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ABSTRACT

Several computer vision applications such as person search
or online fashion rely on human description. The use of
instance-level human parsing (HP) is therefore relevant since
it localizes semantic attributes and body parts within a person.
But how to characterize these attributes? To our knowledge,
only some single-HP datasets describe attributes with some
color, size and/or pattern characteristics. There is a lack of
dataset for multi-HP in the wild with such characteristics.
In this article, we propose the dataset CCIHP based on the
multi-HP dataset CIHP, with 20 new labels covering these
3 kinds of characteristics.1 In addition, we propose HPTR,
a new bottom-up multi-task method based on transformers
as a fast and scalable baseline. It is the fastest method of
multi-HP state of the art while having precision comparable
to the most precise bottom-up method. We hope this will
encourage research for fast and accurate methods of precise
human descriptions.

Index Terms— Human parsing, Characterized attributes,
Dataset, Bottom-up segmentation, Scalability.

1. INTRODUCTION

Human semantic description is of utmost importance in many
computer vision applications. It consists in automatically
extracting semantic attributes corresponding to each person
of an image. Attribute extraction is useful for many types
of tasks, as image content description, image generation
for virtual reality applications or person retrieval from a
natural-description query, for security applications. Seman-
tic attributes can also help visual signatures used in person
re-identification and person search pipelines [1, 2].

Unlike attribute classification that aims to predict mul-
tiple tags to the image of a person [2] (sometimes deceived
by nearby people/elements), human parsing (HP) [3, 4, 5, 6]
aims to segment visible body parts, clothing and accessories
at the pixel level. Localizing semantic attributes has sev-
eral advantages. It provides a precise delineation of attributes

1CCIHP is available on https://kalisteo.cea.fr/index.php/free-resources/

Fig. 1: Example of CCIHP ground truths (1st and 3rd rows)
and our model predictions (2nd and 4th rows). First two rows:
RGB image and legends, human instance, and semantic at-
tribute maps. Last two rows: size, pattern and color maps.

necessary in augmented/virtual reality applications (entertain-
ment, clothing retail...) [7]. It is more explainable than global
tags (thus, more acceptable by human operators) and can cope
with multiple-person descriptions by directly assigning local-
ized people with attributes.

Public datasets have been proposed for HP (cf. details
in [8]). Many of them target retail/fashion applications
and, thus, gather single-person images in controlled environ-
ments [9, 10, 11, 12, 13, 14]. Others present multiple-person
images taken under in-the-wild environments [15, 16, 17, 6].
However, detecting the presence of attributes (e.g. pants,
coat) is, in general, not sufficient to describe a person distinc-
tively. Attributes should be characterized to provide a more
complete and useful description. But no available dataset pro-
vide localized attributes with characteristics (such as color,
size and pattern) in multi-person images. Indeed, even if
some fashion-aimed datasets [11, 12, 13, 14] provide some
color and pattern tags, they target single-person images with
good resolution and pose. MHP v2.0 [17] provides many
fine-grained attributes which partially include the size char-
acteristic (e.g. pants vs. shorts, boot vs. shoe) but no color
or pattern characteristics. This encouraged us to create a new



HP dataset with multi-person characterized attributes. Thus,
we have worked on CIHP [6], the largest existing multi-HP
dataset, and annotated characteristics.

In order to cope with characterized HP, we also propose a
method to serve as a baseline. Among existing HP methods,
single-person methods make the assumption of a single per-
son in the image, which means they do semantic segmentation
and do not manage the attribute-to-person assignment prob-
lem [3, 18]. In contrast, multi-person methods cope with this
problem by doing instance-level HP. They can be divided into
three main categories. Top-down two-stage methods require
human-instance segmentation of the image as an additional
input [19, 20, 21, 4]. Their computation time highly depends
on the number of people in the image. Top-down one-stage
methods [22, 23, 5] predict both human instances and at-
tributes. But computation time still depends of the number of
people in the image because the top-down strategy forces to
forward in the local parsing branch(es) as many times as the
number of ROI candidates (people). Bottom-up methods also
predict both human instances and attributes. Yet, their com-
putation time does not depend on the number of people in
the image [16, 17, 6]. However, these methods generally rely
on expensive test-time augmentations, post-processing [16, 6]
or heavy GAN architectures [17]. Low and constant com-
putation time is essential when applying multi-HP on large
amounts of possibly crowded images or videos. Thus, we
propose a fast end-to-end bottom-up model based on trans-
formers, which manages also the new task of attribute char-
acterization, with low and constant computation time.

The contributions of this article are two-fold: (1) a new
dataset for multi-HP in the wild with characteristics of local-
ized attributes; (2) a bottom-up multi-task model for instance-
level HP with characterized attributes. The proposed model
does not need post-processing. It has low constant processing
time, whatever the number of people per image, which makes
it scalable and deployable. We hope this new dataset and
baseline will encourage research for fast and accurate meth-
ods for more complete human descriptions.

2. PROPOSED DATASET

Our new dataset CCIHP (Characterized CIHP) is based on
the CIHP images [6]. We have kept the partition of the 33,280
images into 22,280 images for training and 5,000 for valida-
tion and testing. However, small changes have been made on
human instance masks and the 19 semantic attribute classes.
Moreover, 20 characteristic classes have been annotated in a
pixel-wise way. The first and third rows of Fig. 1 show an
example of the new CCIHP annotations. More examples can
be found on the supplemental material. Fig. 2 shows the dis-
tribution of images per label.

Human instances 110,821 people (+121 humans compared
to CIHP [6]) are annotated with full masks including acces-
sories that did not have labels in the semantic attributes. Thus,
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Fig. 2: Image distribution on the 19 (resp. 12, 4, 4) semantic
attribute (resp. color, size, pattern) labels in CCIHP.

belt or necklace are for example integrated into the human
masks. The number of people per image is still around 3.
Semantic attributes We have modified the CIHP classes
but we still get 19 classes of clothing and body parts in the
end. ‘Glasses’ class now includes sunglasses, glasses and
eyewears. ‘Scarf’ class is extended to all clothing worn
around the neck: tie, bow-tie, scout scarf, ... Masks of the
‘Dress’ class are split into the ‘UpperClothes’ and ‘Skirt’
classes. Masks of ‘Hair’ class are augmented with facial hair
like beard and mustache. Finally, a new ‘Mask’ class is added
for all facial masks.

Size characteristics Four size classes characterize clothing
attributes and/or hair: ‘Short/small’, ‘Long/large’, ‘Undeter-
mined’ (when the attribute in truncated or occluded by an-
other one), ‘Sparse/bald’ (for ‘Hair’ class only). Combin-
ing attribute classes with size characteristic gives fine-grained
attribute labels. E.g., ‘Pants’ + ‘Short’ = shorts; ‘Shoes’ +
‘Long’ = boots.

Pattern characteristics Four pattern classes characterize
clothing attributes and hair: ‘Solid’, ‘Geometrical’, ‘Fancy’,
‘Letters’. The ‘Solid’ class is 3 times more represented than
the others (cf. Figure 2) as all ‘Hair’ labels and lots of cloth-
ing are solid.

Color characteristics Twelve color classes characterize
clothing attributes and hair: ‘Brown’, ‘Red’, ‘Pink’, ‘Yellow’,
‘Orange’, ‘Green’, ‘Blue’, ‘Purple’, ‘Multicolor’ (when sev-
eral colors are evenly represented on the attribute part), and
colors with no specific hue, ‘Dark’ (black to gray), ‘Medium’
(gray), ‘Light’ (gray to white). E.g.: ‘Glasses’ + ‘Dark’ =
sunglasses; ‘Glasses’ + ‘Medium’ = reading glasses.

3. PROPOSED METHOD

With this new dataset, we propose an original baseline called
HPTR for Human Parsing with TRansformers. Our approach
is bottom-up and multi-task, sharing features between the dif-
ferent tasks to be scalable.
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Fig. 3: HPTR overview. From an RGB HxW image, our
multi-task bottom-up model predicts semantic maps with NA

(resp. NS , NP , NC) channels for the NA (resp. NS , NP ,
NC) learned attribute (resp. size, pattern, color) classes. With
the use of transformers, human instance maps are also pre-
dicted with NQ channels. NQ is also the number of queries
in the transformers’s decoder. Ndim, ND are hidden trans-
former dimensions set as in DETR [24].

HPTR Architecture can be split into 3 blocks (cf. Fig. 3).
(1) The Common Backbone will share its features with all
the task branches. It is composed of an encoder and a de-
coder to keep information at multiple resolutions, like in de-
tector architectures. As in PandaNet 3D human pose estima-
tion model [25], each pyramid feature map of the decoder is
passed through 4 convolutional layers and resized to the size
of the highest resolution level. These feature maps feed the
different task branches of the second and third blocks.
(2) In the Human Instance Block, we exploit transformers for
human detection as in the recent DETR approach (see details
in [24]), to ensure that our architecture keeps bottom-up prop-
erty and does not require post-processing at the end of the in-
ference. However, the mask branch of our Human Instance
Block differs from DETR: To share a maximum of features
with the other branches of our model, we do not generate in-
stance mask from feature maps of the encoder. Instead, we
concatenate the up-scaled feature maps of the decoder with
the feature maps from the transformer’s outputs. It is achieved
by creating a top-down pathway with lateral connections to
bottom-up convolutional layers. In the end, this block pro-
vides human bounding boxes, scores and masks.
(3) Semantic Block corresponds to the semantic attribute and
characteristic (size, pattern, color) branches. This block al-
lows a pixel-wise segmentation of people body parts, clothing
and their characteristics. Semantic Block is made of 4 similar
branches, one per task. Each of them is fed with the concate-
nation of the up-scaled pyramid feature maps of the decoder.
These maps are forwarded into a convolutional semantic head

to predict the semantic attribute, size, pattern and color out-
puts according to the classes defined in CCIHP.

Training objective To train the Human Instance Block, we
follow DETR [24] and use the same objective. The training
loss Lhuman is the sum of LHungarian (not presented in Fig.
3), Lbbox (an l1 loss), Lhuman class (a cross-entropy loss),
and Linstance (composed of a DICE loss [26] and a Focal
loss [27]). In the Semantic Block, we also use for each head a
DICE loss and a Focal loss (rather than a cross-entropy loss)
to better deal with imbalanced classes. No weighting is used
between each loss. The global training objective is then as
follows: L = Lhuman +Lattrib + Lsize + Lpattern + Lcolor.

4. EXPERIMENTS AND RESULTS

Implementation Details HPTR has been implemented in
Pytorch. The encoder is a ResNet50 pre-trained on ImageNet
dataset. The Human Instance and Semantic Blocks are trained
jointly for 300 epochs on 8 Titan X (Pascal) GPUs with 1 im-
age per batch. The long side of training and validation images
can not exceed 512 pixels. NQ is set to 40 person queries per
image. Please refer to [24] for other hyper-parameter settings
and input transformations.

Datasets and Evaluation Protocols HPTR is evaluated on
proposed dataset CCIHP, as a first baseline of characterized
multi-HP, and also on CIHP [6] for comparison with the state
of the art of multi-HP without characterization. We follow
PGN [6] evaluation implementation by using mean Intersec-
tion over Union (mIoU) [28] for attribute and characteristic
(size, pattern, color) semantic segmentation evaluation. As
instance-level HP evaluation metric, we use mean Average
Precision based on region (AP r

vol) [29]. We also compute
mean Average Precision based on part (AP p

vol) [17] following
Parsing R-CNN [23] evaluation protocol. Finally, we extend
AP r

vol metric to evaluate attribute characterization: Whereas
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Fig. 4: Precision/time trade-off of HPTR on CIHP and
CCIHP (on a TITAN X GPU), compared to RP Parsing R-
CNN that achieved best precision and speed in multi-HP state
of the art. HPTR is the fastest method and has constant time
while RP Parsing R-CNN (a top-down approach) is more ac-
curate but slower and not scalable: red horizontal solid line
shows time variation with 2 to 18 people per image.



all Hat Hair Glove Sunglasses Glasses UpperClothes Dress Mask Coat Socks Pants Torso-skin Scarf Scarf/Tie Skirt Face L-arm R-arm L-leg R-Leg L-shoe R-shoe
CIHP mIoU 53.0 58.1 70.4 10.5 33.9 - 53.5 34.6 - 41.2 17.3 49.2 57.2 7.6 - 19.5 69.0 38.9 31.7 24.1 18.8 20.1 16.9

CCIHP mIoU 52.1 55.0 69.7 7.5 - 41.0 48.9 - 8.2 44.7 16.8 50.0 57.8 - 34.1 38.0 66.0 38.8 30.2 23.7 19.5 19.5 17.1
CCIHP AP r

vol 29.7 52.0 60.9 6.6 - 32.1 45.1 - 10.7 48.3 12.8 52.8 48.1 - 28.0 40.3 71.3 9.0 11.6 10.8 8.4 7.2 7.2

(a)
semantic color semantic size semantic pattern

all Dark Medium Light Brown Red Pink Yellow Orange Green Blue Purple Multicolor all Short Long Undet. Sparse all Solid Geom. Fancy Letters
mIoU 43.8 60.3 23.1 31.5 9.0 19.7 11.4 11.2 1.1 12.4 15.7 4.9 14.2 58.8 55.0 58.6 20.5 14.6 67.4 72.3 30.0 21.0 16.3
AP cr

vol 15.0 40.8 18.4 25.2 5.5 17.4 9.1 9.6 0.07 14.8 22.3 3.2 13.2 24.5 33.1 37.5 13.5 13.7 20.9 36.9 14.4 14.1 18.2

(b)

Table 1: HPTR performances per class in %. (a) Results on CIHP and CCIHP attributes. (b) Results on CCIHP color, size and
pattern characteristics (Undet. stands for undetermined and Geom. for Geometrical).

AP r
vol evaluates the prediction of attribute (class & score) rel-

ative to each instanced attribute mask, mean Average Pre-
cision based on characterized region (AP cr

vol) evaluates the
prediction of characteristic (class & score) relative to each
instanced and characterized attribute mask, independently of
the attribute class prediction. Thus, AP cr

vol is jointly condi-
tional on human instance segmentation, attribute delineation
and characteristic segmentation.

Comparison with state-of-the-art of multi-HP without
characterization As multi-HP methods do not manage at-
tribute characterization proposed in CCIHP, we first evaluate
HPTR without characterization task, on CIHP dataset [6],
to give an idea of its speed vs precision trade-off relative to
these methods. We compare HPTR with best methods of
each approach family that have available models. Inference
time is averaged after 50 runs on a Titan X GPU, using CIHP
images containing from 2 to 18 people. Top-down approaches
reach the state-of-the art precision thanks to their local pars-
ing branches: two-stage M-CE2P [4] reports AP r

vol = 42.8%
and one-stage RP Parsing R-CNN [5] gets AP p

vol = 59.5%.
However, top-down approaches are known to have computa-
tion times dependent on the number of people in a scene and
not be easily scalable. Typically, on CIHP images, M-CE2P
(resp. RP Parsing R-CNN) runs in 752 ms–6.6 s (resp. 136–
195 ms) according to the number (2–18) of people per image.
By extrapolation to 40 people, this time would go beyond 14 s
for M-CE2P and 285 ms for RP Parsing R-CNN. In contrast,
bottom-up approaches, generally less accurate, have the ad-
vantage to run in constant time, independent of the number of
people. NAN [17] runs in about 275 ms (but no AP on CIHP
was reported). As for PGN [6], it reaches AP r

vol = 33.6%, and
AP p

vol = 39.0%, in around 1.4 s without counting additional
post-processing time. These models are more than 5 and 29
times slower than HPTR. Indeed, our bottom-up approach has
a good speed/precision trade-off with a low constant time of
around 50 ms and precision similar to PGN (AP r

vol = 29.5%,
AP p

vol = 41.6%). Fig. 4 shows the speed/precision trade-off
for the most precise method (RP Parsing RCNN) and the
proposed HPTR which is the fastest method of the state of
the art while having precision comparable to the most precise
bottom-up method (PGN). Low and constant computation
time is essential when applying multi-HP on large amounts

of possibly crowded videos.

Results of multi-HP with characterization Now, HPTR
is evaluated on CCIHP and gets an overall mIoU of 52.1%,
AP r

vol of 29.7% and AP p
vol of 40.8% (cf. Tab. 1a for results

detailed per attribute class). mIoU results are also presented
for CIHP with small differences in classes. Per class results
are close to those obtained on CIHP. The main differences are
on ‘Glasses’, ‘Scarf/Tie’ and ‘Skirt’ classes that are more rep-
resented in CCIHP (cf. Sec. 2). Tab. 1b shows the mIoU and
our new metric AP cr

vol for all characteristic classes. Overall,
HPTR reaches an mIoU of 43.8% (resp. 58.8% and 67.4%)
and an AP cr

vol of 15.0% (resp. 24.5% and 20.9%) for the color
(resp. size and pattern) labels. We can see that results are di-
rectly correlated to class frequency (cf. Fig. 2). So we would
like to address this class imbalance issue as future work to im-
prove HPTR performance. Consistency between characteris-
tic and attribute masks, observed qualitatively as in Fig. 1, is
driven by the backbone features shared by the task branches.
Besides, computation time of 56 ms shows that HPTR is also
scalable with these 3 additional characterization tasks (com-
pared to 50 ms without characterization, cf. Fig. 4). Thus,
the use of global branches for additional tasks, instead of local
branches, gives another advantage over top-down approaches.

5. CONCLUSION

In this article, we propose CCIHP, the first multi-HP dataset
with systematic characterization of instance-level attributes.
It is based on CIHP images, the largest existing multi-HP in-
the-wild dataset. We have defined 20 classes of characteris-
tics split into 3 categories (size, pattern and color) to better
describe each human attribute. To learn these characteristics,
we have developed HPTR, a bottom-up, and multi-task base-
line. It has low and constant computation time. Thus, it is
scalable with the number of people per image and the num-
ber of tasks to learn. We hope that research towards fast and
accurate methods for more complete human descriptions will
be encouraged thanks to this new dataset and baseline.
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