Skip to Main content Skip to Navigation
Journal articles

Donor Spins in Silicon for Quantum Technologies

Abstract : Dopant atoms are ubiquitous in semiconductor technologies, providing the tailored electronic properties that underpin the modern digital information era. Harnessing the quantum nature of these atomic-scale objects represents a new and exciting technological revolution. In this article, the use of ion-implanted donor spins in silicon for quantum technologies is described. It is reviewed how to fabricate and operate single-atom spin qubits in silicon, obtaining some of the most coherent solid-state qubits, and pathways to scale up these qubits to build large quantum processors are discussed. Heavier group-V donors with large nuclear spins display electric quadrupole couplings that enable nuclear electric resonance, quantum chaos, and strain sensing. Donor ensembles can be coupled to microwave cavities to develop hybrid quantum Turing machines. Counted, deterministic implantation of single donors, combined with novel methods for precision placement, will allow the integration of individual donor spins with industry-standard silicon fabrication processes, making implanted donors a prime physical platform for the second quantum revolution.
Document type :
Journal articles
Complete list of metadata
Contributor : Patrice Bertet Connect in order to contact the contributor
Submitted on : Wednesday, January 20, 2021 - 12:07:28 PM
Last modification on : Tuesday, August 23, 2022 - 11:16:41 AM

Links full text



Andrea Morello, Jarryd Pla, Patrice Bertet, David Jamieson. Donor Spins in Silicon for Quantum Technologies. Advanced Quantum Technologies, Wiley, 2020, 3 (11), pp.2000005. ⟨10.1002/qute.202000005⟩. ⟨cea-03116417⟩



Record views