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ABSTRACT

Aims. We present a new radiation hydrodynamics code called ARK-RT which uses a two-moment model with the M1 closure relation
for radiative transfer. This code was designed to be ready for high-performance computing on exascale architectures.
Methods. The two-moment model is solved using a finite-volume scheme. The scheme is designed to be asymptotic preserving in
order to accurately capture both optically thick and thin regimes. We also propose a well-balanced discretization of the radiative flux
source term which allows users to capture constant flux steady states with discontinuities in opacity. We use the library Trilinos for
linear algebra and the package Kokkos allows us to reach high-performance computing and portability across different architectures,
such as multi-core, many-core, and GP-GPU.
Results. ARK-RT is able to reproduce standard tests in both free-streaming and diffusive limits, including purely radiative tests
and radiation hydrodynamics ones. Using a time-implicit solver is profitable as soon as the time-step given by the hydrodynamics is
between 50 and 100 times larger than the explicit time-step for radiative transfer, depending on the preconditioner and the architecture.
Nevertheless, more work is needed to ensure stability in all circumstances. Using ARK-RT, we study the propagation of an ionization
front in convective dense cores. We show that the ionization front is strongly stable against perturbations even with destabilizing
convective motions. As a result, the presence of instabilities should be interpreted with caution. Overall, ARK-RT is well-suited to
studying many astrophysical problems involving convection and radiative transfer such as the dynamics of H ii regions in massive
pre-stellar dense cores and future applications could include planetary atmospheres.
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1. Introduction

In many astrophysical situations, radiation is an important pro-
cess which interacts with the surrounding gas; for example in
(exo)planet atmospheres (e.g., Thomas & Stamnes 2002), mas-
sive stars (e.g., Kuiper et al. 2010; Mignon-Risse et al. 2020),
and H ii regions (e.g., Spitzer 1978) up to the cosmic reionization
(e.g., Stiavelli 2009). In all these situations, the radiation can be
absorbed, thus heating the surrounding gas. Photons could also
be emitted by the gas or by another source. Photons could be
scattered, which will change their direction of propagation and
perhaps their frequency (Chandrasekhar 1960).

Two main regimes can arise, depending on the mean free
path of photons compared to the characteristic length of the sys-
tem (Mihalas & Mihalas 1984). On one hand, in the diffusive
limit, the medium is optically thick (mean free path of photons
much smaller than the characteristic length), and the radiation
and the matter strongly interact with each other. On the other
hand, in the free-streaming regime, the radiation does not affect
the gas, and the medium is optically thin (mean free path of pho-
tons greater than the characteristic length). Numerically, it is dif-
ficult to accurately capture both limits.

Because of the high number of degrees of freedom (i.e.,
the time, the position, the direction of propagation, and the fre-
quency of photons), only a few problems can be solved analyt-
ically (Chandrasekhar 1960) and direct simulations are out of

reach for modern computers. Different models have been devel-
oped to reduce the computational cost. Here, we focus on the
moment models (Levermore 1984), in which the specific inten-
sity is averaged over the direction of propagation of photons.
These models present several advantages: the computational cost
is lower than other methods such as the Monte-Carlo method,
and in general it is easy to couple these models with a grid-based
hydrodynamics code.

One can only consider the moment of zero order (the radia-
tive energy), leading to the flux-limited diffusion (FLD) approx-
imation (Levermore & Pomraning 1981). Because the moment
models consider only the moment of zero order, their com-
putational cost is quite low, but they are very diffusive in the
free-streaming regime. To tackle this issue, one can use a two-
moment model (radiative energy and radiative flux), with the
M1 closure relation (Dubroca & Feugeas 1999). However, this
method can suffer from artifacts when multiple beams cross
in the free-streaming regime (González 2006). One can solve
this issue by using a three-moment model (radiative energy,
radiative flux, and radiative pressure) with the M2 closure rela-
tion (Pichard et al. 2016). However, because of the increase of
unknowns, the computational cost also increases. In this work,
we have chosen to use the two-moment model with the M1 clo-
sure relation because the computational cost remains affordable,
and in our applications we do not encounter the problem of
beams crossing in the free-streaming regime.
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Even though the M1 model is accurate in both free-streaming
and diffusive regimes at the continuous level, numerical schemes
also need to properly capture both limits. Several approaches
have been developed. For example, Berthon & Turpault (2011)
presented a scheme based on an HLL solver with source terms
modified with a free parameter. Following this idea, we propose
a new so-called asymptotic preserving scheme also based on an
HLL solver. Nevertheless, we have chosen another parameter to
recover the asymptotic behavior in the diffusive limit. Further-
more, our integration of source terms is different. In many phys-
ical applications (e.g., clouds), optically thick regions are found
next to optically thin zones. We propose a well-balanced modi-
fication of the source term, which allows us to accurately reach
steady states in the presence of sharp transitions.

As a first application, we are interested in the development
of H ii regions in massive pre-stellar dense cores (Churchwell
2002). We focus on solving the radiation hydrodynamics
equations. An explicit solver for the radiative transfer would
be restricted by a Courant-Friedrichs-Lewy (CFL) condition,
limited by the speed of light. This will result in a very low time-
step compared to the hydrodynamics time-step, which is lim-
ited by the speed of sound through the fluid. Several methods
have been developed to get around this problem; we have cho-
sen a time-implicit solver (e.g., González et al. 2007). The tem-
porality of the radiative transfer is preserved, which is not the
case with the reduced-speed-of-light approximation (RSLA, e.g.,
Gnedin & Abel 2001). However, a time-implicit solver method is
costly because it requires solving large sparse linear systems.

Fortunately, progress has been made in linear algebra for
high-performance computing (HPC). Because the linear system
we have to solve is large and sparse, direct methods are out of
reach. Iterative solvers with preconditioners have been devel-
oped to tackle this issue (e.g., Saad 2003). In this work, we
use the library Trilinos (Heroux et al. 2005) because it allows us
to target different architectures, such as multi-core, many-core,
and GP-GPU. It also provides, among others, algebraic multigrid
(AMG) preconditioners.

The paper is organized as follows. In the following section,
we present the moment model and the M1 closure relation in
more detail. In Sect. 3, we outline our new numerical scheme,
which is well balanced and asymptotic preserving in the diffu-
sive limit. In Sect. 4, we provide details of some implementa-
tion features of our code ARK-RT, especially the Kokkos and
Trilinos libraries used for shared memory parallelism and linear
algebra for high-performance computing. We also show some
performance results. In Sect. 5, we present some numerical test
cases to show the importance of the asymptotic preserving and
well-balanced properties. Finally, in Sect. 5.6 we present a phys-
ical application of our method where we study the stability of
the ionization front in the dense cores of a H ii region.

2. Model

2.1. Physical model

In this work, we only consider gray radiative transfer, that is, we
have computed the average over the frequency. We also assume
local thermodynamic equilibrium (LTE) and we do not consider
scattering. The mathematical description of radiative transfer
was formalized by Chandrasekhar (1960):

(
1
c
∂

∂t
+Ω · ∇

)
I(x, t,Ω) = σB(x, t) − σI(x, t,Ω), (1)

where I, the quantity of interest, is the specific intensity, c is
the speed of light, σ is the opacity of the medium, and B is the
black-body-specific intensity. Also, x, t, and Ω are the spatial,
temporal, and angular variables. This model can be generalized
to multigroup radiative transfer (e.g., Turpault 2005).

Because the specific intensity I depends on six variables in
the three-dimensional case, the numerical treatment of Eq. (1)
becomes rapidly costly. To reduce the computational cost, we
use a moment method, which we present in detail in the follow-
ing section.

2.2. M1 model

Let us consider the three first moments of the specific intensity:
the radiative energy Er, the radiative flux Fr, and the radiative
pressure Pr defined as:

Er = 1
c

∮
4π I(x, t,Ω)dΩ

Fr =
∮

4π I(x, t,Ω)ΩdΩ
Pr = 1

c

∮
4π I(x, t,Ω)Ω ⊗ΩdΩ.

(2)

The mean over solid angles of Eq. (1) and its product by Ω give
the following system: ∂tEr + ∇ · Fr = cσ

(
arT 4

g − Er

)
(3a)

∂t Fr + c2∇ · Pr = −cσFr, (3b)
where Tg is the gas temperature and ar is the radiation constant.

The fluid and the radiation exchange energy and momentum
through emission and absorption. To ensure the conservation of
the total energy when the hydrodynamics is frozen, the energy
exchange term is given by

∂t(ρcvTg) = −cσ
(
arT 4

g − Er

)
. (4)

Here, ρcvTg is the gas internal energy, with ρ the density of the
fluid and cv the heat capacity, which is defined by cv = kb

µmH(γ−1)
for a perfect gas, where kb is the Boltzmann constant, µ is the
mean molecular weight, mH is the mass of hydrogen, and γ is
the adiabatic index of the gas.

We still have to specify a closure relation, that is, a way to
express Pr as a function of Er and Fr. The one chosen here is the
M1 model (Levermore 1984). From Dubroca & Feugeas (1999),
we write Pr = DEr where D is the Eddington tensor, defined by
D =

1−χ
2 I +

3χ−1
2 n⊗ n with χ the Eddington factor, I the identity

matrix, and f = Fr
cEr

= f n is the reduced flux. Here, χ can be
specified either by applying a Lorentz transform to an isotropic
distribution of photons (Levermore 1984), or by minimizing the
radiative entropy (Dubroca & Feugeas 1999). In both cases, we
have χ =

3+4 f 2

5+2
√

4−3 f 2
. Let us note that f ≤ 1, which ensures that

the radiative energy cannot be transported faster than the speed
of light.

The M1 model preserves both free-streaming and diffusive
limits. On one hand, if f = 1, then Pr = Er n ⊗ n, and only
the transport regime remains. On the other hand, if f = 0, the
model in the diffusive regime simplifies to the P1 model, with
Pr = 1

3 ErI. The radiative pressure tensor becomes isotropic. We
look into the diffusion limit more precisely in Sect. 2.4.

2.3. Radiation hydrodynamics

We now consider the radiation hydrodynamics equations. The
fluid evolution is described by the Euler equations expressing
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conservation of mass, balance of momentum, and balance of
energy. Because photons are relativistic particles, we have to
evaluate the quantities in the laboratory frame or the comoving
frame, which is moving with the fluid. On one hand, using the
comoving frame introduces nonconservative terms in the left-
hand side of the equations. On the other hand, the hyperbolic part
of the system remains simple in the laboratory frame but some
source terms have to be incorporated to describe the interactions
between the matter and the radiation. We have chosen the sec-
ond approach. These source terms characterize the momentum
and energy exchanges between the fluid and the radiation:

∂tρ + ∇ · (ρu) = 0 (5a)

∂t(ρu) + ∇ · (ρu ⊗ u + pI) = ρg +
σ

c
Fr −

1
c

SFr (u) (5b)

∂t(ρE) + ∇ · ((ρE + p)u) = ρg · u − cσ
(
arT 4

g − Er

)
−S Er (u) (5c)

∂tEr + ∇ · Fr = cσ(arT 4
g − Er) + S Er (u) (5d)

∂t Fr + c2∇ · Pr = −cσFr + cSFr (u), (5e)

where u is the material velocity, p is the pressure of the fluid,
g is the external gravitational field, and ρE = ρe + 1

2ρu2 is the
density of total matter energy with e the specific internal energy.
The terms S Er (u) and SFr (u) depend on the velocity u. Using
Eqs. (29) and (31) from Lowrie et al. (1999), we have{

S Er (u) = σ
c u · Fr + σ

c Eru · u + σ
c u · (u · Pr)

SFr (u) = σu · Pr + σarT 4
g u + σ

c2 u · (u · Fr),
(6)

at first order in u
c . To close the system, we also add the equation

of state of an ideal gas: p = ρe(γ − 1).

2.4. Diffusive limit in a static fluid

Let us now focus on the diffusive regime with the hydrodynamics
frozen, that is, the limit of large opacity, long timescale, and u =
0. We consider the P1 closure relation
∂tEr + ∇ · Fr = cσ

(
arT 4

g − Er

)
∂t Fr + c2

3 ∇Er = −cσFr

∂t(ρcvTg) = −cσ
(
arT 4

g − Er

)
.

(7)

Following Berthon & Turpault (2011), we introduce a rescal-
ing parameter ε to write the time and opacity as t̃ = εt and
σ̃ = εσ, respectively. The radiative energy, radiative flux, and
gas temperature are expanded with ε; for example Er = Er,0 +
εEr,1 + O(ε2). System (7) becomes

ε2∂t̃Er + ε∇ · Fr = cσ̃
(
arT 4

g − Er

)
(8a)

ε2∂t̃ Fr + ε
c2

3
∇Er = −cσ̃Fr (8b)

ε2∂t̃(ρcvTg) = −cσ̃
(
arT 4

g − Er

)
. (8c)

By expanding Eqs. (8a) and (8b) at zero order, we have{
Er,0 = arT 4

g,0
Fr,0 = 0. (9)

Expanding Eq. (8b) at first order leads to

Fr,1 = −
c

3σ̃
∇Er,0. (10)

Finally, expanding the sum of Eqs. (8a) and (8c) at second order
gives

∂t̃

(
Er,0 + ρcvTg,0

)
− ∇

( c
3σ̃
∇Er,0

)
= 0. (11)

In the diffusive limit, the total energy Er + ρcvTg at zero
order obeys the diffusion equation given by Eq. (11). Similar
development of the radiation hydrodynamics case is presented
in Appendix A. Section 3 presents our design of an asymptotic
preserving scheme, that is, a numerical scheme that will degen-
erate to the discretization of Eq. (11) in the diffusive regime.

3. Numerical scheme and algorithm

3.1. Radiation transport in a static fluid

Let us first introduce some notations: we use ∆x to denote the
step along the x-direction. here, ∆t is the time interval between
the current time tn and tn+1. We write xi the center of the cell i
and xi+ 1

2
the interface between the cell i and the cell i + 1. We

use the notation un
i to represent the averaged quantity associated

with the field u at time tn in the cell i (finite volume). Finally, we
use un

i+ 1
2

to represent the quantity associated with the field u at
time tn and at the interface between cells i and i + 1.

The development of the numerical scheme is presented only
in the one-dimensional case, but its extension to higher dimen-
sions is straightforward. To ease notations, we drop the indices r
for all radiative variables.

We present the development of the numerical scheme using a
time-implicit integration, but a similar development can be done
with a semi-implicit solver: source terms remain implicit, but the
hyperbolic part is time-explicit.

3.1.1. Hyperbolic system

Following González et al. (2007), we discretize the hyperbolic
part of Eq. (3) using a first-order Godunov-type solver (Toro
2009). From Berthon & Turpault (2011), we also introduce an
extra parameter α which is specified in Sect. 3.1.3:

En+1
i = En

i −
∆t
∆x

(
αi+ 1

2
F ∗

i+ 1
2
− αi− 1

2
F ∗

i− 1
2

)
+cσi∆t

(
ar

(
T n+1

i

)4
− En+1

i

)
Fn+1

i = Fn
i −

∆t
∆x

(
P∗

i+ 1
2
− P∗

i− 1
2

)
− c∆t{σF}n+1

i

ρcvT n+1
i = ρcvT n

i − cσi∆t
(
ar

(
T n+1

i

)4
− En+1

i

)
,

(12)

where F ∗
i+ 1

2
and P∗

i+ 1
2

are the numerical fluxes given by

F ∗
i+ 1

2
=

λ+

i+ 1
2

Fn+1
i −λ−

i+ 1
2

Fn+1
i+1

λ+

i+ 1
2
−λ−

i+ 1
2

+
λ+

i+ 1
2
λ−

i+ 1
2

λ+

i+ 1
2
−λ−

i+ 1
2

(
En+1

i+1 − En+1
i

)
P∗

i+ 1
2

= c2
λ+

i+ 1
2

Pn+1
i −λ

−

i+ 1
2

Pn+1
i+1

λ+

i+ 1
2
−λ−

i+ 1
2

+
λ+

i+ 1
2
λ−

i+ 1
2

λ+

i+ 1
2
−λ−

i+ 1
2

(
Fn+1

i+1 − Fn+1
i

)
,

(13)

with λ+

i+ 1
2

= max (0, λmax) and λ−
i+ 1

2
= min (0, λmin), where λmax

and λmin are the eigenvalues of Eq. (3). From Berthon et al.
(2007), we have

λmax,min =c

 fx

ξ
±

√
2
√

(ξ−1)(ξ+2)(2(ξ−1)(ξ+2)+3 f 2
y )

√
3ξ(ξ+2)

 , (14)
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with ξ =
√

4 − 3 f 2. See Fig. 1 of González et al. (2007) for more
details about the structure of the eigenvalues. {σF}n+1

i is a well-
chosen discretization of the term σFr in the cell i and at time
tn+1, and is specified in the following section.

3.1.2. Well-balanced modification of the source term

From Berthon et al. (2015), a well-balanced scheme catches the
correct steady regime. The steady state, if it exists, is given by

Er = arT 4
g (15a)

∇ · Fr = 0 (15b)
c∇ · Pr = −σFr. (15c)

Equation (15c) is discretized by c Pn+1
i+1 −Pn+1

i−1
2∆x = −{σF}n+1

i . An
obvious choice for {σF}ni is

{σF}n+1
i = σiFn+1

i . (16)

However, using this formulation, Eq. (15c) is discretized as

−
c
2

(
(∇ · P)n+1

i+ 1
2

+ (∇ · P)n+1
i− 1

2

)
= σiFi, (17)

with (∇ · P)n+1
i+ 1

2
=

Pn+1
i+1 −Pn+1

i
∆x . The radiative flux remains cell-

centered and is equal to the divergence of radiative pressure,
which itself is defined at the interfaces of the cells. This can
create some spurious flux at the interface when looking for a
steady state with a constant flux in the box (see Sect. 5.2).
Inspired by well-balanced schemes for hydrodynamics (e.g.,
Padioleau et al. 2019) which preserve the hydrostatic balance
between the pressure forces and the gravitational force (and the
similarity between this balance and that between radiative pres-
sure and the radiative flux source term in Eq. (15c)), we choose
to use an average of a face discretization of the radiative flux
source term:

{σF}n+1
i =

1
2

(
σi+ 1

2
Fn+1

i+ 1
2

+ σi− 1
2
Fn+1

i− 1
2

)
, (18)

with σi+ 1
2

= 1
2 (σi + σi+1)

Fn+1
i+ 1

2
= 1

2

(
Fn+1

i + Fn+1
i+1

)
.

(19)

One way to interpret this equation is to remember that

{σF}n+1
i =

1
∆x

∫ xi+ 1
2

xi− 1
2

σ(x)Fr

(
tn+1, x

)
dx. (20)

Equation (16) is obtained with the rectangle rule for numerical
integration of Eq. (20):

{σF}n+1
i =

xi+ 1
2
− xi− 1

2

∆x

(
σ

( xi− 1
2

+ xi+ 1
2

2

)
Fr

(
tn+1,

xi− 1
2

+ xi+ 1
2

2

))
= σ(xi)Fr(tn+1, xi)

= σiFn+1
i , (21)

whereas Eq. (18) is given by the trapezoidal rule:

{σF}n+1
i =

xi+ 1
2
− xi− 1

2

2∆x

(
σ

(
xi− 1

2

)
Fr

(
tn+1, xi− 1

2

)
+σ

(
xi+ 1

2

)
Fr

(
tn+1, xi+ 1

2

))
=

1
2

(
σi− 1

2
Fn+1

i− 1
2

+ σi+ 1
2
Fn+1

i+ 1
2

)
. (22)

To have

σi+ 1
2
Fn+1

i+ 1
2

= −c
Pn+1

i+1 − Pn+1
i

∆x
(23)

in the whole domain, we also impose it as boundary condition:

σ 1
2
Fn+1

1
2

= −c
Pn+1

1 − Pn+1
0

∆x
, (24)

where Pn+1
0 is the radiative pressure given by the boundary con-

dition. In that way, the radiative flux is centered at the interfaces
of the cells, as is the divergence of radiative pressure. A von
Neumann stability analysis of the modified scheme is presented
in Appendix B.

3.1.3. Asymptotic preserving scheme

We still have to specify our choice for αi+ 1
2
. Here, αi+ 1

2
= 1 corre-

sponds to a classic HLL scheme. However, the solution given by
an asymptotic preserving scheme has to approximate the solu-
tion of Eq. (11) as soon as the asymptotic regime is reached,
that is, it must incorporate large opacities and long timescales.
Unfortunately, a standard HLL scheme does not have this prop-
erty (see Sect. 5.1). To tackle this issue and obtain an asymptotic
preserving scheme, we choose

αi+ 1
2

=
1

1 − 3σi+ 1
2
∆x

(
1 − f 2

i+ 1
2

) λ+

i+ 1
2
λ−

i+ 1
2

c
(
λ+

i+ 1
2
− λ−

i+ 1
2

)
, (25)

with fi+ 1
2

= 1
2

(
f n
i + f n

i+1

)
. The derivation of Eq. (25) is pre-

sented in Appendix C. Other choices can be made (see e.g.,
Berthon & Turpault 2011). If σi+ 1

2
∆x goes to zero, αi+ 1

2
goes to

1, and we recover a standard HLL scheme. Considering the dif-
fusive limit, we prove that the scheme is asymptotic preserving
in Appendix C. We show that

En+1
i,0 = ar

(
T n+1

i,0

)4

Fn+1
i,0 = 0

σi+ 1
2
Fn+1

i+ 1
2 ,1

= − c
3∆x

(
En+1

i+1,0 − En+1
i,0

)
En+1

i,0 + ρcvT n+1
i,0 = En

i,0 + ρcvT n
i,0

+ c∆t
3∆x2

(
En+1

i+1,0−En+1
i,0

σi+ 1
2

−
En+1

i,0 −En+1
i−1,0

σi− 1
2

)
,

(26)

which is a standard discretization of Eqs. (9)–(11).
Unfortunately, we cannot prove that this scheme will pre-

serve the admissible states f < 1 and, indeed, numerical exper-
iments with this scheme have shown that we can get f > 1
when we are close to the free-streaming regime. In these situ-
ations, we can either enforce f < 1 (Sect. 5.6) or come back
to a centered discretization of the source term (Sect. 5.4). Fur-
thermore, the development of the asymptotic preserving scheme
with the well-balanced modification of the source term is only
done in the case of a static fluid. Using the asymptotic correction,
Equation (25) is only the first step to obtaining an asymptotic
preserving scheme in the case of a moving fluid (see Sect. 6.2).

3.2. Coupling to hydrodynamics

Following González et al. (2007), the resolution of the whole of
the system shown in Eq. (5) describing radiation hydrodynamics
is split into three steps:

A123, page 4 of 17



H. Bloch et al.: A high-performance and portable asymptotic preserving radiation hydrodynamics code with the M1 model

1. Update the hydrodynamics quantities (Eqs. (5a)–(5c)
without the terms of energy and momentum exchange)
using the well-balanced and all-regime solver developed in
Padioleau et al. (2019);

2. Update the radiative quantities and gas temperature
(Eqs. (3) and (4)) using the solver developed in Sect. 3.1. During
this step, the hydrodynamics quantities are frozen;

3. Add source terms S Er (u) and SFr (u). For simplicity, all
source terms which depend on the velocity are treated explic-
itly. The term σ

c Fr in Eqs. (5b) and (5e) is discretized using
the well-balanced scheme proposed in Sect. 3.1.2. All the other
terms remain cell-centered.

This splitting allows us to reduce the number of equations
solved implicitly, making the method more efficient.

3.3. Algorithm for nonlinear implicit solver

The time-step given by the CFL condition is much smaller for
radiation than for hydrodynamics. Indeed, for the radiation, it is
limited by the speed of light, whereas it is limited by the speed
of sound in the fluid for the hydrodynamics. Because we turn to
radiation hydrodynamics, we consider a long timescale for the
radiative transfer. Therefore, we use a time-implicit integration
for the radiative transfer.

3.3.1. Newton–Raphson method and linear solver

Because of the Eddington tensor, the eigenvalues in the numer-
ical fluxes, and the arT 4

g factor, the system is nonlinear and
is solved using a Newton-Raphson method. At each iteration,
we have to solve a linear system. Because the system is large
((2 + d)N unknowns, where d is the number of dimensions and
N the total number of cells) and sparse, it cannot be solved using
a direct method. Because of the numerical fluxes, the matrix is
not symmetric, and we use the biconjugate gradient stabilized
method (Van der Vorst 1992).

3.3.2. Preconditioner

Using large time-steps for the radiative transfer, the matrix is
ill-conditioned and iterative methods might not converge. One
way to deal with this issue is to use a preconditioner. Instead of
solving the original linear system Ax = b, we solve the right
preconditioned system AK−1Kx = b via solving AK−1y = b to
compute y and then Kx = y. As long as the matrix K is invertible,
this gives the same solution as the original system. If K is well
chosen, the condition number of the matrix AK−1 is lower than
that of A. For example, the Jacobi or diagonal preconditioner is
given by

Ki j =

{
Ai j if i = j
0 otherwise. (27)

See Saad (2003) for more details.
Numerous preconditioners have been developed over the

years; some of them perform well and some do not, depending
on the problem considered. Among different preconditioners, we
explore the algebraic multigrid (AMG) technique. We present
this method in the following section, and we compare it with
other preconditioners in Sect. 4.4: a standard ILU(k) factoriza-
tion (Saad 2003), a slightly modified variant of the standard ILU
factorization (Saad 1994), an additive Schwarz domain decom-
position (Cai & Sarkis 1999), and a classical relaxation method,
Jacobi with damping (Saad 2003).

3.3.3. Algebraic multigrid preconditioner

The AMG methods were first developed as linear solvers for
symmetric positive definite matrices arising from the discretiza-
tion of scalar elliptic PDEs. For such a matrix, classical iterative
methods are able to efficiently compute the high frequencies of
the solution, but lack efficiency when computing its low frequen-
cies. However, the computation is easier on a coarser grid with
fewer unknowns. The idea of the multigrid solver is to build a
coarser grid, solve the problem on this coarse grid, and then
finally interpolate the solution on the fine grid. We can subse-
quently define a restriction operator R which transfers vectors
from the fine grid to the coarse grid and an interpolation oper-
ator P used to return to the finer grid. P and R are nonsquared
matrices. From Saad (2003), the main steps of the method are as
follows:

1. Pre-smoothing: a few iterations of a simple method such
as Jacobi or an incomplete factorization are performed to get the
value x̃.

2. The residual r̃ = b − Ax̃ is projected over the coarse
grid with the restriction operator R, to get the residual equation
RAPy = Rr̃.

3. This equation is solved, possibly with a direct solver.
4. The solution y is interpolated over the fine grid with the

interpolation operator P and then x̄ = x̃ + Py.
5. Post-smoothing: a few iterations of a simple method are

again performed to get the solution ˜̄x.
The solution ˜̄x is used as a preconditioner result. If the coarse

grid has too many unknowns to be solved directly, this process
is applied recursively: the coarse grid becomes the fine grid and
a coarser grid is built. Therefore, we have a hierarchy of grids.
With a geometric multigrid solver, the restriction and interpo-
lation operators are determined by the mesh, whereas with an
algebraic multigrid solver they are automatically generated using
data from the matrix.

Before describing our numerical tests, we present details of
our implementation and parallelization in the following section.

4. Implementation and parallelization

We used the code ARK-RT1 for implementation, which is a
fork of the code ARK developed in Padioleau et al. (2019).
The hydrodynamics and gravity part of our solver is similar to
ARK and is solved with a well-balanced and all-regime solver.
Because the solver for the radiative transfer equations is time-
implicit, we have to solve large, sparse linear systems. This
is done using the library Trilinos, described in the following
section.

4.1. Linear algebra

We use the second generation of packages of the Trilinos
framework (Heroux et al. 2005), namely Kokkos (Edwards et al.
2014) for shared memory computation, Tpetra (Baker & Heroux
2012) for distributed vectors and matrices, Belos (Bavier et al.
2012) for linear solvers, Ifpack2 (Prokopenko et al. 2016)
for classical preconditioners, and MueLu (Berger-Vergiat et al.
2019a,b) for the AMG preconditioner. Let us first focus on the
package Kokkos.

1 https://gitlab.erc-atmo.eu/erc-atmo/ark-rt/tree/v1.
0.0
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4.2. Shared memory computation

As new architectures have increasing numbers of cores, the
distributed memory model is insufficient to take advantage of
all the computational power available. Therefore, we need to
use a shared memory model inside the nodes. Furthermore,
computational nodes are increasingly heterogeneous; for exam-
ple, multi-core, many-core, or accelerators such as GP-GPUs.
Each architecture requires its own interface, such as OpenMP
or C++11 threads for multi-core and many-core processors
and CUDA or OpenACC for NVIDIA GPUs. This raises the
problem of portability and performance portability: many HPC
codes are optimized for some specific architectures, and so run-
ning the code on a different architecture will result in poor
performance.

The library Kokkos (Edwards et al. 2014) tackles this issue.
The user has a unique code which can be compiled with dif-
ferent shared memory models such as OpenMP or CUDA.
Kokkos is based on different abstractions, like execution spaces
(where a function is executed), memory spaces (where the data
are stored), and execution policies (how the function is exe-
cuted). Also, Kokkos provides execution patterns such as parallel
loops and multidimensional arrays, and the storage is optimized
according to the architecture.

4.3. Implementation

For the hydrodynamics step, Kokkos is used as an indepen-
dent library for shared memory computation. Communications
between the nodes are handled by the Message Passing Interface
(MPI) programming model through a regular domain decom-
position. Following Kestener (2017), inside each node, the
domains are endowed with ghost cells used to implement phys-
ical boundary conditions, but also to contain values from neigh-
bor domains. The code is organized with computational kernels,
and each kernel is a C++ functor; see Padioleau et al. (2019) for
more details.

The second step is the time-implicit solver for radiative trans-
fer. The values of the matrix and the right-hand side of the lin-
ear system have to be updated at each iteration of the Newton–
Raphson method, but the graph of the matrix does not change.
Using Trilinos, the rows of the matrix are distributed across the
MPI processes, each of them is associated with a unique global
index. Each global index has a matching local index on the own-
ing process.

Trilinos provides several methods to update the coefficients
of the matrix. One of them uses only global indices, which
is recommended for Trilinos. However, this function can only
be called by the host. This has two main consequences: First,
because all the rows of the matrix have to be updated, we use
a sequential loop over the rows of the matrix. Second, in the
case where we are using GP-GPUs, we have to update the matrix
with data coming from the device. Therefore, we have to trans-
fer some data from the device to the host, update the matrix
with these data, and then transfer the matrix from the host to the
device; this last step is done implicitly by Trilinos. This process
increases the computational cost.

Another way is to use local indices. The package
KokkosKernels, which is part of the Kokkos ecosystem, pro-
vides several ways to update the coefficients of the matrix
through a kernel. This allows the use of a parallel loop (via
Kokkos::parallel_for) and we avoid data transfers between the
host and the device. For performance reasons, we use local
indices.

4.4. Performances

Thanks to Trilinos, we can use many preconditioners. Unfortu-
nately, they do not behave in the same way when the size of the
system increases. All tests are performed on Poincare, our local
cluster at Maison de la Simulation. Each node consists of two
Sandy Bridge E5-2670 at 2.60 GHz (2 × 8 cores, 32 Go RAM)
processors. We use a hybrid configuration MPI/OpenMP, with
one MPI process per socket to avoid NUMA effects.

We first performed a weak scaling test, where we consider
a two-dimensional case with periodic boundary conditions and
a hot source located at the center of each domain. Each MPI
process provides a piece of the whole domain of 15002 cells,
and therefore the size of the system increases with the number
of MPI tasks. The resolution is close to our target for three-
dimensional simulations. As shown in the left panel of Fig. 1, for
all preconditioners, the number of iterations remains constant,
at around 10 iterations for the AMG preconditioner, around 20
iterations for both incomplete factorizations and the additive
Schwarz domain decomposition, and around 250 iterations for
the relaxation. As shown in the right panel, the speed-up reaches
a plateau of 80% to 90% of maximum performance depending
on the preconditioner.

Figure 2 shows the number of iterations and the speed-up as
a function of the number of MPI processes for a strong scaling
test. We now consider a Marshak wave propagation in the dif-
fusive limit. The global resolution remains constant as the num-
ber of processes increases, and is set to 20482 cells. Because
the global resolution is constant, one can expect the number of
iterations to also remain constant when the number of MPI pro-
cesses increases. However, using the AMG (orange curve) and
the incomplete factorizations (RILUK, ILUT; green curve in left
panel), when four MPI processes or more are used, the number
of iterations is twice the number of iterations reached with one
or two MPI processes. Therefore, the computational time is the
same when using two or four MPI processes. Furthermore, all
tested preconditioners and the linear solver require several com-
munications per iteration, which likely becomes the main cost
when the local resolution decreases.

Thanks to Kokkos, we can use exactly the same code on
different architectures, namely Sandy Bridge processors and
NVIDIA GP-GPUs (e.g., K80). Unfortunately, the memory
required by the AMG preconditioner with a 15002 simulation
is greater than the memory available on a K80 GPU. For the
next tests, we use a lower resolution of 10002 cells. Table 1 sum-
marizes the computational time for a fixed problem with differ-
ent schemes and different architectures. As the explicit solver is
restricted by a CFL condition, it requires several thousand time-
steps whereas the implicit solver only needs a few time-steps to
reach the same final time. Updating the matrix in parallel allows
for a 25% reduction in computational time required. On a CPU,
the implicit solver is around 160 times faster than the explicit
solver, whereas on a GPU it is only 11 times faster.

Figure 3 compares the computational time with different pre-
conditioners, on both a CPU and a GPU. Except for the implicit
solver using the AMG preconditioner, all solvers are faster on a
GPU than on a CPU; up to three times faster for the relaxation
preconditioner. Part of the AMG algorithm probably remains
sequential. On a CPU, the AMG preconditioner is faster than the
relaxation preconditioner. The other preconditioners are slower,
by up to a factor eight between the relaxation and the additive
Schwarz domain decomposition on a GPU.

Figure 4 compares the memory consumption with different
preconditioners. Using GP-GPU, most of the data are located
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Fig. 1. Weak scaling test. Each MPI process treats 15002 cells. We tested different preconditioners: Jacobi with damping (Relaxation), AMG, stan-
dard ILU(k) factorization (RILUK), a variant of the standard ILU factorization (ILUT), and additive Schwarz domain decomposition (Schwarz).
Left panel: number of iterations to solve the linear system as a function of the number of cells. Right panel: speed-up as a function of the number
of MPI processes.
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Fig. 2. Strong scaling test. The global resolution is 20482 cells. The same preconditioners as those listed in Fig. 1 were tested. Left panel: number
of iterations to solve the linear system as a function of the number of MPI processes. Right panel: speed-up as a function of the number of MPI
processes.

Table 1. Computational time with both explicit and implicit solvers on CPU and GPU.

Scheme Number of time steps Computational time OpenMP (s) Computational time CUDA (s)

Explicit 73823 6991 839
Implicit (non-parallel update) 1 60 93
Implicit (parallel update) 1 44 77

Notes. With the implicit solver, the matrix is updated in a parallel or a non-parallel way. The implicit solver uses the AMG preconditioner.

on the device, but Trilinos still allocates some memory, namely
between 0.125 GB and 0.208 GB, on the host, unlike the explicit
solver. Using the relaxation as a preconditioner, the amount of
memory allocated is lower than with the other preconditioners
(7.3 GB for the relaxation against 11.5 GB for the AMG).

Choosing a well-suited preconditioner can be challenging
and problem dependent. Once the preconditioner is chosen, it
depends on many parameters. For example, Trilinos allows the
user to choose the damping factor ω for the relaxation method or
the smoother and the coarse solver for the AMG. Performances
and stability can largely depend on these choices. For example,

the relaxation method seems to be well suited for this problem
with low computational time, and memory consumption, but in
many other test cases, the linear solver will not converge. The
AMG preconditioner performs well on a CPU but is less effi-
cient on a GPU. Both incomplete factorizations and the additive
Schwarz domain decomposition are slightly less efficient than
the AMG preconditioner. Overall, we find the AMG precondi-
tioner and the relaxation method to produce a good compromise
between stability and performance.

The performances we obtain thanks to Kokkos and Trilinos
are encouraging for the study of astrophysical problems. The
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Fig. 3. Computational time for the implicit solver with different precon-
ditioners (as listed for Fig. 1) on different architectures (Sandy Bridge
CPU and K80 NVIDIA GPU). The resolution is 10002 cells.
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Fig. 4. Memory consumption for the implicit solver with different pre-
conditioners (as listed in Fig. 1) on different architectures (Sandy Bridge
CPU and K80 NVIDIA GPU). The resolution is 10002 cells.

time-step given by the hydrodynamics can be written as CFL ∆x
c .

Using a relaxation as a preconditioner, we need CFL ≥ 50
on a CPU and CFL ≥ 100 on a GPU to save computational
time, whereas when using an incomplete factorization, we need
CFL ≥ 250 on a CPU and CFL ≥ 1000 on a GPU. We need a
larger CFL number on a GPU because the explicit solver is more
efficient on a GPU than on a CPU.

In the following section, we use several numerical tests to
show that the scheme developed in Sect. 3 is well suited for the
study of radiation hydrodynamics problems.

5. Numerical results

We performed a series of verification tests to validate different
properties of the scheme: the asymptotic correction with a Mar-
shak wave, the well-balanced property to reach a steady state
with a jump of opacity, the properties of the M1 model with a
beam test and a shadow test, and the coupling to the hydrody-
namics with radiative shocks. We also present a physical applica-
tion, investigating the stability of the ionization front in the dense
core of a H ii region. To ease notations, we define the radiative

temperature as Tr =
(

Er
ar

) 1
4 .
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Fig. 5. Marshak wave simulation. This figure shows a snapshot of the
gas temperature at time t f = 2×10−4 s, with and without the asymptotic
correction and the reference solution. Spatial resolution is n = 400 and
the opacity is σ = 10 000 cm−1.

5.1. Marshak wave

From Mihalas & Mihalas (1984), a Marshak wave is the propa-
gation of hot radiation into a cold medium. We consider a one-
dimensional case in the diffusive limit in order to test the asymp-
totic preserving scheme developed in Sect. 3.1.3.

The length of the computational domain is 1 cm; it is dis-
cretized with 400 points. Initially, the medium is at equilib-
rium with the radiation: T0 = Tr = 300 K, the initial radia-
tive flux is Fr = 0. We consider a perfect gas with γ = 5

3 .
The hydrodynamics is frozen. The density is constant, such
that ρcv = 1 J K−1 cm−3, and the opacity is also constant, with
σ = 10 000 cm−1, and therefore σ∆x = 25. At time t = 0, a
source is lit at the left boundary with Tr = 1000 K.

The results are shown in Fig. 5 at time t f = 2 × 10−4 s.
We compare different solutions: a reference solution, the solu-
tion given by our asymptotic preserving scheme, and the solution
given by a standard scheme. The reference solution is given by
a standard discretization of Eq. (11). From Audit et al. (2002),
when a scheme that is not asymptotic preserving is used with
σ∆x � 1, the grid does not sample the mean free path of the
photons and the solution is dominated by numerical diffusion.
The relative L2 error between the reference solution and the solu-
tion with αi+ 1

2
given by Eq. (25) is 1.1%, whereas with the stan-

dard HLL scheme the relative L2 error is 84%. Using the asymp-
totic correction, we recover the correct behavior in the asymp-
totic limit.

5.2. Steady state with a jump of opacity

In the previous case, the opacity is constant, we now consider a
test with a jump of opacity, still in the one-dimensional case. We
use this test to highlight the need for a well-balanced modifica-
tion of the source term.

The length of the computational domain is 1 cm; it is dis-
cretized with 100 points. Initially, the medium is at equilibrium
with the radiation: T0 = Tr = 300 K, the initial radiative flux is
Fr = 0. The opacity σ is now a function of space:

σ(x) =

{
10 000 cm−1 if x < 0.5,
0 if x > 0.5. (28)
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Fig. 6. Simulation of a steady state with a jump of opacity. The opacity
is piecewise constant, and a jump is located at x = 0.5 cm (gray line).
This figure shows a snapshot of the radiative flux at time t f = 10−3 s.

At time t = 0, a source is lit at the left boundary with Tr =
1000 K.

Figure 6 shows the radiative flux at time t f = 10−3 s. From
Eq. (15b), when the steady state is reached, we expect the radia-
tive flux to be constant in the box. Using a standard discretiza-
tion of the source term, such as Eq. (16), a spurious peak located
at the discontinuity of opacity is observed (orange curve). The
value taken by the radiative flux is more than 20 times the
expected value. This seems to be caused by a numerical instabil-
ity. This can result in f > 1 during the iterations of our Newton–
Raphson implicit scheme, which is not physically admissible.
However, using the well-balanced modification of the source
term proposed by Eq. (18) (blue curve), the spurious peak no
longer appears and the constant steady state is reached.

Using the standard discretization of the source term in
Eq. (16), one can show that the numerical scheme is uncondi-
tionally stable in that the error between the numerical solution
and the exact solution goes to zero as ∆x and ∆t go to zero. The
spurious peak seems to be due to a lack of precision in the inte-
gration of the source term. Using Eq. (18), the source term is
defined at the interfaces of the cells and balances the divergence
of radiative pressure, which is also defined at the interfaces.

5.3. Beam

We now perform the same two-dimensional test as in
Richling et al. (2001), González et al. (2007). The domain
[−1, 1] × [−1, 1] is discretized with 128 × 128 cells. The ini-
tial temperature is T0 = Tr = 300 K, the initial radiative flux is
Fr = 0, and the opacity is σ = 0. At time t = 0, a beam with
T = Tr = 1000 K is introduced with an angle of 45◦. The beam
is located at x = −1 and y ∈ [−0.875,−0.75]. Because we are in
the free-streaming regime, we cannot use large time-steps. For
performance reasons, we use the semi-implicit scheme.

Because there is no opacity, the beam propagates in the vac-
uum, and we expect it to cross the box without dispersion. The
direction of the beam is not along the mesh axis; we use this test
to quantify the numerical diffusion. Figure 7 shows the radiative
energy at steady state, with the eigenvalues fixed to ±c and with
computed eigenvalues. Because there is no opacity, neither the
asymptotic correction nor the well-balanced source term affect
the result, and we recover the same result as in González et al.

Fig. 7. Beam simulation, showing radiative energy. The eigenvalues are
fixed to ±c (upper panel) or calculated with Eq. (14) (lower panel).
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Fig. 8. Beam simulation, showing a horizontal cut in Fig. 7 at the middle
height.

(2007). Figure 8 shows the horizontal cut at the middle height.
The beam introduced at the boundary is sampled over 8 cells.
Ideally, without any numerical diffusion, we would expect the
width of the beam to remain exactly 8 cells. With the computed
eigenvalues, we can keep the numerical diffusion under control.
Using fixed eigenvalues, the width of the beam at middle height
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Fig. 9. Shadow simulation, showing snapshots of the radiative tempera-
ture at time t f = 10−10 s with different closure relations: P1 model (upper
panel), M1 model with fixed eigenvalues (middle panel), and M1 model
with computed eigenvalues (lower panel).

is approximately 30 cells, whereas it is only 24 cells with calcu-
lated eigenvalues.

The main difference in this test between ARK-RT and HER-
ACLES (González et al. 2007) is the computation of the eigen-
values. We use the exact eigenvalues given by Eq. (14) from
Berthon et al. (2007), whereas in González et al. (2007), to save
computational time, the eigenvalues are computed once at the
beginning of the simulation and then interpolated. However, this
approximation does not impact the result.

5.4. Shadow

Let us now consider a two-dimensional test with source terms.
Following Hayes & Norman (2003), González et al. (2007), we
consider a shadow test. The computational domain is a cylin-
der of length L = 1 cm and radius R = 0.12 cm, and is dis-
cretized with 280 × 80 cells. A spheroid clump is located at
the center of the box, on the symmetric axis: (zc, rc) = (0.5, 0).
The extension of the clump is (z0, r0) = (0.1, 0.06). Initially, the
medium is at equilibrium with the radiation, with T0 = Tr =
290 K. We consider a homogeneous gas, with ρ0 = 1 g cm−3,
except for the clump with density ρ1 = 100ρ0. The bound-
ary of the clump is smoothed: ρ(r, z) = ρ0 +

ρ1−ρ0
1+exp ∆

with

∆ = 10
((

z−zc
z0

)2
+

(
r−rc

r0

)2
− 1

)
. The opacity in the medium is

σ = σ0

(
T
T0

)−3.5 (
ρ
ρ0

)2
with σ0 = 0.1 cm−1. At time t = 0, a

source is lighted at the left boundary with Tr = 1740 K and
the reduced flux is set to f = 1. Because f is close to 1 in the
free-streaming regime, we encounter f > 1 in the simulation. To
tackle this issue, we use the nonwell-balanced scheme: the radia-
tive flux source term is discretized using Eq. (16). Because we
are in the free-streaming regime, we cannot use large time-steps.
For performance reasons, we use the semi-implicit scheme. To
recover the same result as in González et al. (2007), we use
λ+

i+ 1
2

= max(0.1× c, λmax) and λ−
i+ 1

2
= min(−0.1× c, λmin), where

λmax and λmin are given by Eq. (14).
Figure 9 shows the radiative temperature at the final time

t f = 10−10 s with different closure relations: the P1 model, the M1
model with fixed eigenvalues, and the M1 model with computed
eigenvalues. Because of the high opacity in the clump, the light
does not cross it and we expect the shadow behind it to remain
stable.
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Fig. 10. Shadow simulation, showing the radial profiles of the radia-
tive temperature at time t f = 10−10 s with different closure relations: P1
model, M1 model with fixed eigenvalues, and M1 model with computed
eigenvalues.

As in Hayes & Norman (2003), González et al. (2007), we
plot the radial profile of the radiative temperature at the right
boundary (Fig. 10). Using the P1 model, the radiative pressure
is isotropic, and therefore the photons go around the obstacle
immediately, heating the whole domain. Using the M1 closure
relation, the shadow is better preserved, and the temperature
behind the obstacle remains at its initial value, 290 K. As the
opacity remains rather low outside of the clump and the light has
not crossed the obstacle, the asymptotic correction has no impact
on the result. Because the boundary of the clump is smoothed,
the transition between the optically thick and thin medium is less
sharp than in Sect. 5.2 and the well-balanced modification of the
source term is not necessary.

5.5. Radiative shocks

We finally consider radiative shocks: the gas and the radiation
exchange energy and momentum. Following Ensman (1994),
Hayes & Norman (2003), González et al. (2007), we consider
a one-dimensional homogeneous medium, with ρ = 7.78 ×
10−10 g cm−3 andσ = 3.1×10−10 cm−1. We consider a perfect gas
with an adiabatic coefficient γ = 7

5 and a mean molecular weight
µ = 1. The length of the domain is 7 × 1010 cm. It is discretized
with 400 cells. The initial temperature at the left boundary is set
to 10 K and is increased by 0.25 K per cell. Initially, the radia-
tion is at equilibrium with the gas. The left boundary condition is
reflective, and the initial velocity of the fluid is set to u0. Accord-
ing to the value of u0, the shock will be subcritical or supercriti-
cal; see González et al. (2007) for more details. To compare our
results with those of Ensman (1994), Hayes & Norman (2003),
González et al. (2007), we plot the temperature as a function of
xi = x − u0t.

5.5.1. Subcritical shock

We first consider a subcritical shock, the initial velocity is set to
u0 = −6 km s−1. Figure 11 shows the gas temperature, the radia-
tive temperature, and the reduced flux at three different times:
1.7 × 104 s, 2.8 × 104 s, and 3.8 × 104 s. As expected, the gas
and the radiation are not at equilibrium, before nor after the
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Fig. 11. Subcritical shock simulation, showing snapshots of gas tem-
perature, radiative temperature, and reduced flux at different times:
1.7 × 104 s, 2.8 × 104 s, and 3.8 × 104 s.

2 4 6 8 10

xi(105km)

0

2000

4000

6000

T
em

p
er

at
u

re
(K

)

Radiative temperature

Gas temperature

Reduced flux

0.00

0.25

0.50

0.75

1.00

1.25

1.50

R
ed

u
ce

d
fl

u
x

Fig. 12. Supercritical shock simulation, showing snapshots of gas tem-
perature, radiative temperature, and reduced flux at different times:
4.0 × 103 s, 7.5 × 103 s, and 1.3 × 104 s.

shock. The gas temperature reaches 1135 K, as in González et al.
(2007), whereas it is only 850 K in Ensman (1994).

5.5.2. Supercritical shock

We now consider a supercritical shock, where the initial velocity
is set to u0 = −20 km s−1. Figure 12 shows the gas temperature,
the radiative temperature, and the reduced flux at three different
times: 4×103 s, 7.5×103 s, and 1.3×104 s. As in González et al.
(2007), the radiative temperature is the same as the matter tem-
perature on both sides of the shock. The gas and the radiation
are therefore at equilibrium. The radiative precursor is larger
than that of the subcritical shock, as intended, and the temper-
ature reaches 5000 K, as in Ensman (1994). We also recover the
Zel’dovich spike.

5.6. Expansion of H ii region

Now that we have confirmed the good behavior of the numer-
ical scheme with both the asymptotic preserving and the well-
balanced properties, we can apply it to a physical situation: the
propagation of the ionization front in a massive pre-stellar dense
core.

5.6.1. Model

We consider the early stage of the development of an H ii region
in a massive pre-stellar dense core (Churchwell 2002). We focus
on a region of the dense core at about 100 AU from the mas-
sive young stellar object (YSO). This region has been heated by
the YSO during the pre-main sequence phase. The temperature
reached at this location by infrared heating is of the order of
1000 K and the transport of energy in this region can be domi-
nated by convection. We have inferred the convective state of this
region by computing thermal and adiabatic gradients based on
observations of Herpin et al. (2009) (Fig. 7). High-energy pho-
tons emitted by the YSO when entering the main sequence start
to ionize the surrounding gas. This triggers the propagation of
an ionization front in a convective medium, and we are inter-
ested in the stability of such a front perturbed by the pre-existing
convective motions.

The interaction of the ionizing photons with the gas is
described by Eq. (5). The only photons able to ionize the gas
are emitted by the YSO, that is, there is no local source of ion-
izing photons. Following Tremblin (2012), we need to modify
this model to take into account photochemistry and thermal bal-
ance. We define the fraction of ionization X = nH+/nH where
nH = nH+ +nH0 , nH+ is the number of ionized atoms and nH0 is the
number of cold atoms. The evolution of the number of ionized
atoms is simply the number of incoming photons that interact
with the gas minus the number of ionized atoms that recombine
(on the spot approximation, see Lesaffre 2002). Therefore,

∂t(ρX) + ∇ · (ρXU) = σγFγnH(1 − X) − βX2n2
H, (29)

where Fγ is the number of incoming photons per unit of surface
and time, σγ is the average cross-section at the temperature of
the star, and β gives the recombination rate: β = 2 × 10−10T−0.75

with T the temperature of thermodynamic equilibrium (Black
1981).

The thermal balance is the difference between the heating
rate and the cooling rate. The extra energy of the absorbed pho-
tons is converted into kinetic energy of electrons; this is the
only source of heating during the ionization, and therefore the
heating rate is given by (1 − X)nHFγσγeγ. In this simplified
model, the equilibrium temperature is obtained from the bal-
ance between the heating from the ionization and the cooling
from the recombination. We do not consider any other effects,
such as metal cooling. Therefore, we take eγ = 1 eV (Lesaffre
2002) to recover the observed temperature around 1000 K. From
Tremblin (2012), the cooling rate is given by βX2n2

HkbT/(γ − 1).
We also add a term of Newtonian forcing, ∂tTg =

Tg−Tforcing

τforcing
, to

trigger convection. Tforcing is the equilibrium temperature profile,
depending on space, and τforcing is the relaxation timescale. The
gas temperature will relax toward the equilibrium temperature
profile Tforcing.

By writing cEr = Fγeγ, ρ = nHmH and σ = σγnH, we finally
have to solve the following system:

∂tρ + ∇ · (ρu) = 0
∂t(ρu) + ∇ · (ρu ⊗ u + pI) = ρg +

σ(1−X)
c Fr

∂t(ρE) + ∇ · ((ρE + p)u) = ρg · u + cσ(1 − X)Er

−β ρ
2X2

m2
H

kbTg

γ−1 −
Tg−Tforcing

τforcing

∂tEr + ∇ · Fr = −cσ(1 − X)Er
∂t Fr + ∇ · Pr = −cσ(1 − X)Fr

∂t(ρX) + ∇ · (ρXu) =
σ(1−X)cErmH

eγ
−

βρ2X2

mH
.

(30)

In this test, we use the M1 solver with the asymptotic correc-
tion presented in Sect. 3.1.3, but we do not use the well-balanced
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discretization of the source term because of stability issues that
we discuss in Sect. 6.1.

5.6.2. Setup

We consider a square domain of 5 AU on all sides. We use a
setup similar to Padioleau et al. (2019) for compressible convec-
tion simulations. The temperature is set to 500 K and 1000 K at
the top and bottom of the box, respectively. The initial temper-
ature is a linear interpolation between the top and the bottom
of the box. It is also the forcing temperature profile Tforcing. We
take τforcing = 107 s. These parameters are chosen to trigger the
initial convective motions. We also set the pressure at the bot-
tom: 10−3 dyne · cm−2 (Herpin et al. 2009). The density and the
pressure are linked by the ideal gas law: p =

ρkbTg

mHµ
, where µ is

the mean molecular weight. The nonionized medium is made of
hydrogen, with µ1 = 1. When the medium is fully ionized, it is
made of atomic nucleus and electrons, and therefore has twice
as many particles for the same mass. Because the distribution
of nucleus and electrons is homogeneous, the mean molecular
weight is µ2 = 0.5. When the medium is partially ionized, we
take µ as the mean of the previous values balanced by the frac-
tion of ionization, that is, µ = (1−X)µ1 + Xµ2. The density is ini-
tialized with the recursive formula pi+1 − pi = 1

2 (ρi + ρi+1) g∆z,
which is the discrete version of the hydrostatic balance ∇p =
−ρg.

We impose Neumann boundary conditions for the tempera-
ture. The pressure and density are imposed by an extrapolation
of the hydrostatic balance. Because the hydrodynamics solver
is well-balanced for the gravity, this configuration will remain
static, even if the initial condition is unstable. The hydrostatic
equilibrium is destabilized with a velocity mode perturbation of
the form

u(x, y) = 2 · 10−4cs sin
(
2π x−xmid

Lx

)
sin

(
π y−ymid

Ly

)
v(x, y) = 2 · 10−4cs cos

(
2π x−xmid

Lx

)
cos

(
π y−ymid

Ly

)
,

(31)

with cs the speed of sound, xmid = ymid = 2.5 AU and Lx =
Ly = 5 AU. Without any interaction with the ionizing photons,
the convective motions are stationary.

The opacity is set to σ =
σγρ

mH
with σγ = 6 × 10−18 cm2

(Lesaffre 2002). The radiative energy and flux are set to zero and
the medium is not ionized (X = 0). We initialize the hydrody-
namics variables with the steady state described above. At time
t = 0, the bottom boundary of the region is ionized: the reduced
flux is set to a value of 1 and the radiative energy is set to F∗eγ

c
with F∗ = 3× 1017 cm−2 s−1 in the boundary. The boundary con-
ditions for the hydrodynamics variables remain unchanged.

5.6.3. Results

As the initial condition is such that Er is close to zero, this
can easily create some spurious values such that f > 1. This
is clearly a numerical artifact induced by the very low value
of the radiative energy in regions where no ionizing photons
are present. Even with a centered discretization of the radiative
flux source term and without the asymptotic correction, we still
encounter f > 1 during the simulation. Because of this problem,
we impose f = 1 in the computation of the Eddington tensor in
the cells where f > 1.

Figure 13 shows the evolution of the position of the ioniza-
tion front as a function of time. With and without the initial
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Fig. 13. Evolution of the position of the ionization front as a function of
time, with and without the initial velocity perturbation.

convective rolls, the position of the ionization front oscillates
around an equilibrium position, between 0.3 AU and 0.4 AU. The
oscillations around the equilibrium are expected and have been
observed with simpler models (Tremblin et al. 2012).

Figures 14 and 15 show the ionization front at time t =
6 × 108 s and at the final time t f = 1010 s. With and without
the initial convective rolls, a numerical noise appears as a conse-
quence of the long timescales. Because of the numerical noise,
some lack of symmetry can appear, such as is seen in the left
panel of Fig. 14. The fraction of ionization, which is always
between 0 and 1, reaches values between 10−12 and 10−6. The
effect of the preconditioner and the MPI domain decomposition
is discussed in Appendix D. However, the numerical noise does
not affect the position of the ionization front.

The stability of the ionization front is an issue that has been
discussed for a long time in the literature (Mizuta et al. 2008).
For example, 3D simulations of the expansion of a spherical
ionization front in 3D Cartesian grids have shown instabilities
either on the axis of the grid or in the diagonal depending on the
numerical scheme (see Fig. A3 Bisbas et al. 2015). The depen-
dence of the instability on the grid casts doubt on the possibility
of a physical regime. Our test case shows that even with con-
vective motions of large amplitude, the ionization front remains
stable.

6. Discussion and conclusion

We present a new radiation hydrodynamics code. The radiative
transfer is described with a two-moment model and uses the M1
closure relation. We first discuss some limitations of our work
before presenting our conclusions.

6.1. Well-balanced discretization of the source term

In Sect. 3.1.2 we propose a well-balanced discretization of the
source term on the radiative flux equation. This discretization
allows us to properly capture the steady state with constant flux
and with a discontinuity of opacity. However, this discretization
can lead to spurious oscillations in the radiative flux, a prob-
lem that we have encountered in the test case for the expan-
sion of H ii regions. Although we have changed the discretiza-
tion of the source term to achieve a well-balanced property, our
integration of the hyperbolic part on the source term is still
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Fig. 14. Snapshots of the fraction of ionization and the velocity field at time t = 6 × 108 s without the initial velocity perturbation (left panel) and
with it (right panel).
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Fig. 15. Snapshots of the fraction of ionization and the velocity field at the final time t f = 1010 s without the initial velocity perturbation (left panel)
and with it (right panel).

split into two steps. Such a splitting strategy might be unsta-
ble if the source term is not taken into account in the hyper-
bolic part. A possible solution to this problem would be to
incorporate the source term in a Lagrange-projection-like
scheme such as Buet & Despres (2008). Such a strategy might be
necessary to treat the radiation hydrodynamics problem of cloud
interfaces.

6.2. Asymptotic limit for radiation hydrodynamics

In Sect. 3.1.3, we present an asymptotic correction which allows
us to capture the asymptotic behavior, whereas the solution given
by a standard scheme is dominated by numerical diffusion. The
asymptotic correction uses the numerical diffusion to recover the
physical one in a static fluid. Nevertheless, this scheme does not
capture the asymptotic regime in a moving fluid, as presented
in Appendix A. Most of the schemes proposed in the litera-
ture do not preserve this asymptotic regime (e.g., González et al.
2007; Berthon & Turpault 2011). The diffusive regime depends
on the material velocity; our scheme cannot reach it. A possi-
ble solution would be to limit the numerical diffusion with a
correction similar to a low Mach correction, as in Chalons et al.
(2016), in conjunction with a cell-centered discretization of the

source term, as proposed by the Lagrange-projection scheme of
Buet & Despres (2008).

6.3. Conclusion

The model for radiation hydrodynamics proposed in this paper
has the correct behavior in both free-streaming and diffusive
limits. It is discretized with an asymptotic preserving scheme.
This asymptotic correction is important to capture the correct
behavior in the diffusive limit and to preserve the free-streaming
regime in a static fluid.

We take advantage of the libraries Kokkos and Trilinos to
reach high-performance computing and to solve linear systems.
This approach allows us to take advantage of different architec-
tures and to use large time-steps for radiative transfer. Using the
implicit solver is profitable as soon as the time-step given by the
hydrodynamics is 50−100 times larger than the explicit time-
step for radiative transfer, depending on the preconditioner and
the architecture.

The solver is then coupled with the hydrodynamics code that
implements an all-regime and well-balanced solver for hydro-
dynamics with gravity. The tests performed show that ARK-RT
is well suited to studying many astrophysical problems. We used
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this code to study the development of H ii regions in massive pre-
stellar dense cores, especially the propagation of the ionization
front in the presence of convection. We show that even with the
destabilizing effect of convection, the ionization front is strongly
stable against perturbations. A linear stability analysis similar to
the Rayleigh-Taylor instability but including a source term could
provide more insight into this behavior.

Further work will consist of the development of a numer-
ical scheme that preserves the admissible states while keeping
the asymptotic preserving and well-balanced properties. We will
then be able to take full advantage of the largest next-generation,
massively parallel architectures to study atmospheric physics
with opacity interfaces, among other things.
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Appendix A: Diffusive limit for radiation
hydrodynamics

As in Sect. 2.4, we consider the diffusive limit with the P1 closure
relation. We introduce a rescaling parameter ε to write the time
and opacity as t̃ = εt and σ̃ = εσ, respectively. Because the
velocity of the fluid is smaller than the speed of light ( u

c � 1), we
also rescale it as ũ = u

ε
. Let us focus on the equations describing

the evolution of the radiative variables:

ε2∂t̃Er + ε∇ · Fr = cσ̃
(
arT 4

g − Er

)
+ε

σ̃

c
ũ · Fr + ε2 4

3
σ̃

c
Erũ · ũ (A.1a)

ε2∂t̃ Fr + ε
c2

3
∇Er = −σ̃cFr + ε

c
3
σ̃ũEr

+εcσ̃ũarT 4
g + ε2 σ̃

c
ũ · (ũ · Fr). (A.1b)

By expanding Eqs. (A.1a) and (A.1b) at zero order, we have{
Er,0 = arT 4

g,0
Fr,0 = 0. (A.2)

Expanding Eq. (A.1b) at first order leads to

Fr,1 = −
c

3σ̃
∇Er,0 +

4
3

Er,0ũ0. (A.3)

Finally, looking at the radiative energy and the gas internal
energy at second order, source terms cancel each other, and only
the divergence of the radiative flux at first order remains, and we
have

∂t̃

(
ρcvTg,0 + Er,0

)
− ∇ ·

( c
3σ̃
∇Er,0

)
= −

4
3
∇

(
Er,0ũ0

)
. (A.4)

One can also look at Eq. (A.1a) at second order. Expanding
Eq. (A.1a) at second order gives

∂t̃Er,0 − ∇

( c
3σ̃
∇Er,0

)
= cσ̃

(
6arT 2

g,0T 2
g,1 + 4arT 3

g,0Tg,2 − Er,2

)
−

4
3
∇ ·

(
Er,0u0

)
−

1
3

u0 · ∇Er,0 + 2
4
3
σ

c
Er,0u2

0. (A.5)

We recover Eq. (43) of Krumholz et al. (2007). The term
cσ̃

(
6arT 2

g,0T 2
g,1 + 4arT 3

g,0Tg,2 − Er,2

)
is the development at sec-

ond order of the term κ0(4πB − cE). Because we do not neglect
any terms O

(
ũ
c

)
, some coefficients are slightly different. See the

discussion in Krumholz et al. (2007) for the importance of the
term 4

3
σ̃
c Er,0ũ2

0.

Appendix B: Von Neumann stability analysis for the
well-balanced modification of the source term

For simplicity, we split Eq. (3b) into a pure hyperbolic prob-
lem ∂t Fr + c2∇ · Pr = 0 and a source problem ∂t Fr = −cσFr.
We focus on the one-dimensional source problem, with periodic
boundary conditions on the domain [0,T ] × [0, 1] with T the
final time. The following can easily be extended to an arbitrary
space interval. Because we use periodic boundary conditions, we
can apply the von Neumann stability analysis (see e.g., Anderson
1995), based on the decomposition of the numerical solution into

Fourier series. Let us recall that, using the well-balanced mod-
ification of the source term, the source problem is discretized
as

Fn+1
j + r j− 1

2
Fn+1

j−1 +
(
r j− 1

2
+ r j+ 1

2

)
Fn+1

j + r j+ 1
2
Fn+1

j+1 = Fn
j , (B.1)

with r j+ 1
2

=
cσ j+ 1

2
∆t

4 . We define the function Fn, piecewise con-
stant, such that

Fn(x) =

{
Fn

j if x j− 1
2
< x < x j+ 1

2

0 otherwise. (B.2)

This function is then extended to R by periodicity. Fn can now
be expanded in a Fourier series:

Fn(x) =
∑
k∈Z

F̂n(k)e2ikπx, (B.3)

with

F̂n(k) =

∫ 1

0
Fn(x)e−2ikπxdx. (B.4)

We can define the 2-norm of the function Fn:

||Fn||2 =

(∫ 1

0
(Fn(x))2 dx

) 1
2

=

∑
k∈Z

|F̂n(k)|2


1
2

=

 J∑
j=1

∆x
(
Fn

j

)2


1
2

. (B.5)

We apply the Fourier transform to Eq. (B.1):

F̂n+1(k)
(
1+r j− 1

2
e−2ikπ∆x+r j− 1

2
+r j+ 1

2
+r j+1

2
e2ikπ∆x

)
= F̂n(k). (B.6)

We define the amplification factor A(k) as

A(k) =
1

1 + r j− 1
2
e−2ikπ∆x + r j− 1

2
+ r j+ 1

2
+ r j+ 1

2
e2ikπ∆x , (B.7)

and we then have F̂n+1(k) = A(k)F̂n(k). By induction, we have
F̂n(k) = (A(k))n F̂0(k). The coefficient F̂n(k) remains bounded if
and only if |A(k)| ≤ 1. In this case, for all k ∈ Z, |F̂n+1(k)| ≤
|F̂n(k)|. Therefore, ||Fn+1||2 ≤ ||Fn||2 ≤ ||F0||2 and the scheme is
unconditionally stable. We now have to prove that |A(k)| ≤ 1:

1
|A(k)|2

=
(
1 + r j− 1

2
+ r j+ 1

2

)2
+ r2

j− 1
2

+ r2
j+ 1

2

+ 2r j− 1
2

(
1 + r j− 1

2
+ r j+ 1

2

)
cos(2kπ∆x)

+ 2r j+ 1
2

(
1 + r j− 1

2
+ r j+ 1

2

)
cos(2kπ∆x)

+ 2r j− 1
2
r j+ 1

2
cos(4kπ∆x)

=

1 + r j− 1
2

(1 − cos(2kπ∆x))︸                      ︷︷                      ︸
≥0

+ r j+ 1
2

(1 − cos(2kπ∆x))︸                      ︷︷                      ︸
≥0


2

+
(
r j− 1

2
sin(2kπ∆x) − r j+ 1

2
sin(2kπ∆x)

)2︸                                           ︷︷                                           ︸
≥0

≥ 1. (B.8)

As 1
|A(k)|2 ≥ 1, we have |A(k)| ≤ 1.
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Appendix C: Numerical scheme in the diffusive limit

We consider the numerical scheme developed in Sect. 3 in the
asymptotic regime, with σi+ 1

2
∆x → ∞. Following Sect. 2.4, we

introduce the rescaling parameter ε to write the time and opacity
as ∆̃t = ε∆t and σ̃ = εσ, respectively. Using the P1 closure
relation, we have λ+

i+ 1
2

= −λ−
i+ 1

2
= c
√

3
and

ε2En+1
i = ε2En

i −
∆̃t
∆x

(
εαi+ 1

2
F ∗

i+ 1
2
− εαi− 1

2
F ∗

i− 1
2

)
+ c∆̃tσ̃i

(
ar

(
T n+1

i

)4
− En+1

i

)
(C.1a)

ε2Fn+1
i = ε2Fn

i −
∆̃t
∆x

(
εP∗

i+ 1
2
− εP∗

i− 1
2

)
−

c∆̃t
2

(
σ̃i+ 1

2
Fn+1

i+ 1
2

+ σ̃i− 1
2
Fn+1

i− 1
2

)
(C.1b)

ε2ρcvT n+1
i = ε2ρcvT n

i − c∆̃tσ̃i

(
ar

(
T n+1

i

)4
− En+1

i

)
. (C.1c)

Radiative variables are expanded, e.g., En
i = En

i,0 + εEn
i,1 +

O(ε2). Expanding Eqs. (C.1a) and (C.1b) at zero order leads to

En+1
i,0 = ar

(
T n+1

i,0

)4

Fn+1
i,0 = 0.

(C.2)

At first order for Eq. (C.1b), we have

σ̃i+ 1
2
Fn+1

i+ 1
2 ,1

+ σ̃i− 1
2
Fn+1

i− 1
2 ,1

= −
c
3

En+1
i+1,0 − En+1

i−1,0

∆x

+
Fn+1

i+1,0 − 2Fn+1
i,0 + Fn+1

i−1,0
√

3∆x︸                        ︷︷                        ︸
=0

. (C.3)

Using the boundary condition given by Eq. (24), we have

σ̃i+ 1
2
Fn+1

i+ 1
2 ,1

= −
c

3∆x

(
En+1

i+1,0 − En+1
i,0

)
(C.4)

in the whole domain.
Now, we consider the sum of Eqs. (C.1a) and (C.1c)

expanded at second order. If αi+ 1
2

= 1, we have

ε2
(
En+1

i,0 + ρcvT n+1
i,0

)
= ε2

(
En

i,0 + ρcvT n
i,0

)
+ ε

∆̃t
∆x

c

2
√

3

(
αi+ 1

2

(
En+1

i+1,0 − En+1
i,0

)
− αi− 1

2

(
En+1

i,0 − En+1
i−1,0

))
− ε2 ∆̃t

2∆x
αi+ 1

2

(
Fn+1

i+1,1 + Fn+1
i,1 −

c
√

3

(
En+1

i+1,1 − En+1
i,1

))
+ ε2 ∆̃t

2∆x
αi− 1

2

(
Fn+1

i,1 + Fn+1
i−1,1 −

c
√

3

(
En+1

i,1 − En+1
i−1,1

))
, (C.5)

whereas the asymptotic development of a standard discretization
of Eq. (11) would be

ε2
(
En+1

i,0 + ρcvT n+1
i,0

)
= ε2

(
En

i,0 + ρcvT n
i,0

)
+ ε

c
3

∆t
∆x2

En+1
i+1,0 − En+1

i,0

σi+ 1
2

−
En+1

i,0 − En+1
i−1,0

σi− 1
2

 . (C.6)

Therefore, we are looking for αi+ 1
2

such that the term of first
order in Eq. (C.5) becomes a term of second order with the
expected coefficient of diffusion c

3σi+ 1
2

and the term of second

order becomes a term of third order and therefore negligible. In
other words, we want the asymptotic development of αi+ 1

2
to be

2ε
√

3σi+ 1
2

∆x
. One way to achieve this is to take

αi+ 1
2

=
1

1 +
√

3σi+ 1
2

∆x
2

. (C.7)

However, in the general case, we do not have λ+

i+ 1
2

= −λ−
i+ 1

2
=

c
√

3
. We can then replace Eq. (C.7) by

αi+ 1
2

=
1

1 − 3σi+ 1
2
∆x

λ+

i+ 1
2
λ−

i+ 1
2

c
(
λ+

i+ 1
2
− λ−

i+ 1
2

)
. (C.8)

Unfortunately, in numerical tests with σ∆x close to 1, the condi-
tion f < 1 is not preserved. Because f is close to 1 in this case,
we write

αi+ 1
2

=
1

1 − 3σi+ 1
2
∆x

(
1 − f 2

i+ 1
2

) λ+

i+ 1
2
λ−

i+ 1
2

c
(
λ+

i+ 1
2
− λ−

i+ 1
2

)
. (C.9)

We use fi+ 1
2

= 1
2

(
f n
i + f n

i+1

)
because numerical experiments have

shown good results using this form. In the diffusion regime,
because Fn+1

i,0 = 0, we recover Eq. (C.8).
Now that we have the form of αi+ 1

2
, we can check that the

proposed scheme is asymptotic preserving. We have

αi+ 1
2

=
2ε

√
3σ̃i+ 1

2
∆x

+ O(ε2). (C.10)

Therefore,

αi+ 1
2
F ∗

i+ 1
2

= −ε
c

3σ̃i+ 1
2

En+1
i+1,0 − En+1

i,0

∆x
+ O(ε2). (C.11)

We finally have
En+1

i,0 + ρcvT n+1
i,0 = En

i,0 + ρcvT n
i,0

+
c∆̃t

3∆x2

En+1
i+1,0 − En+1

i,0

σ̃i+ 1
2

−
En+1

i,0 − En+1
i−1,0

σ̃i− 1
2

 . (C.12)

Equations (C.2), (C.4), and (C.12) are standard discretiza-
tion of Eqs. (9)–(11), and therefore this scheme is asymptotic
preserving.

Appendix D: Expansion of H ii region

In the test case described in Sect. 5.6, some numerical noise
appears as a consequence of the long timescales. Let us recall
that a time-implicit scheme is used, with large time-steps for
the radiative transfer. At each time-step, the Newton-Raphson
method is used and at each iteration of this algorithm an ill-
conditioned linear system is solved using an iterative process.
This results in the appearance of some numerical noise.

We performed the same simulations as in Sect. 5.6 with dif-
ferent numbers of MPI processes and different preconditioners.
The physical domain is either distributed over 4 × 4 MPI pro-
cesses (Fig. D.1a,c) or 2 × 2 MPI processes (Fig. D.1b,d). We
also tried two preconditioners which allowed us to reach the final
time with reasonable computational time: a standard ILU(k) fac-
torization (Fig. D.1a,b) and an additive Schwarz domain decom-
position (Fig. D.1c,d).
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Fig. D.1. Snapshots of the fraction of ionization and the velocity field at the final time t f = 1010 s without the initial velocity perturbation (left
panel) and with it (right panel). The physical domain is distributed across different numbers of MPI processes and different preconditioners have
been used. Figure D.1a is the same figure as Fig. 15. (a) 4 × 4 MPI processes, ILU(k) factorization. (b) 2 × 2 MPI processes, ILU(k) factorization.
(c) 4 × 4 MPI processes, Schwarz domain decomposition. (d) 2 × 2 MPI processes, Schwarz domain decomposition.

Figure D.1 shows snapshots of the fraction of ionization and
the velocity field at the final time t f = 1010 s. The shape of the
small structures produced by the numerical noise varies with the
number of MPI processes and the preconditioner. Furthermore,

the propagation of the ionization front creates some velocity that
also depends on the number of MPI processes and precondition-
ers. However, the position of the ionization front is not affected
by these parameters.
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