Modeling the perovskite solar cell and the ion migration with physical approach based on FEM from Silvaco
Jihye Baik, Haeyon Jun, Hindia Nahdi, Bernard Geffroy, Denis Tondelier, Yvan Bonnassieux

To cite this version:

HAL Id: cea-03123520
https://hal-cea.archives-ouvertes.fr/cea-03123520
Submitted on 28 Jan 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Modeling the perovskite solar cell and the ion migration with physical approach based on FEM from Silvaco

Jihye Baik¹, Haeyeon Jun¹,², Hindia Nahdi¹,³, Bernard Geffroy¹,⁴, Denis Tondlier¹ and Yvan Bonnassieux¹

¹LPICM-CNRS (UMR7647), Ecole Polytechnique, IP Paris, 91128 Palaiseau, France
²Synchrotron SOLEIL, L’Orme des Merisiers Saint-Aubin, BP 48 91192 Gif-sur-Yvette Cedex, France
³SEGULA Technologies, 19 Rue d’Arras, 92000 Nanterre, France
⁴Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, 91191 Gif-sur-Yvette, France

The hybrid perovskites have emerged as the promising alternative materials of silicon-based solar cells in PV industry due to high absorption coefficient [1] and long carrier lifetimes and diffusion lengths [2]. Even though the power conversion efficiency of perovskite solar cells (PSCs) has increased rapidly to 25.2 % in 2020 [3], PSCs have still drawbacks such as J-V hysteresis of which origins are not fully understood yet but might be ion migration [4], [5]. Therefore, studying factors causing J-V hysteresis is required to develop strategies for resolving the issue.

In this work, modeling of ion migration in the PSCs with physical approach based on finite element method is studied. As the time-transient state is necessary to investigate the hysteresis, the simulation is performed in time-transient state by using Atlas, Silvaco. The ion migration in methylammonium lead halide perovskite (CH₃NH₃PbI₃) is described by drift-diffusion model. The ion migration and accumulation induce the electric field compensation and result in the J-V hysteresis. We examined the J-V hysteresis dependent on various factors: ion diffusion coefficient, preset voltage time, and voltage scan rate.

![Figure 1. (a) A scheme of PSCs with the compensation of built-in electric field due to the ion migration. The cations represent the iodine vacancies and they transport to the anode side due to the built-in electric field. (b) The J-V hysteresis dependent on the voltage scan rate.](image)

Keywords
Lead halide perovskite, Simulation, Silvaco, Ion migration, Drift-diffusion model

Reference