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CNRS (UMR7013), Parc de Grandmont, F-37200, Tours, FRANCE†

(Dated: June 8, 2021)

Nutation has been recognized as of great significance for spintronics; but justifying its presence
has proven to be a hard problem, since overdamping has long been assumed to wash out its effects.
In this paper we show that nutation can be understood as emerging from a systematic expansion
of a kernel that describes the history of the interaction of a magnetic moment with a bath of
colored noise. The parameter of the expansion is the ratio of the colored noise timescale to the
precession period. In the process we obtain the Gilbert damping from the same expansion. We
recover the known results, when the coefficients of the two terms are proportional to one another,
in the white noise limit; and show how colored noise leads to situations where this simple relation
breaks down, but what replaces it can be understood by the appropriate generalization of the
fluctuation–dissipation theorem. Numerical simulations of the stochastic equations support the
analytic approach. In particular we find that the equilibration time is about an order of magnitude
longer than the timescale set by the colored noise for a wide range of values of the latter and we can
identify the presence of nutation in the non-uniform way the magnetization approaches equilibrium.

I. INTRODUCTION

Recent progress in spintronics has led to the search
for processes and materials that can realize ever shorter
switching times for the magnetization–and this has
opened a window to a régime, where nutation effects of
the average magnetization cannot be ignored. How to
take them into account becomes, therefore, of practical
interest [1]. However how to describe the emergence and
the relevance of nutation from first principles, as mag-
netic moments interact with a bath, has been and re-
mains a challenging problem. One reason is that it is by
no means obvious how to extract its properties from the
interaction with the bath.

For magnetic materials a common way of describing
the effects of the bath is by the so–called Gilbert damping
mechanism [2]. What the two effects have in common is
the vector nature of the bath; where they differ is in how
this gets imprinted on the magnetization profile in each
case.

Providing a microscopic picture of how Gilbert damp-
ing may appear has long been recognized as an outstand-
ing question and there have been many attempts for ex-
plaining how it may occur. However whether there might
be any relation with the effects of nutation has only re-
ceived attention. [3], where both were assumed to be
present and certain consequences for ultrafast switching
were set forth.

In that case, though, it was assumed that the magnetic
moment was not in interaction with a stochastic bath
in full generality: the latter was present only indirectly,
through the deterministic Gilbert term.
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In this paper we shall show that the nutation term and
the Gilbert term can both be obtained as well–defined
contributions from a systematic expansion of the equa-
tions of motion of a magnetic moment, interacting with a
vector bath, whose stochastic component is drawn from
colored noise. The expansion parameter can be identified
as the ratio of the timescale of the colored noise to the
precession frequency of the Larmor motion, here simply
reduced to a Zeeman field only; this simplifies the calcu-
lations, without any loss of generality.

The equation of motion of a classical or quantum mag-
netic moment, in the presence of this external field, is
of first order in the dynamical variables and describes
precession [4]. This equation implies, in particular, some
non-trivial conservation laws: the norm of the magnetic
moment is conserved and, for a constant external field,
so is the component along it [3, 5].

When the magnetic moment interacts with a bath the
conservation laws take the form of fluctuation– dissipa-
tion relations, that describe the fact that the magnetic
moment is in equilibrium with the bath. Indeed, the pro-
posal in ref. [6] describes Gilbert damping and nutation
as successive, relativistic, corrections to the dynamics of
a spin, in equilibrium with a quantum bath.

In the present paper we wish to explore the scenario,
where a magnetic moment is in equilibrium with a vector
bath, described by colored noise. The correlation time
of the noise sets the short–time scale, so the relativistic
expansion of ref. [6] can be identified as the expansion in
powers of the ratio of the correlation time to the period
of precession.

We find that it is possible to recover both, Gilbert
damping and nutation of the magnetic moment, as terms
in such an expansion.

It should be kept in mind that what is the “most ap-
propriate” equation of motion (eom), that represents the
motion of a collection of interacting magnetic moments,
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is still the subject of intense debate, that goes back a long
time. Landau-Lifshitz [7, 8] and Gilbert [2] introduced
an eom that described exclusively transverse damping,
whereas Bloch considered an eom that described exclu-
sively longitudinal damping for the coarse–grained (spa-
tial) average of the magnetization of the interacting mag-
netic moments. These equations have been extensively
used to interpret measurements of spin relaxation and
provide a phenomenological viewpoint both for the origin
of the effective field that defines the precession axis for
the average magnetization, as well as for the origin of the
damping, whose effects can be reduced to a small number
of damping constants. A lot of attempts have been made
to provide a microscopic foundation for the equation of
motion and, in particular, for accounting for the degrees
of freedom that are behind the damping effects of the
magnetization [9–12]. There have been many arguments
about intrinsic and extrinsic effects, without, however,
any insight into how these might be distinguished clearly
in an invariant way.

For example, some authors [9, 13] considered a phe-
nomenological theory describing one classical spin, em-
bedded in a medium, that acts as a bath. This ap-
proach leads to the well-known Landau-Lifshitz equation
(resp. Bloch equation) in several limiting cases, i.e. in
the high temperature limit. The origin of the bath, that
describes the fluctuations of the average magnetization,
was not spelled out, and only its role as an external ther-
mostat (here called fluctuostat more generally) was as-
sumed. This approach highlights that the damping is
then a consequence of memory effects, i.e. non-local in
time. Memory effects in their own right, were investi-
gated theoretically in refs [14]. Depending on the form
of the memory kernel involved, it was found that these
can lead to a compensation or even to an overcompensa-
tion of the damping, since called “Gilbert damping”.

In these approaches, it is implicitly assumed that the
system does reach an equilibrium state, i.e. a state that is
invariant under global time translations. How the system
can, indeed, attain such a state has become a subject of
considerable interest in the domain of glassy systems (for
magnetic systems these are known as “spin glasses”; an
example of the vast literature is refs. [15, 16]). One way
can be described as due to inertia, i.e. that the medium is
not infinitely rigid [17]. This implies that the magnetic
response depends not only on the magnetization itself,
but on its velocity, as well, and, therefore, the equation
of motion is of second order in time [18, 19].

The corresponding equations of motion can be iden-
tified with those of an Euler top, in a time–dependent
external field, i.e. a torque. It is the impossibility of pro-
viding a local description of the dynamics in terms of one
set of first order equations that leads to non–local effects.
These can be captured by the so-called “atomistic spin
dynamics”–as implemented, for instance, by Bhattachar-
jee et al. [20]. A particular motivation was of capturing
processes in the femtosecond regime by including the mo-
ment of inertia. They derived a generalized equation of

motion for the magnetization dynamics in the semiclassi-
cal limit, which is non-local in both space and time. Con-
sequently, they recovered a generalized Landau-Lifshitz-
Gilbert equation, which includes the moment of inertia
and a second derivative of the magnetization in time.

Going further with this idea, Pervishko et al. [21] pro-
posed an alternative derivation of the Gilbert damping in
a tensor form, within a mean-field approach. In this for-
malism, the itinerant electronic subsystem is considered
in the presence of a nonequilibrium, classical magneti-
zation field. When this field is sufficiently smooth and
slow on the scales determined by the mean free path and
scattering rate of the conduction electrons, the induced
nonlocal spin polarization can be approximated using a
linear response Ansatz, thereby showing that the damp-
ing parameter emerges due to the coupling to the itiner-
ant subsystem. They derive a Kubo-Středa formula for
the components of the Gilbert damping tensor and illus-
trate its relevance for the two-dimensional Rashba fer-
romagnet, that can be realized at the interface between
nonmagnetic and ferromagnetic layers. They argue that
this approach can be further applied to identify prop-
erly the tensor structure of the Gilbert damping for more
complicated model systems and real materials.

More recently, Mondal et al. [22] identified Gilbert
damping and nutation terms as first- and second-order
relativistic effects respectively, arising from the Foldy—
Wouthuysen transformation of a Dirac particle (that in-
cludes spin− 1

2 ) motion under external fields, embedded
in a material medium. In addition, Bastardis et al. [23]
investigate the magnetization dynamics of ferromagnetic
nanoparticles in the atomistic approach taking account of
surface anisotropy and the spin misalignment it causes,
in order to demonstrate that such inhomogeneous spin
configurations induce nutation in the dynamics of the
particle’s magnetization.

What is particularly striking in all these approaches is
that, while all end up with a description of Gilbert damp-
ing and of the torque that drives nutation, they seem
to allow considerable ambiguity about the relative sign
between the Gilbert damping and the nutation torque
contribution.

While the microscopic origins of both Gilbert damping
and magnetic inertia are still under debate, this uncer-
tainty reflects a fundamental issue, that deserves closer
scrutiny.

We wish to report on our efforts to resolve this am-
biguity. We shall show that the coupling of a magnetic
moment to a vector bath of colored noise is sufficient for
describing the emergence of both Gilbert damping and
nutation, along with the relative sign; in addition, it pro-
vides a well–defined route to equilibrium. The parameter
that controls the relative significance of these effects is
the ratio of the colored noise timescale to the precession
period. This is where the vector nature of the bath is of
relevance.

The plan of our paper is as follows: In section II we
describe our model for a magnetic moment in a vector
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bath. In section III we provide representative solutions
of the equations of motion obtained by numerical inte-
gration and show how Gilbert damping and nutation can
be unambiguously identified. In section IV we present
our conclusions and ideas for further inquiry.

II. MAGNETIC MOMENT IN A BATH

Consider the spatial average of the magnetization M
of a block of magnetic material. The “reduced” mag-
netization, m ≡ M/Ms, depends only on time and its
dynamics can be described by its precession about an
effective field, which can be written as the sum of two
vectors ω0(t) + δω(t). ω0(t) is defined, in turn, as the
sum of the external magnetic field, applied on the mag-
netic system, and of the magnetic field, produced by the
average magnetization of the surrounding medium, i.e.
the reaction field.

δω(t) is a stochastic field, and is characterized phe-
nomenologically by a single relaxation time τ . It de-
scribes the fluctuations of the magnetic response of the
medium, in which the magnetic block is found.

We can describe the equilibrium of the magnetic
block with the medium, by the statement that 〈δω〉 ≡
γµ0Msχ

−1〈m〉 = Ωsχ
−1〈m〉, where χ is the susceptibil-

ity (not a function of time), and γ is the gyromagnetic ra-
tio. Here the average is taken over the realizations of the
surrounding medium, considered as a bath. This state-
ment means that the expectation value of the fluctuating
field at equilibrium is aligned with and proportional to
the expectation value of the magnetization [24].

When χ, which is identified as the cumulant of the
spin-spin function, depends explicitly on time, a convo-
lution between the fluctuating field and the magnetiza-
tion has to be used [25]. This procedure focuses on the
”relevant” degrees of freedom, labelled by m and sets
them apart from the ”irrelevant” variables, labelled by
δω. We are not interested, in the following, in the mi-
croscopic mechanisms that may produce the effects of
these variables [26, 27], just on their collective dynam-
ics on the “relevant” degrees of freedom. (It has been
proposed [28, 29] that the symmetry that expresses the
property that the physics should not depend on how the
“dynamical” from the degrees of freedom, that can define
the “bath”, are chosen, is supersymmetry.)

However it has been recently proposed that purely clas-
sical mechanics model is able to reproduce the LLG be-
havior with three positive moments of inertia and that
the effect of the externally applied magnetic field can be
directly described by the general Lorentz force, without
invoking on the Rayleigh function [30, 31]. This exhibits
an example of the degrees of freedom that can provide
the collective dynamics that is necessary.

These considerations can be expressed mathematically

as follows:

dm

dt
= (ω0 + δω)×m (1)

dδω

dt
= −1

τ

(
δω − Ωsχ

−1m
)

+ Ωsη (2)

where η is a random field, with ultra–local Gaussian cor-
relations, that describes the bath, which will be taken as
thermal, in what follows, concretely:

〈ηI(t)〉 = 0 (3)

〈ηI(t)ηJ(t′)〉 = 2DδIJδ(t− t′) (4)

where I, J are the indices of the vector components. D
is the amplitude of the noise and provides the definition
of the temperature T , through the Boltzmann–Einstein
relation, D ∝ kBT/~, thereby expressing the fluctuation-
dissipation theorem, for the bath. That the tempera-
ture is well–defined is ensured by the property that the
noise field η(t) is drawn from a stationary stochastic pro-
cess, i.e. enjoys global time translation invariance. Equa-
tions (1) and (2) were first defined in [13] and evaluated
in atomistic spin simulations [32]. It should be stressed
that this does not imply that the 2–point function of the
magnetic moment will have a simple dependence on the
temperature, due to the fact that its fluctuations, gener-
ically, will not be Gaussian [33].

Eq. (1) is purely transverse, therefore, the norm ofm is
conserved, if m ·ṁ = 0⇔ (d/dt)(||m||2) = 0. The latter
relation is, of course, true, in the absence of the bath; it
does require, however, another definition in its presence,
since the derivative is a singular quantity [34, 35]. Such a
definition can be obtained from the so-called Schwinger–
Dyson identities [36], namely as〈

m · dm
dt

〉
= 0 (5)

The field δω is defined by the stochastic differential equa-
tion (SDE) in eq. (2). Its solution can be shown to be
an Ornstein-Uhlenbeck process [37]. Therefore, m(t) be-
comes a stochastic process, as well; moreover, the noise,
that enters additively in the equation for δω, becomes
multiplicative for m(t); which implies that its correla-
tion functions acquire a non–trivial dependence on the
temperature, defined through the bath. This is, often de-
scribed as a “breakdown” of the fluctuation–dissipation
theorems [38, 39]. However, what this, simply, means is
that the non-linearities induce a non–trivial, but quite
transparent, dependence of the noise on the dynamics of
the magnetization; the two are, just, intertwined in a way
that is more subtle than hitherto acknowledged. Indeed,
this can be understood in terms of the variables that can
resolve the dynamics of the bath, as an expression of
reparametrization invariance in the space of fields.

First, suppose for simplicity that the system is not in
contact with the bath; η(t) is absent from eq. (2). Then,
eqs.(1,2) define the dynamics of a deterministic system
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and can be explicitly solved: First of all, equation (2)
can be solved for δω in terms of m(t):

δω =
Ωsχ

−1

τ

∫ t

−∞
e−

t−t′
τ m(t′)dt′

=
Ωsχ

−1

τ

∫ ∞
0

e−
u
τm(t− u)du

(6)

The equation (6) can then be introduced in eq. (1) to
produce an integral-differential equation for m:

dm

dt
=

(
ω0 +

Ωsχ
−1

τ

∫ ∞
0

e−
u
τm(t− u)du

)
×m (7)

The integral highlights the dependence of the solution on
the full history of the magnetization, prior to time t, as
well as the putative effects of the damping induced by
the memory kernel with a characteristic time τ , defined
by eq. (2). Indeed one of the purposes of this paper is to
provide an intrinsic definition of such damping effects in
an invariant way.

In order to find approximate solutions, it is useful to
expand m in a Taylor series about some reference time t
and exchange the sum and the integral. Assuming that
Fubini’s theorem holds[40], we thus find

δω =
Ωsχ

−1

τ

∞∑
n=0

(−1)n

n!

dnm

dtn

∫ ∞
0

e−
u
τ undu

= Ωsχ
−1

∞∑
n=0

(−1)n

n!

dnm

dtn
τnΓ(1 + n)

= Ωsχ
−1

∞∑
n=0

(−τ)n
dnm

dtn
.

(8)

Of course, it is by no means obvious either that this series
converges, or that it is even legitimate to exchange sum
and integral; we shall try to provide a posteriori checks
that are sensitive to these issues.

We shall now try to interpret the properties of the
magnetization, that are sensitive to our truncating the
series at a given order. When the sum stops at n = 1,
eq.(1) takes the form

dm

dt
≈
(
ω0 + Ωsχ

−1m− Ωsχ
−1τ

dm

dt

)
×m

= ω0 ×m+ αm× dm

dt

(9)

where α ≡ Ωsτχ
−1 can be, therefore, identified as the

Gilbert damping constant, and eq. (9) is the eom writ-
ten in the standard Gilbert form [2]. This expression
for α appears consistent with other forms reported in
the literature [25, 41]. It is therefore not surprising that
eventually the tensor character of the inverse of the sus-
ceptibility produces a tensor damping parameter, a fea-
ture already reported in ferromagnetic metals assuming
a torque-torque correlation model [42–44] in the highly
anisotropic scattering regime of magnons.

Upon including the n = 2 term, the equation for the
magnetization takes the form

dm

dt
≈
(
ω0 + Ωsχ

−1m− Ωsχ
−1τ

dm

dt
+ Ωsχ

−1τ2
d2m

dt2

)
×m

= ω0 ×m+ αm×
(
dm

dt
− τ d

2m

dt2

)
.

(10)
We remark that the term proportional to m ×

(d2m/dt2) can be interpreted as describing the ”nuta-
tion” of the magnetization [45, 46]. It should be noted,
at this point that this is the first term that is, manifestly,
symmetric under time–reversal. An issue of considerable
interest is that of the relative sign of the coefficients of
the terms in the equation of motion. Let us note that the
sign of the inertial damping (last term) seems to be oppo-
site to the sign of the usual damping term (second term),
which is in agreement with the theory of dampened mag-
netostriction, first introduced by Suhl [47, 48]. This is in
contrast with reference [19], where the signs of the two
damping terms are the same. However the microscopic
description in the two cases is completely different.

What we have thus shown is that both, the Gilbert
damping and the nutation term can be deduced as the
consequence of the coupling of a magnetic moment to an
external field, upon taking into account the coupling to
the bath self–consistently.

This constitutes the central result of the paper.
In this deterministic situation and because τ > 0, the

divergence of the volume of the phase space is negative–it
shrinks, due to dissipation. At this level of truncation the
existence of an equilibrium state for the magnetization
that is unique and is described by a point is obvious.
What is by no means obvious is what happens when the
non–local effects,described by the higher order terms, are
taken into account.

Setting this issue aside, for the moment, let us now
take into account the bath, at this approximation.

When the noise field η is present, δω becomes a
stochastic field, which contains an extra term. This term
takes into account the noise field in the memory kernel
as follows:

δω

Ωs
= χ−1

∞∑
n=0

(−τ)n
dnm

dtn
+

∫ ∞
0

e−
u
τ η(t− u)du (11)

Let us call Ω(t) ≡
∫∞
0
e−

u
τ η(t−u)du, the extra stochastic

field. Equations (3),(4) imply that the random field Ω
has the following properties:

〈ΩI(t)〉 = 0 (12)

〈ΩI(t)ΩJ(t′)〉 = DτδIJe
− |t−t

′|
τ (13)

which means that it describes colored noise! This im-
plies, in turn, for the magnetization that its correlation
functions are, generically, those of a centered and colored
noise stochastic process, and not of a white noise process,
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as it is usually assumed. We shall show now show that the
approximations involved in the truncation to second or-
der, i.e. including the nutation term, are self–consistent
by solving the equations (1) numerically.

III. NUMERICAL RESULTS

In order to check on how the signature of the Gilbert
damping and that of nutation, produced by the fluctuat-
ing field δω is imprinted in the magnetization profile, we
solve the coupled equations (1) numerically.

Precession can be readily identified as the rotation of
the magnetization around a given axis.

Nutation is the additional effect produced on the mag-
netization by the motion of this axis with time.

Upon averaging over the realizations of the noise, if
〈m〉 is a constant vector at equilibrium, then 〈δω〉 also
becomes a constant vector, proportional to 〈m〉. That
means that the magnetization spins first around ω0 at
short times and then settles to spinning around ω0+〈δω〉
at long times. But the torque produced at that time is
ω0 × 〈m〉, because of the proportionality between 〈δω〉
and 〈m〉. As a consequence, only during a transient time,
when δω strongly varies, can the motion of the average
magnetization be strongly affected.

All these features can be read off figure 1, that displays
both the motion of the average m and δω taken over
more than 1000 realizations of the noise, and for different
values of the correlation time of the noise, τ .
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Figure 1. (color online) Dynamics of the average magneti-
zation (left panels) and fluctuation field (right panels) for
a varying τ parameter. Conditions are ω0 =< 0, 0, 2π >,
D = 50, Ωsχ

−1 = π, m(0) =< 1, 0, 0 >, δω(0) =< 1, 0, 0 >.
Components of x, y, z are in black, red and green respectively.
The norm is displayed in blue.

The equations (1) are integrated globally with an ex-

plicit 4th order Runge-Kutta algorithm and a variable
stepping scheme, with only a renormalization of the mag-
netization at each step, in order to produce a precession
and nutation motion consistent on the S2 sphere. Better
symplectic algorithms [49], that preserve the structure of
the equations of motion, can be used, but they do not
affect the conclusions drawn.

What we observe here is that the average magneti-
zation 〈m〉 tends to align with the effective field along
the z-axis, by producing a dampened motion and a wrig-
gling movement of the 〈mz〉 component, which is charac-
teristic of a high frequency nutation effect, because of
the finite values of τ and Ωsχ

−1. When the suscep-
tibility χ is decreased, while keeping all the other pa-
rameters fixed, the internal precession field, coming from
the fluctuations, dominates the natural precession field
ω0, that increases the precession pulsation. We observe
that increasing τ and reducing Ms does indeed enhance
the effects of the nutation term. Moreover when τ is
large, the diffusive term, that is generated by the noise,
dominates the motion of the magnetization. A conse-
quence is that 〈m(t)〉 cannot stay constant even if, for
all values of τ , 〈m.m〉 = 1 by construction. When the
time is long enough to capture the growing main com-
ponent of the magnetization then 〈m〉 aligns itself on
〈δω〉. When τ is small, in the transient regime, the fluc-
tuating field 〈δω〉 cannot be sufficiently dampened and
follows more closely the dynamics of the magnetization.
For low values of the noise amplitude, the dynamics of
the average 〈δω〉 is insensitive to the noise amplitude
and its leading motion is described by τ〈δω〉 ≈ α〈m〉.
When τ takes values of O(1/ω0), the leading motion
of 〈m〉 is given by the Gilbert equation of precession
d〈m〉/dt ≈ (ω0 − α〈dm〉/dt) × 〈m〉, that produces in
return a dampened motion of 〈δω〉.

One conclusion of this study is identifying the appro-
priate dimensionless combinations. Our results moti-
vate defining the dimensionless quantities X0 ≡ τω0 and
X ≡ τδω. In terms of these te equations of motion 1
and 2 take the form (upon defining x = t/τ)

dm

dx
= (X0 +X)×m

dX

dx
= −(X − αm) + ∆η

(14)

where ∆ ≡ Ωsτ and 〈ηi(x)ηj(x
′)〉 = 2D/τδijδ(x−x′). In

the particular case where X0 = 0, i.e. when no external
torque acts on the magnetization and with α 6= 0, then
〈m〉 ≡m(0) is a constant of motion.

Upon averaging over the noise realizations, the dynam-
ics of 〈X〉 is given by 〈X〉 = (X0−αm(0))e−x +αm(0).
Thus the fluctuating field at equilibrium is given by
〈X〉∞ = αm(0) and no torque acts on the magnetiza-
tion, keeping it constant over time.

The figure 2 displays the dampened motion of m and
X as a function of the dimensionless time, for two con-
figurations : ΩsD = 0, i.e. without thermal noise, and
ΩsD = 50, for the same external field X0 =< 0, 0, π >.
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The longitudinal behavior of the average magnetization
is clearly visible by the decrease of the average norm
‖〈m〉‖. Moreover because the average eom for X is in-
dependent of the noise amplitude, as depicted, this is
not the case for the average magnetization, because there
〈X ×m〉 6= 〈X〉 × 〈m〉.

0 10 20 30
-1

-0.5

0

0.5

1

<
m

>

Ω
s
D=0

Ω
s
D=50

0 10 20 30

t/τ

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

<
τ
δ
ω

>

Figure 2. (color online) Dynamics of the average magneti-
zation (up panel) and fluctuation field (down) for a varying
ΩsD parameter. Conditions are τω0 =< 0, 0, π >, α = 1,
m(0) =< 1, 0, 0 >, τδω(0) =< 0, 0, 0 >. Components of x,
y, z are in black, red and green respectively. The norm is
displayed in blue.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we have shown that the mechanism of
Gilbert damping of the precession, as well as the effects of
nutation can be understood in terms of an effective inter-
action between magnetic moments and the fluctuations
of their effective fields, when the latter are described by
colored noise in a systematic expansion in powers of the
ratio of the correlation time of the noise to the period
defined by the precession torque.

We have identified a relation between the Gilbert
damping parameter and the static (or spectral) inverse
susceptibility of the material, with the contribution to
a characteristic relaxation time, that can be assigned to
magnon scattering mechanisms, in the relaxation time
approximation.

It is stressed that if it were possible to perform mea-
surements that could resolve the contribution of the nu-
tation loops, as they are superimposed on the usual pre-
cession motion of the magnetic moments, it would be
possible to find which processes provide the dominant
contribution leading to inertial damping, as recently been
reported [1].

The relative sign between the Gilbert damping and the
inertia term is negative as a consequence of the fact that
these two terms represent successive contributions of the
Taylor expansion. Therefore studies that assume that
these terms have the same sign make additional assump-
tions, that it would be very interesting to spell out.

The results obtained here relied on the equations of
motion alone. To better understand the space of states
of the magnetization, it will be useful to adapt the tech-
niques used in ref. [39] and to to understand the micro-
scopic degrees of freedom that can define the bath in an
invariant way it is necessary to implement the program
that is sketched in ref. [50].

Since the magnetization vector naturally evolves ac-
cording to Nambu mechanics, it will, also, be interest-
ing to understand how Nambu mechanics may accom-
modate Gilbert damping and nutation. Gilbert damping
has been studied, in this context, already, using different
tools, in refs. [5].

Of course probing how the truncation to n = 2 breaks
down and how it may be completed remains to be under-
stood.

We hope to report on progress on these issues in future
work.
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