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Abstract

Prediction of material performance in fusion reactor environments relies on com-
putational modelling, and will continue to do so until the first generation of
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fusion power plants come on line and allow long-term behaviour to be observed.
In the meantime, the modelling is supported by experiments that attempt to
replicate some aspects of the eventual operational conditions. In 2019, a group
of leading experts met under the umbrella of the IEA to discuss the current po-
sition and ongoing challenges in modelling of fusion materials and how advanced
experimental characterisation is aiding model improvement. This review draws
from the discussions held during that workshop.

Topics covering modelling of irradiation-induced defect production and fun-
damental properties, gas behaviour, clustering and segregation, defect evolution
and interactions are discussed, as well as new and novel multiscale simulation
approaches, and the latest e�orts to link modelling to experiments through ad-
vanced observation and characterisation techniques.
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1. Introduction

This article provides a review of the status of fusion materials theory and35

modelling, largely drawn from the Fusion Materials Technology Collaboration
Program (FM TCP) workshop held in June 2019. The workshop was organized
with the speci�c aim of discussing the opportunities for experimental validation
of recent advances in theory and modelling that o�er the potential to accelerate
materials development for fusion energy. The Fusion Materials TCP is part of40

a network of autonomous collaborative partnerships focused on a wide range
of energy technologies, known as Technology Collaboration Programs or TCPs.
The TCPs are organized under the auspices of the International Energy Agency
(IEA), but the TCPs are functionally and legally autonomous. Views, �ndings
and publications of the Fusion Materials TCP do not necessarily represent the45

views or policies of the IEA Secretariat or its individual member countries.

Figure 1: Illustration of an integrated experimental and computational science-based approach
to the multiscale investigation of materials degradation due to high-energy particle irradiation.
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