Skip to Main content Skip to Navigation
Book sections

Pulsating heat pipes: basics of functioning and modeling

Vadim Nikolayev 1, * Marco Marengo 2
* Corresponding author
1 SPHYNX - Systèmes Physiques Hors-équilibre, hYdrodynamique, éNergie et compleXes
SPEC - UMR3680 - Service de physique de l'état condensé, IRAMIS - Institut Rayonnement Matière de Saclay
Abstract : For cooling of electronic or electric equipment, there is a growing industrial demand of high-performance thermal links. One such thermal device is the recently invented pulsating (called also oscillating) heat pipe (PHP). It consists of a closed capillary tube folded into meander and partially filled with a liquid. One side of the meander is in thermal contact with a hot spot, the other with a cold spot. The oscillation of the liquid plugs and vapor bubbles spontaneously occurs after the start of heating by the action of evaporation/condensation at the menisci. The plugs move between hot and cold areas by creating an efficient convective heat exchange. This advantage and also the simplicity of PHP make it highly competitive with respect to other kinds of heat pipes. However, the PHP functioning is non-stationary and depends on a large number of physical and material parameters. As a result, application of empirical correlations is quite unsuccessful, and more sophisticated theoretical and basic experimental studies are necessary. In this chapter, we present the current level of understanding and existing approaches to the PHP modeling and design. We start by describing the basic experiments with the simplest, single-branch PHP that contains only one bubble–plug couple. We show how the results of these experiments help to understand the PHP functioning and introduce the reader to the theoretical and numerical approaches to the PHP modeling by describing the relevant physical phenomena. Finally, we review the state-of-the-art of modeling of the multi-branch PHP. This chapter is complementary to the review of the experimental work on multi-branch PHPs presented in Chapter 1.
Complete list of metadata

https://hal-cea.archives-ouvertes.fr/cea-03261340
Contributor : Vadim Nikolayev <>
Submitted on : Tuesday, June 15, 2021 - 4:07:27 PM
Last modification on : Tuesday, July 13, 2021 - 10:47:29 AM

File

ModelingRev.vf.pdf
Files produced by the author(s)

Identifiers

Citation

Vadim Nikolayev, Marco Marengo. Pulsating heat pipes: basics of functioning and modeling. John R. Thome. Encyclopedia of Two-Phase Heat Transfer and Flow IV, pp.63-139, 2018, 9789813234369. ⟨10.1142/9789813234406_0002⟩. ⟨cea-03261340⟩

Share

Metrics

Record views

29

Files downloads

47