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Abstract—In energy-harvesting Internet of Things (EH-IoT)
wireless networks, maintaining energy neutral operation (ENO)
is crucial for their perpetual operation and maintenance-free
property. Guaranteeing this ENO condition and optimal power-
performance trade-off under transient harvested energy and
wireless channel quality is particularly challenging. This paper
proposes a multi-agent actor-critic reinforcement learning for
modulating both the transmitter duty-cycle and output power
based on the state-of-buffer (SoB) and the state-of-charge (SoC)
information as a state. Thanks to these buffers, differently from
the state-of-the-art, our solution does not require any model of
the wireless transceiver nor any direct measurement of both
harvested energy and wireless channel quality for adapting to
these uncertainties. Simulation results of a solar powered EH-
IoT node using real-life outdoor solar irradiance data show that
the proposed method achieves better performance without system
failures throughout a year compared to the state-of-the-art that
suffers some system downtime. Our approach also predicts almost
no system fails during five years of operation.

I. INTRODUCTION

Energy harvesting Internet of Things (EH-IoT) wireless
systems are a recent research trend, thanks to their low
maintenance cost and self-sustainability. To this end, the
energy neutral operation (ENO) must be satisfied [1]. In
practice, however, scavenged energy can be highly transient
and unpredictable due to weather conditions and geological
placement, while obstacles and movements affect the quality
of wireless channels [2]. Thus, the system needs to adapt to
these changes at run-time in order to meet its energy budget.

To guarantee ENO conditions, some researchers focus on
adapting the duty-cycle of the wireless transmission (TX)
under the constraint of quality of service (QoS) while others
focus on adapting the TX output power to the volatile channel
conditions to minimise retransmissions, i.e., latency and en-
ergy consumption [3] [4]. These adaptations are based on the
estimation of energy budget [3] and of wireless link quality
(RSSI: Received Signal Strength Indicator) [S], which often
entails prediction errors. Building a control system based on
such error-prone estimations may not be reliable.

To avoid these pitfalls, model-free approaches have been
introduced [6]-[8]. Instead of predicting the energy budget,
Aoudia et al. [6] propose maximising the packet rate under
ENO conditions based on the estimate of a state value func-
tion (here, SoC) by temporal-difference error (TD-error) in
a reinforcement learning (RL), or actor-critic method. This
implies that the observation of SoC eliminates the observation

of energy income and expenditure. Inspired by this idea, we
propose that the use of RL and the observation of a data
queue, referred to as state-of-buffer (SoB), can eliminate the
direct observation of wireless link quality, since it affects the
transmission rate. As such, this paper focuses on the possibility
that the uncertainties of scavenged energy and wireless link
quality can be addressed by using RL based on SoB and SoC
information.

In addition, we believe that our multi-agent RL approach
possesses high scalability because the SoB and SoC can be
the common system parameters for any action decision within
a single node. Hence, our major contributions are threefold:

1) we propose a model-free multi-agent actor-critic algo-
rithm for joint optimisation of TX duty-cycle and output
power under the ENO condition;

2) we show that, using RL, the observation of only SoB
and SoC eliminates the necessity of measuring data and
energy variables such as harvested and consumed energy,
and wireless link conditions. This eliminates not only the
energy expenditure and calibration required to perform
these measurements but the questionable validity of the
measurement itself;

3) simulation results show that our method yields less sys-
tem failures compared with an estimation-based state-of-
the-art (SotA) approach.

II. SYSTEM MODEL

This section describes a model of an EH-IoT node that
transmits data to a sink node over a wireless link. Fig. 1
illustrates the comparison of our approach with [3]’s.

A. Energy Harvesting Model and State-of-Charge

While many different energy sources can be harvested from
the environment, e.g. solar, wind, vibration, thermal, etc., in
this work, we focus on solar energy-harvesting. The harvested
power P (t) is calculated based on the solar irradiance as
1(t), the size of the photovoltaic (PV) cell as A, conversion
efficiency 7, and the tracking factor (TF) of maximum power
point tracking (MPPT) as described in [3].

To achieve the ENO condition, a supercapacitor is consid-
ered an optimal solution for energy storage [9]. It is charac-
terised by its capacity C', nominal voltage V;,om,, and threshold
voltage V;j.4, which gives the maximum and minimum (i.e.,
failing-threshold) energy levels, E,, 4, and Ejq;. With E(¢)
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Fig. 1: Conceptual view of proposed and SotA approaches

being the residual energy of the supercapacitor at time ¢, the
SoC ¢soc(t) can be represented as follows:
_ E(t) = Eraa
(bSOC(t) Emam - Efail (1)
Supercapacitors are exposed to a severe self-discharging.
The self-discharge rate during time At, denoted as 7, can be
up to 20% per day [9]. In our simulation, At is a minute
basis, and the rate is simplified as 7 = O.wa, which
represents 20% per day. The leakage power P is given
by Piear = 557C(1 — 73)V2, where V(t) is the voltage of
the supercapacitor. With the system power consumption of F,,
which is defined in Section II-C, the total energy consumption
ec is given by e. = (P, + Piear) At.

B. Application Data Model and State-of-Buffer

In this paper, we assume that an embedded sensor generates
data that are stored into the buffer for transmission. For
example, a temperature or motion sensor is employed and
characterized as a periodic or random workload, respectively.
Here, the incoming data d;,, (t) during [¢,t + At] is generated
based on the Poisson distribution with the average of .

A data buffer with maximum capacity B, is used to
temporarily store application data that awaits transmission as
well as data that has suffered a transmission failure. With
current buffer level B(t), the SoB ¢g,p is defined as:

B(t)

bso(t) = 5 2

C. Power Consumption Model

The power consumption and performance of the wireless
transmission (TX) are tuned by the adaptation of TX duty-
cycle D(t) and output power Py, (t). Assuming the cycle pe-
riod Teyele, the active time T, and the sleep time T, D(t)
is defined in this paper as the ratio of Ty t0 Teycie; therefore,
we have T,y = D(t) X Tyycre. Note that, in this paper, we
ignore the transceiver’s wake-up time overhead; therefore, T,
represents the sum of time-on-air of frame transmissions (TX)

and acknowledgements (RX). If PI* and Ty, respectively
denote the power consumption of the receiver and the time
required to receive an acknowledgement packet (assumed to be
equal to the acknowledgment frame’s time-on-air), the power
consumption in active mode P2¢* during T, is obtained by
Peet(t) = P - (1 — Je<k) + PI7 . Je<k where P.” is the
power consumption during packet transmission. If the power
consumption in sleep mode is denoted as P3P, the average
TX power consumption is then defined as P.(t) = B D+

nact
sl
I;g—,: (1 — D), where n?°* and 7*'P are the efficiency of the

DC-DC regulator in active and sleep mode [3], respectively.
We assume PSP is a constant value. While the overall power
consumption of an IoT node typically comprises of sensing,
processing and communication power, only the last one will
be considered in our simulation. Also, this work neglects
the power consumption overhead of the proposed actor-critic
based controller.

D. Wireless Channel Model

In our simulations, we assume the following node deploy-
ment scenarios: constant node-to-sink distance with variable
shadowing and no fading, or fixed node/sink positions (hence,
constant distance and shadowing effect) but with mobility-
induced fading. Many such models are available including
analytical models based on real-world measurements [10].

The relationship between the transmitted power P;, and
received power P, is determined using the distance d between
a transmitter and receiver. With total channel loss (in dB)
PL(d), we have:

Pro(dBm) = Pu(dBm)—PL(d)(dB) (3
To ease the comparison of our results, we employ an identical
channel model to the one in [3]. Here, a combined path-
loss and shadowing model [11] in outdoor environment is
assumed in which the total channel power loss can be given
by PL(d) = Kpy + 10 - nlogy, d%) + Phadow. Where
Yshadow 18 @ Gaussian-distributed random variable with mean
zero and variance Uzshadow that represents the shadowing
coefficient, whereas Kpy, n, and d; characterize the distance
dependent path-loss: K py is a unit-less constant determined
by antenna characteristics and the average channel attenuation,
n is the path-loss exponent, and dy is a reference distance.
With speed of light ¢ and wireless carrier frequency f, we

have Kpy = —20log;, (m).

The RSSI value for the control algorithm proposed by [3]
(Fig. 1) is found using (3) to deduce the packet error rate
(PER) based on theoretical models or calibration data. The
authors assume that the RSSI value is measured by the sink
node and is piggybacked to the sender. In our approach,
these models are used not in the system but only in the
simulations to calculate the PER which enables a random draw
that controls whether a given transmission is successful or not.
This information is used to find dy(t).



Algorithm 1: Multi-agent actor-critic algorithm for

TABLE I: Parameter set-ups for simulations

joint TX power and duty-cycle adaptation Parameter Value
Require: E(t), B(t), z € {D, P} PV cell size A 2.5 x 10~Tm?
* Observe the current state * PV conversion efficiency n 0.1
Tracking factor T'F 0.963
1: Eq.(1) and (2) Nominal/threshold voltage Viom/Vihrd 2.7V/0.9V
20 ¢4 (t) = ¢soB (t) - PSoC (t) Supply vol'tage Vad 1.8V
3 b (t) = (1.0 — 1) - t Capacity C' 1.0F
o (t) = ( bson(t)) - dsoc(t) Mean packet arrival rate \ 1.0pkt/min
4: Rw(t) = (1-0 - aw(t)) ’ (1-0 - ¢SoB(t)) ’ ¢SoC(t) The size of SoB 500pkts
5: VT(t - 1) = 9i(t - 1) . (10 - ¢SOB(t - 1)) ) QSSOC(t - 1) Cyde PeriOd Tcycle 60s
* TD-error for Actor-Critic * Initial duty-cycle D(0) 5.0 x 10~ *(i.e., 30ms)
— —— o : DO —1
6: 5..(1) = ¢ 0.t — Do (1) —0.(t — 1 (t —1 Minimum positive active time D, 5.0 x 10
*zé) . ]?Fﬁ)( ;Jr 1% *"”.(h *) ¢-(t) — O )o-( )DCDC conversion efficiency (active mode) 7%¢% 0.85 [3], [12]
ntc: (A a gorithm DCDC conversion efficiency (sleep mode) nSlp 0.75 [3], [12]
T Vg (t) = Ve Az Ug (t - 1) + o (t) TX current in sleep mode 900nA
8: 0, (t) =0, (t _ 1) + 00y (t)vx (t) Initial TX output power P;;(0) +1dB
* . . . * TX packet size N 32bytes
Actor: Policy gradient theorirﬁ,l), pa(t—1) RX acknowledgement packet size 20bytes
9: 7/)96 (t) = wz (t - 1) + 603596 (t)Tﬁb-&- (t - 1) Channel bit rate Ry 51.2kpbs
* Next TX current selection * Noise bandwidth 51.2kHz
0100 = 6a0) - Bn()- G0 s o —
_ L in - mar shad :
11: fiz(t) < Limit uf(t) to [a™, "] Distnce 4 TEm
12: ag (t + 1) ~ N(,Uac (t)7 Uw) ) Reference distance dg 1m
13: agz(t+ 1) < Clamp a, (¢t + 1) to [a", a**] The speed of light ¢ 3.0 X 10°m/s
14: Return the next action a, (¢t + 1) Signal frequency f 2.4GHz
Noise floor —115dB

III. ACTOR-CRITIC ALGORITHM

Our purpose is to avoid as many system failures as possible,
while providing required performance (power-performance
trade-offs), under power and performance uncertainties. Such
uncertainties vary between nodes that may be in different
environments. These facts dictate a model-free approach that
fully adapts itself to the uncertainties without any a priori
knowledge. Hence, inspired by [6], we present a multi-agent
actor-critic algorithm with linear function approximations
based on SoB and SoC. The algorithm for each agent is shown
in Algorithm 1, where x is the target variable to be controlled,
e.g., the duty-cycle D and the TX output power P;;, and a,
is the corresponding action.

The reward function R, expresses the goal of the algorithm.
As stated above, our goal is to address the power-performance
trade-offs under power and performance uncertainties. While
the power uncertainties are addressed only by the SoC obser-
vation in [6], we consider both the SoB and SoC to tackle
both uncertainties. Hence, the goal is to minimise the power
consumption (i.e., maximise the SoC) and to maximise the
performance (i.e., minimise the SoB). In this work, since the
system failure is more critical, minimising the action value is
also considered. Thus, the reward function is formulated as in
line 4 in Algorithm 1.

The value function V,, is the value of the state, which is
considered more valuable when the SoC is larger and the SoB
is smaller. Since linear function approximation requires less
computation and memory footprint as discussed in [6], we use
the same method to establish the relationship between V,, and
the state by using the parameter 6,,. As such, the value function
can be defined as in line 5. Thanks to this approximation,

the TD(\) algorithm can be applied to update 6, and to find
the optimal value function at run-time with learning rate o,
(line 7 and 8). Note that A\, is the exponential weighting for
the recency of the prediction, and the TD-error of the value
function is obtained by the equation in line 6, where ~, is the
discount factor.

The system can afford to provide more performance, i.e.,
higher values of action a,(¢) when the SoC level is higher.
This logic should be pushed even more when the SoB level is
higher in order to avoid data overflow. On the contrary, when
the SoB and/or SoC level is lower, less performance may be
preferable to prevent the system failure from happening. Thus,
again like in [6], we suppose the linear function approximation
between the mean action p,(¢) and the multiplication of SoB
and SoC, which gives the equation in line 10 with the policy
parameter 1, (t). Because of this approximation combined
with the Gaussian policy of mean p,(¢) and standard deviation
oy, the policy, i.e., the action selection probability in the
current state can also be optimised by updating the policy
parameter with learning rate 3, (line 9). This equation is
obtained by the policy gradient theorem. The learned policy
generates the next action (line 12), which is then limited to
[amim ™% (line 13).

x

IV. SIMULATION RESULTS

Simulations were conducted using Python to verify the
effectiveness of our proposed algorithm. To evaluate our
approach, we chose [3] as a recent SotA that presents a joint
TX adaptation under the ENO condition based on energy-
harvesting prediction and RSSI information.



TABLE II: Hyper-parameter settings

Agentz || as | B

Py 0.1
D 0.1

[ | o | Aa
1.0x1075 ] 0.9 [ 1.0x10~2 | 0.9
1.0x 1076 | 0.9 | 1.0x10~* | 0.9

We use a set of real-life outdoor solar irradiance (i.e. global
horizontal) data profile ending on May 31st, 2019 [13]. Since
the TX adaptation and harvested energy prediction of the
SotA are carried out in every 10 and 30min, respectively,
our control cycle time is set to 30min. The TX profile in
this paper is obtained from the data sheet of CC2500, Texas
Instrument [14], and the output power can take +1dB and
[0, —30dB] with step size of 2dBm. The duty-cycle D(t)
ranges [0.0, 1.0]. Every simulation uses the combinations of
hyper-parameter values for each RL agent shown in Table II.
The rest of the system parameters are listed in Table 1.

We conducted and averaged 100 simulations to compare
our approach with the SotA using real-life one-year harvesting
data. The evaluation metrics are: a) the number of times the
system fails; b) the ratio of system downtime to the whole
simulation time %; c) the throughput (pkt/min). Note that the
number of dropped packets was zero in every simulation. The
results for the metrics are shown in Table III. Since the SotA
method makes the most of the energy budget and neglects the
SoB, it tend to be zero most of the time (i.e., the throughput is
maximised with almost no latency). Meanwhile the proposed
method strikes the balance in the SoB-SoC trade-offs in every
30 minute, which resulted in the mean latency of 7.36 min with
the standard deviation of 9.63 min. This large variance can be
addressed by more fine-grained control policy. Nonetheless,
since the SotA frequently faces the system failures, it cannot
provide the throughput constantly as opposed to the proposed
RL approach which yields no system failures. Many system
fails of the SotA approach can be explained by the prediction
error caused by too much dependence on the “recent past”
information, which may lead to an optimistic control policy.
All kinds of prediction-based methods may suffer from pre-
diction errors which would be induced by the approximations
done by the chosen prediction algorithm. Also, this error
cannot be learned and minimised over time by their algorithm.
By contrast, the proposed method keeps minimising the TD-
error and takes actions based on the “current” SoC, which is
not impacted by past dissimilar experiences. To validate the
self-sustainability of our algorithm, we also conducted and
averaged 100 simulations using five years of real-life solar
irradiance data. The results are shown in Table III. The number
of times that the system failed at least once was merely 7
times out of 100. In such cases, the system failed 4.0 times in
average with 8.33h of mean system downtime. That accounts
for around 2h of mean system failure time for each failure.

V. CONCLUSIONS

This paper proposed a multi-agent actor-critic algorithm
for joint optimisation of transmitter output power and duty-
cycle using only SoB and SoC information. Thanks to these

TABLE III: Simulation results

# of system System fail Throughput
Method fails time (hrs) (pkt/min)
Ju et al. 2018 [3] 3.5¢3 4,275 0.51
Our algorithm (one year) 0 0.0 1.00
Our algorithm (10-years) 0.28 0.57 1.00
Worst case 10 21.91 1.00
Avg. of failed cases 4.00 8.33 1.00

information, the system adapts itself to all the uncertainties
regarding data and energy, especially wireless link conditions
and harvested energy, to satisfy the ENO condition and to
provide an optimal performance. Simulation results using real-
life solar irradiance data show that our algorithm enables an
EH-IoT system to operate with almost no system fail and an
optimal performance for several years.
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