Design of MICADO advanced passive and active neutron measurement system for radioactive waste drums - CEA - Commissariat à l’énergie atomique et aux énergies alternatives Accéder directement au contenu
Article Dans Une Revue Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Année : 2021

Design of MICADO advanced passive and active neutron measurement system for radioactive waste drums

Massimo Morichi
  • Fonction : Auteur
Erica Fanchini
  • Fonction : Auteur
Andrea Pepperosa
  • Fonction : Auteur
Roger Abou-Khalil
  • Fonction : Auteur
Zakkarya Mekhalfa
  • Fonction : Auteur
Lionel Tondut
  • Fonction : Auteur

Résumé

In the frame of the MICADO H2020 project, a passive and active neutron measurement system is being developed to estimate the nuclear material mass inside legacy waste drums of low and intermediate radioactivity levels. Monte-Carlo simulations have been performed to design a new modular and transportable neutron system, with the main objective to reach a good tradeoff between the performances in passive mode, i.e. neutron coincidence counting, and in active interrogation mode with the Differential Die-away Technique. Different designs are compared, which mainly differ in their moderation materials, graphite and polyethylene. This parametric study allowed us to define a prototype taking into account practical constraints in view of its final implementation in a wide range of in-situ locations and nuclear facilities. The total neutron detection efficiency of the prototype is 6.75%, as calculated for an empty drum, i.e. without waste matrix. The detection limit in terms of nuclear material equivalent mass have also been estimated based on assumptions for a homogeneous distribution of nuclear materials inside the drum, filled with four types of matrices covering the range of nuclear waste drums defined in the frame of the project. The most favorable matrix is made of stainless steel in passive mode and of polyethylene in active mode, with an apparent density of 0.7 g.cm$^{-3}$ and 0.1 g.cm$^{-3}$ respectively. The calculated mass detection limits are respectively 68 mg of $^{240}$Pu, 62 mg of $^{235}$U and 39 mg of $^{239}$Pu. The most penalizing matrix is made of polyethylene with an apparent density of 0.7 g.cm$^{-3}$ , which leads to a mass detection limit of 519 mg of $^{240}$Pu in passive mode, and 564 mg of $^{235}$U or 349 mg of $^{239}$Pu in active mode. Measurement time is 30 min for both passive and active modes. Next steps will be a complete investigation of matrix effects based on intensive Monte-Carlo calculations and an experimental design to figure out the appropriate corrections. Experiments will also be conducted at CEA Cadarache Nuclear Measurement Laboratory with the construction and the assembly of the neutron system prototype, and the measurement of mock-up drums filled with different matrices
Fichier principal
Vignette du fichier
MICADO_NumericalDesign_NIMA_PREPRINT.pdf (1.02 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

cea-03276008 , version 1 (01-07-2021)

Identifiants

Citer

Quentin Ducasse, Cyrille Eleon, Bertrand Perot, Abdallah Lyoussi, Oliver Gueton, et al.. Design of MICADO advanced passive and active neutron measurement system for radioactive waste drums. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1005, pp.165398. ⟨10.1016/j.nima.2021.165398⟩. ⟨cea-03276008⟩
108 Consultations
122 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More