which, in our case, is always equal to 1. The second line presents
the parameters needed to create the two bootstrapping keys we are using. For these two lines,
we used the notations from [10] and [3]. The third line presents parameters specific to our
implementation given the specificities of the data to process. A is the value to add to the
ciphertexts before subtracting nk + Yk − nk′ − Yk′ as per the notations in Section 4.3 of the
paper. bi is the modulus with which the values are rescaled at encryption time to obtain values

in [0, 1] and to allow for a correct result of the θ computation. b
(1)
θ is the output modulus of the

first bootstrapping operation creating the θ values. b
(2)
θ is the output modulus of the second

and final bootstrapping operation.

N σ
1024 1e−9

Nb σb Bg `
1024 1e-9 64 6

A bi b
(1)
θ b

(2)
θ

900 4102 36 4

be negative. This can be an important issue: if a value is negative, then it will be
interpreted in the ciphertext space as a very high positive value and the resulting
argmax will be wrong. Therefore, after summing the ciphertexts from the teachers,
we add a constant value (we can add a clear value to a ciphertext value) A to ensure
that the nk + Yk +A are all positive before subtraction. We evaluated that, given
the parameters of the Gamma distributions used, choosing A = 900 gives us less
than a 2−64 probability of failure: with Yk following a Laplace distribution (as
seen in Section 4 of the paper), then we have P(Yk < −A) < 2−64. The bi variable
corresponds to the value by which we rescale the cleartexts before encryption.
Indeed, the cleartext and ciphertext spaces of the TFHE encryption scheme are
both T = ([0, 1],+). Additionally, for a correct θ computation, we need to have

|nk+Yk−nk′−Yk′bi
| < 1

2 , which is true if, for all k ∈ [K], nk+Yk+A
bi

∈ [0, 12 ). Since

P(Yk ≥ A) < 2−64 by symmetry, bi = 2(n + 2A) = 4100 (with n the number of

teachers) is sufficient to have |nk+Yk−nk′−Yk′bi
| < 1

2 with high probability. b
(1)
θ is

the output modulus of the first bootstrapping operation. It needs to be chosen so
that we have Θk >

1
2 for one and only one k. That k will then be considered the

argmax. b
(2)
θ is the modulus for the final bootstrapping operation.

C Detailed experimental settings

In this section, we provide the reader with additional details regarding experimen-
tal settings. In order to reproduce experimental results, all necessary source codes
are available on https://github.com/Arnaud-GS/SPEED.
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C.1 Experimental settings for MNIST

Following PATE experimental conditions, we built our framework based on the
code repositories4 accompanying [8]. The teacher models are based on two convo-
lutional layers with max-pooling and one fully connected layer with ReLUs. Code
modifications have been performed on the initial repository, and are available on
https://github.com/Arnaud-GS/SPEED. The execution environment consists in
Python 3 and Tensorflow 1.15.0. The batch size, learning rate and max steps pa-
rameters have been respectively set to 128, 0.01 and 5000. As stated in [8], this
yields an aggregate test-error rate of 93%. A semi-supervised technique proposed
in [9] has been used5, in an execution environment consisting of Python 3 and
Theano 0.7. Besides modifications available on https://github.com/Arnaud-GS/

SPEED, the learning rate and number of epochs have been set to 0.001 and 500
respectively.

C.2 Experimental settings for SVHN

For SVHN, two additional layers have been added to the teacher models which
were learned using a node with 8 NVIDIA v100. The batch size, learning rate and
max steps parameters have been respectively set to 64, 0.08 and 2000. The student
model also uses the improved GAN semi-supervised model, relying on Python 3
and Theano 0.8.2. The learning rate and number of epochs have been set to 0.0003
and 600 respectively.
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Main claim. This paper proposes a deep learning framework able to deal with
strong privacy constraints. Our protocol allows accurate collaborative learning
while protecting the sensitive knowledge of each agent (teacher) both from the
aggregation server and from any user of the student model. Moreover, differential
privacy guarantees are provided even in the case that some of the teachers are
malicious in the sense that they collude and share the noise they generate.

Evidence. On a theoretical point of view, we formally proved the upper bound of
the privacy cost, as a function of the ratio of teachers who do not collude, and de-
tailed the algorithm used to compute it. To support our theoretical guarantees, we
performed experiments on MNIST and SVHN datasets to determine the accuracy
and the privacy cost of our framework.

Most related contributions. As mentioned in the paper, our work was inspired by
PATE framework from Semi-supervised knowledge transfer for deep learning from
private training data, Papernot et al. [5] and Scalable private learning with PATE,
Papernot et al. [6]. Nevertheless, while PATE needs to trust the aggregation server,
SPEED addresses the issue of threats from an honest but curious aggregation
server - or even beyond - thanks to the HE computation of the aggregation and the
argmax and to the use of distributed differential privacy. Our notion of adjacence
is also larger and leads to more general differential privacy guarantees.

In Practical secure aggregation for privacy-preserving machine learning [1],
Bonawitz et al. consider the problem of privacy-preserving secure aggregation to
apply it to federated learning frameworks. The secure aggregation is performed us-
ing one-time pads masking, which, contrary to homomorphic encryption, requires
communication and is vulnerable to agents’ failures. Fault tolerance is nevertheless
achieved, at the price of heavy additional communication and computation. The
possibility of using differential privacy is mentioned in the appendix of [1] but the
problem of a server which has access to the final model is not treated.
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Private collaborative neural network learning, Chase et al. [2], makes use of
both differential privacy and secure aggregation to perform collaborative gradient
descent which requires much more computation and communication than our vote-
aggregation framework which takes advantage of the existence of personal models.
The employed cryptographic techniques (secret sharing), which do not include
homomorphic encryption, increase the communication load between the agents.
Moreover, the problem of colluding agents is not addressed.
Appropriate reviewers. We believe that relevant reviewers for our paper would be
Slawomir Goryczka, Nicolas Papernot, Keith Bonawitz and Théo Ryffel. As the
first author of two comparative studies on secure aggregation using distributed
differential privacy [3, 4], Slawomir Goryczka would give very interesting reviews
on our work. Since SPEED’s architecture is close to PATE’s one and our differen-
tial privacy analysis was inspired from the one from [5], Nicolas Papernot would
review our paper with a deep understanding of the problems we tackled. Due to
his attention to the fault tolerance problem in secure aggregation and his inter-
est on the differential privacy answer to distrusted servers, we believe that Keith
Bonawitz [1] would also be a very appropriate reviewer. Specialised in privacy-
preserving machine learning and cryptography, Théo Ryffel [7,8] would give more
cryptography-oriented and complementary insights on our work.

References

1. Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H.B., Patel, S., Ramage,
D., Segal, A., Seth, K.: Practical secure aggregation for privacy-preserving machine learning.
In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pp. 1175–1191 (2017)

2. Chase, M., Gilad-Bachrach, R., Laine, K., Lauter, K.E., Rindal, P.: Private collaborative
neural network learning. IACR Cryptology ePrint Archive 2017, 762 (2017)

3. Goryczka, S., Xiong, L.: A comprehensive comparison of multiparty secure additions with
differential privacy. IEEE transactions on dependable and secure computing 14(5), 463–477
(2015)

4. Goryczka, S., Xiong, L., Sunderam, V.: Secure multiparty aggregation with differential
privacy: A comparative study. In: Proceedings of the Joint EDBT/ICDT 2013 Workshops,
pp. 155–163 (2013)

5. Papernot, N., Abadi, M., Erlingsson, U., Goodfellow, I., Talwar, K.: Semi-supervised knowl-
edge transfer for deep learning from private training data (2016)

6. Papernot, N., Song, S., Mironov, I., Raghunathan, A., Talwar, K., Erlingsson, U.: Scalable
private learning with pate (2018)

7. Ryffel, T., Pointcheval, D., Bach, F.: Ariann: Low-interaction privacy-preserving deep learn-
ing via function secret sharing. arXiv preprint arXiv:2006.04593 (2020)

8. Ryffel, T., Trask, A., Dahl, M., Wagner, B., Mancuso, J., Rueckert, D., Passerat-
Palmbach, J.: A generic framework for privacy preserving deep learning. arXiv preprint
arXiv:1811.04017 (2018)


