Skip to Main content Skip to Navigation
Journal articles

Transmission electron microscopy study of extended defect evolution and amorphization in silicon carbide under silicon ion irradiation

Abstract : The damage induced in 3C-SiC epilayers on a silicon wafer by 2.3-MeV Si ion irradiation for fluences of 10$^{14}$, 10$^{15}$, and 10$^{16}$ cm$^{-2}$, was studied by conventional and high-resolution transmission electron microscopy (TEM/HRTEM). The evolution of extended defects and lattice disorder is followed in both the 3C-SiC film and Si substrate as a function of ion fluence, with reference to previous FTIR spectroscopy data. The likelihood of athermal unfaulting of native stacking faults by point defect migration to the native stacking faults is discussed in relation to damage recovery. Threshold energy densities and irradiation doses for dislocation loop formation and amorphous phase transformation are deduced from the damage depth profile by nuclear collisions. The role of electronic excitations on the damage recovery at high fluence is also addressed for both SiC and Si.
Document type :
Journal articles
Complete list of metadata

https://hal-cea.archives-ouvertes.fr/cea-03180673
Contributor : Contributeur Map Cea <>
Submitted on : Thursday, March 25, 2021 - 11:00:10 AM
Last modification on : Wednesday, April 14, 2021 - 3:40:45 AM
Long-term archiving on: : Saturday, June 26, 2021 - 6:30:14 PM

File

 Restricted access
To satisfy the distribution rights of the publisher, the document is embargoed until : 2021-10-27

Please log in to resquest access to the document

Identifiers

Collections

Citation

Jean-Marc Costantini, Joel Ribis. Transmission electron microscopy study of extended defect evolution and amorphization in silicon carbide under silicon ion irradiation. Journal of the American Ceramic Society, Wiley, 2021, 104, pp.1863-1873. ⟨10.1111/jace.17595⟩. ⟨cea-03180673⟩

Share

Metrics

Record views

34