Effect of size and shape on electrochemical performance of nano-silicon-based lithium battery - Archive ouverte HAL Access content directly
Journal Articles Nanomaterials Year : 2021

Effect of size and shape on electrochemical performance of nano-silicon-based lithium battery

(1, 2, 3) , (4) , (1, 2, 3) , (1, 2) , (4, 3) , (4) , (1) , (4) , (3) , (1, 2)
1
2
3
4
Florent Boismain
  • Function : Author
  • PersonId : 1089818
Nathalie Herlin-Boime
  • Function : Author
  • PersonId : 954688

Abstract

Silicon is a promising material for high-energy anode materials for the next generation of lithium-ion batteries. The gain in specific capacity depends highly on the quality of the Si dispersion and on the size and shape of the nano-silicon. The aim of this study is to investigate the impact of the size/shape of Si on the electrochemical performance of conventional Li-ion batteries. The scalable synthesis processes of both nanoparticles and nanowires in the 10–100 nm size range are discussed. In cycling lithium batteries, the initial specific capacity is significantly higher for nanoparticles than for nanowires. We demonstrate a linear correlation of the first Coulombic efficiency with the specific area of the Si materials. In long-term cycling tests, the electrochemical performance of the nanoparticles fades faster due to an increased internal resistance, whereas the smallest nanowires show an impressive cycling stability. Finally, the reversibility of the electrochemical processes is found to be highly dependent on the size/shape of the Si particles and its impact on lithiation depth, formation of crystalline Li$_{15}$Si$_4$ in cycling, and Li transport pathways.
Fichier principal
Vignette du fichier
nanomaterials-11-00307.pdf (2.32 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

cea-03126698 , version 1 (01-02-2021)

Licence

Attribution - CC BY 4.0

Identifiers

Cite

Caroline Keller, Antoine Desrues, Saravanan Karuppiah, Eléa Martin, John Alper, et al.. Effect of size and shape on electrochemical performance of nano-silicon-based lithium battery. Nanomaterials, 2021, 11 (2), pp.307. ⟨10.3390/nano11020307⟩. ⟨cea-03126698⟩
121 View
157 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More