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ABSTRACT

We compute the tree-levelH2R3 couplings of type II strings and provide some basic tests of the couplings by
considering both K3 and Calabi-Yau threefold compactifications. Curiously, additional kinematical structures
show up at tree level that are not present in the one-loop couplings. This has interesting implications for type
II supersymmetry as well as SL(2,Z) duality in type IIB strings.
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1 Introduction

In ten-dimensional theories with 32 supercharges, α′ corrections start at eight-derivative level and receive
perturbative contributions at tree level [1–8] and at one loop [9]. These contributions begin from four-field
scattering, where the four-graviton part is the most studied and best understood one, hence the moniker ‘R4

couplings’. In the string frame, the entire NS sector results are compactly written using [10]

R̃µν
αβ = (R lin)µν

αβ +∇[µHν]
αβ , (1.1)

where (R lin)µνρλ = − 1
2 (∂µ∂ρhνλ + · · · ) = −2∂[µhν][ρ,λ] is the linearised Riemann tensor. The tree-level

corrections are given by
e−1L ∼ e−2φ(t8t8R̃

4 − 1
4ǫ8ǫ8R̃

4), (1.2)

where the first pair of indices on each R̃ is contracted on the first t8 or ǫ8, and the second pair on the
second [2]. Note that the original calculations were performed in the Green-Schwarz formalism so ǫ8 is the fully
antisymmetric tensor in the eight-dimensional transverse Euclidean space1. However, we take a more covariant
approach and regard ǫnǫn as a shorthand notation for the anti-symmetric delta function on 2n indices with
a precise definition given below in (2.14). The tensor t8 has four pairs of antisymmetric indices, and is such
that given an antisymmetric matrix M , t8M

4 = 24
(

trM4 − 1
4 (trM

2)2
)

. The CP-even sector of the one-loop
expression has a similar structure:

e−1LCP-even ∼ (t8t8R̃
4 ± 1

4 ǫ8ǫ8R̃
4), (1.3)

where the top (bottom) sign is for the IIA (IIB) theory. The two terms here come respectively from the
even-even and odd-odd spin structure sectors of the covariant one-loop amplitude.

Due to general covariance, the purely gravitational part of the higher-derivative couplings can be completed
to expressions involving the full Riemann tensor without needing to compute higher-point graviton amplitudes2.

1To be precise, the four-point function in light-cone gauge is not sensitive to the ǫ8ǫ8 term. However, the structure of the
amplitude indicates that it is present.

2The exception is for the couplings that vanish on shell at linearised level. This is the case for e.g. the ǫ8ǫ8R̃
4 terms in (1.2)

and (1.3)). These couplings were first obtained using duality arguments, rather than five-point function calculations.
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Hence, the gravitational part of the eight-derivative couplings is well-known. However, the full completion
including the anti-symmetric tensor and possibly dilaton is not yet known. While it is tempting to introduce
a four-index tensor computed using a connection with torsion

Rµν
αβ(Ω+) ≡ Rµν

αβ +∇[µHν]
αβ + 1

2H[µ
αγHν]γ

β (1.4)

with (Ω+)µ
αβ = Ωµ

αβ + 1
2Hµ

αβ as a natural non-linear counterpart to R̃ in (1.1), there is no a priori reason
to believe that such a replacement can capture the complete string-theoretic answer3. In fact, it is known that
additional kinematic structures beyond the standard ǫǫR4(Ω+) appear in terms involving higher powers of H ,
such as H2R3 and H4R2 in the odd-odd sector of the one-loop R4 couplings. These have been verified by
five [11,12] and partial six-point function calculations [13]. However no tree-level results are known at the level
of the effective action beyond four-point functions. Computation of the tree-level H2R3 couplings is the main
focus of this paper.

One may suspect that we have quite a bit of indirect information about these terms. After all the ten-
dimensional R4 couplings are at the origin of the perturbative corrections to the four-dimensional N = 2
moduli spaces as well as the perturbative R2 couplings in four-dimensional N = 2 and N = 4 theories.
However the lower-dimensional results do not rely on reduction of the ten-dimensional couplings. This might
be best illustrated by looking at R2 terms in type II compactifications on K3. There supersymmetry arguments
are strong enough to rule out such couplings at tree-level for either IIA or IIB. In type IIB compactified on K3
the R2 couplings at one loop are also absent. At the linearised level it is not hard to find cancellations in the
reductions of the R4 couplings that assure the absence of these terms, using Rµν = R = 0. Yet the complete
cancellation at the non-linear level has not been checked, and as we shall see is rather nontrivial. The same is
true for the R2 terms in type II compactifications on Calabi-Yau three-folds, where special geometry dictates
the absence of R2 terms in IIB compactifications and the absence of tree-level R2 terms for IIA.

Recently a new H2R3 term that does not follow the standard tree-level kinematics was proposed in [14]
in order to make R4 reductions compatible with the quantum corrections to the moduli space metrics for
four-dimensional N = 2 theories [15,16]. We confirm this proposal and find many more couplings that cannot
be detected by examination of two or four-derivative actions in compactifications without fluxes on four- or
six-dimensional Ricci flat spaces. Our tree-level result can be summarised as:

Ltree =
√−g e−2φ

[

ζ(3)

3 · 211α
′3
(

t8t8R(Ω+)
4 − 1

4ǫ8ǫ8R(Ω+)
4 − 2t8t8H

2R(Ω+)
3 − 1

6ǫ9ǫ9H
2R(Ω+)

3

+ 8 · 4!
∑

i

diH
µνλHρσζQ̃i

µνλρσζ + · · ·
)

+ · · ·
]

. (1.5)

Here only the first two terms have the standard kinematics, exactly as in (1.2), with the curvature tensor now
computed using the connection with torsion. The last two terms on the first line use the familiar tensorial
structures t8 and ǫ10 but the structure of indices on the H2 part is such that it cannot be obtained from
expanding the standard terms. Their explicit form is as follows:

t8t8H
2R(Ω+)

3 ≡ t8µ1···µ8
tν1···ν88 Hµ1µ2αHν1ν2αR

µ3µ4

ν3ν4(Ω+)R
µ5µ6

ν5ν6(Ω+)R
µ7µ8

ν7ν8(Ω+),

ǫ9ǫ9H
2R(Ω+)

3 ≡ −ǫαµ0µ1···µ8
ǫαν0ν1···ν8Hµ1µ2

ν0Hν1ν2
µ0Rµ3µ4

ν3ν4(Ω+)R
µ5µ6

ν5ν6(Ω+)R
µ7µ8

ν7ν8(Ω+). (1.6)

These terms are crucial for finding agreement with the known lower-dimensional results, notably the corrections
to the moduli space metrics of N = 2 vector and hypermultiplets. The ǫ9ǫ9H

2R(Ω+)
3 kinematical structure

also appears at one loop, albeit with a different coefficient. (The one-loop result is given in (2.20).) The
t8t8H

2R3 term appears only in the tree-level expressions4.
The last line of (1.5) contains only terms without any index contractions between the two H ’s. Here di is a

set of constants given in (2.34) and the quantities Qi
µνλρσζ are cubic in Riemann curvatures and are specified

in (A.4). The appearance of such terms does come as a bit of a surprise, as we have not been able to rewrite

3For a closed H, Rµνρλ(Ω+) = Rρλµν(Ω−
). Clearly, Rµνρλ(Ω+) is antisymmetric in the first and the second pairs of indices.

Moreover, t8t8R(Ω+)4 = t8t8R(Ω
−
)4 and ǫ8ǫ8R(Ω+)4 = ǫ8ǫ8R(Ω

−
)4.

4Even though couplings quadratic in H and cubic in curvature appear in the expansion of the terms with the standard
kinematics, we shall be reserving the notation t8t8H

2R3 and ǫ9ǫ9H
2R3 exclusively for the couplings defined in (1.6). Note that

the definitions ∆J0(Ω+,H) ≡ −ǫ9ǫ9H
2R3 was used in [13], and δJ ≡ −2t8t8H2R3 was used in [14].
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4pt 5pt 6pt
g,B φ RR g,B φ RR g,B φ RR

tree ∅ ∅ [17, 18]

− 1
6ǫ9ǫ9H

2R3

? ? ? ? ?
−2t8t8H

2R3

8 · 4!∑ diH
2 · Q̃i

∼ H2(∇H)2R ?

1-loop
o-o ∅ ∅ ?

± 1
3ǫ9ǫ9H

2R3

∅ ? partial [13] ∅ ?∓ 4
9 ǫ9ǫ9H

2(∇H)2R
e-e ∅ ∅ ? ∅ ∅ ? ∅ ∅ ?

Table 1: Summary of additional contributions to the effective action in string frame which complete the R4

terms beyond R → R(Ω+) known from the string-theoretic calculations only. Separate columns denote the
knowledge about the dilaton and RR couplings. The verified absence of couplings involving the given field is
denoted by ∅. Our ignorance is denoted by ?. The NSNS contribution to the CP-odd part (even-odd and
odd-even) of the one-lopp couplings is completely determined by R → R(Ω+), and does not involve the dilaton.
Its RR completions is not known. In this paper we compute the ∼ H2R3 contributions at tree-level. We have
not done the computation for the terms ∼ H2(∇H)2R which could also come from five NSNS field scattering.
The one-loop ǫ9ǫ9H

2(∇H)2R structure is defined in (2.22).

them in terms of t8 and ǫ10, and they do not have any one-loop counterparts. Note, however, that they are
undetectable from the lower-dimensional physics obtained via compactification without fluxes.

The couplings appearing in non-linear completions are of two types: those which fit the kinematic structure
that can appear by substituting R → R(Ω+) and expanding to the given order and those which do not. All
standard kinematical structures to the highest order we have checked so for (partially up to six point at one-
loop) indeed come from the expansion of t8t8R(Ω+)

4 and ǫ8ǫ8R(Ω+)
4. At one loop the terms of the second

type involve a pair of H-fields not contracted with each other and are of the form ǫ9ǫ9H
2X , where X ∼ R3

or X ∼ (∇H)2R (see (2.21) and (2.22) for the explicit form). We find a much more elaborate structure at
tree level. As mentioned, our partial knowledge of the couplings of the second type have been mostly indirect;
the lower-dimensional implications of these terms have been deduced by methods other than the reduction of
ten-dimensional couplings. The completion with the dilaton and with the RR fields is still not known. We
have collected the results of known direct string-theoretic calculations in Table 1.

It should be noted that much more is known at the level of string amplitudes. Three and four point functions
were naturally investigated as part of the development of the superstring formalism. Shortly thereafter, the
tree-level open string five-point amplitude was computed in [19], and the one-loop amplitude was computed
in [20–23]. Closed string amplitudes can of course be obtained from the open string ones using the KLT
relations [24] that were also developed early on. Closer to the present, the pure-spinor formalism [25] provided
a fruitful alternative to the traditional covariant and Green-Schwarz approaches to string amplitudes [26–29].
This formalism also allows for a unified treatment of the NS and R sectors, thus making the scattering of
RR fields more feasible and was used in [17, 18] to obtain the complete (to all orders of α′) tree-level quartic
effective action of the type II string. The challenge we face is not in computing the higher-point closed string
amplitudes, but rather in constructing a local eight-derivative effective action that reproduces these amplitudes.
In addition to the large number of kinematical structures that show up, we are also faced with the issue of
subtracting out pole contributions from lower-point amplitudes in order to recover only the new contact terms
that show up at each higher order in the expansion.

In a search for a (generalised) geometric description of string theory, the rather baroque structures appearing
at the non-linear (beyond four-point) level present an interesting challenge. In this regard, the torsionful
connection and R(Ω+) is very natural. Yet clearly between the tree-level and one-loop terms already at the first
nonlinear level (five-point functions) H2 terms also enter independently from the R → R(Ω+) substitution, and
come in diverse kinematical structures. As mentioned, writing the tree-level five-point function contributions
quadratic in H using the familiar t8 or ǫ10 contractions (or generalisations) does not appear to be possible. A
somewhat loose analogy might be found in eight-derivative couplings involving the graviton and the axi-dilaton
in type IIB, where already at the four-point level the kinematics is rather unwieldy [18]. Yet in an F-theoretic
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context one can see the emergence of these structures from purely gravitational couplings in twelve-dimensional
elliptically fibered spaces [30]. Finding a similar geometrisation of non-linear completions of the R4 couplings
(and beyond) would be of great importance.

From the low-energy point of view this mismatch between tree and one-loop terms might appear somewhat
surprising. For example, in type IIB the linearised terms are identical at tree-level and one-loop. As mentioned,
the six-dimensional (2, 0) theory is not supposed to have ∼ R2 couplings either at tree-level or at one-loop.
And indeed it is not hard to check that at this order the different contributions coming from R4 terms cancel
when compactified on K3. Denoting the internal and six-dimensional curvatures by R0 and R̃ respectively, one
finds that on K3, t8t8R

4 7→ t4t4R
2
0 × t4t4R̃

2 and ǫ8ǫ8R
4 7→ ǫ4ǫ4R

2
0 × ǫ4ǫ4R̃

2. Since the internal parts or the
same due to Ricci-flatness, the IIB combination (t8t8 − 1

4ǫ8ǫ8)R
4 reduces to (t4t4− 1

4 ǫ4ǫ4)R̃
2 = 4R̃µνR

µν − R̃2,
which contains only Ricci terms and vanishes on-shell at the linearised level. This works exactly the same way
for the three-level and at one loop. However, as we shall see in section 3, the complete non-linear cancellations
at tree-level and at one-loop are due to very different mechanisms.

The mismatch between the tree-level and one-loop terms in the non-linear higher-derivative couplings
(starting from five-field scattering) also poses questions for supersymmetry and SL(2,Z) invariance of the type
II theory. Although IIA and IIB theories are distinct, the eight-derivative supersymmetry invariants are often
given in terms of N = 1 combinations. At the linearised level, it is generally believed that there are only two
N = 1 superinvariants, given schematically as

J0 = (t8t8 − 1
4ǫ8ǫ8)R

4,

J1 = t8t8R
4 − 1

4ǫ10t8BR4. (1.7)

Here J0 gives the IIA and IIB tree-level couplings as well as the IIB one-loop coupling, while the combination
2J1 − J0 gives the IIA one-loop coupling. However, this cannot hold at the non-linear level since the tree-level
structure is distinct from that of any of the one-loop invariants. We suggest that (1.7), suitably completed by
nonlinear terms, become the one-loop superinvariants (see (4.2)) and that there must be at least one additional
tree-level superinvariant, which can be viewed as the completion of t8t8e

−2φR4. The tree-level dilaton factor
cannot be probed by a four-point function, but will affect the supersymmetry completion as the dilaton, being
in the supergravity multiplet, transforms non-trivially under supersymmetry.

For the IIB string, there is also the issue of SL(2,Z) invariance of the eight-derivative couplings to consider.
In the purely gravitational sector, the J0 combination given above is complete even at the nonlinear level, and
the relative tree and loop factors multiplying J0 give rise to the SL(2,Z) invariant [31, 32]

L∂8

IIB ∼ √−gE3/2(τ, τ̄ )J0, (1.8)

where E3/2(τ, τ̄ ) is a non-holomorphic Eisenstein series of weight 3/2. However, once this is expanded to the
full supergravity multiplet, the tree- and one-loop couplings are no longer identical, and moreover transform
with different modular weights. In this case, the story of SL(2,Z) invariance becomes much more intricate,
and additional knowledge of the RR sector will be needed to complete the picture. Nevertheless, we will show
that in some cases SL(2,Z) invariance can be used to extend the NSNS sector couplings to the complete set
of IIB fields.

In fact, SL(2,Z) invariance of the type IIB string gives rise to some tension between the different four-point
results collected in Table 1. For IIB strings, the only difference between the quartic NSNS contributions at
tree level and one loop is the dilaton factor e−2φ. Other than that, the kinematic structures are identical. This
means that the only way of completing the purely NSNS expressions to SL(2,Z) invariant ones is by making
each term invariant and multiplying the entire expression quartic in fields by the SL(2,Z) function E3/2(τ, τ̄ ).
In particular this means that the local U(1) symmetry of type IIB supergravity is respected by the four-particle
interactions. This is indeed consistent with the results of [33,34] showing that the U(1)-violating contributions
start at the level of five-particle interactions. From the other side, the four-point result including RR fields
given in [18] cannot be completed to an SL(2,Z) invariant expression without modular forms that transform
under weights ±1, and are hence U(1)-violating. We shall return to this issue in subsection 4.2.

The structure of the paper is as follows. In section 2 we first review the construction of the quartic effective
action in the NSNS sector at tree-level and one-loop. We then turn to the one-loop and tree-level five point
function and the quintic effective action. Although our main interest is in the tree-level effective action, we
review the one-loop computation [13] as we use it as a reference in reconstructing the tree-level action. In
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section 3, we present two tests of the quintic effective action. The first is the reduction on K3 and comparison
to the known structure of six-dimensional (1, 1) and (2, 0) theories and the second is the reduction on Calabi-
Yau threefolds. We then turn to the question of N = 1 superinvariants followed by a discussion of SL(2,Z)
invariance of the IIB couplings in section 4. Finally, we provide a brief summary of open issues in section 5.

2 The tree-level five-point function

The eight-derivative terms start at the level of α′3R4, corresponding to the scattering of four closed-string
states. Since the four-point string amplitude is needed for recreating the effective action, we begin with a brief
review before turning to the five-point function.

2.1 Open and closed string four-point functions

While we are interested in closed string amplitudes, the KLT relations [24] allow us to start with open string
amplitudes as the basic building blocks. The tree [35] and one-loop [36] open string four-point functions have
been known since the introduction of the superstring, and both have the same kinematical form corresponding
to the Yang-Mills four-point amplitude

AYM(1, 2, 3, 4) = − t8(k1, e1, k2, e2, k3, e3, k4, e4)

k1 · k2k2 · k3
. (2.1)

Here we have used the notation

t8(ζ1, ζ2, . . . , ζ8) = t8µ1µ2···µ8
ζµ1

1 ζµ2

2 · · · ζµ8

8 , (2.2)

and the t8 tensor is given by [1]

t8µ1ν1···µ4ν4 = −2
(

(ην2µ1
ην1µ2

)(ην4µ3
ην3µ4

) + (ην3µ1
ην1µ3

)(ην4µ2
ην2µ4

) + (ην4µ1
ην1µ4

)(ην3µ2
ην2µ3

)
)

+ 8
(

ην4µ1
ην1µ2

ην2µ3
ην3µ4

+ ην4µ1
ην1µ3

ην3µ2
ην2µ4

+ ην2µ1
ην1µ3

ην3µ4
ην4µ2

)

, (2.3)

where the right-hand side is to be antisymmetrized in all [µiνi] index pairs with weight one. The external states
are massless and on-shell, with momenta ki and polarizations ei satisfying k2 = 0, k · e = 0 and momentum
conservation, k1 + k2 + k3 + k4 = 0. The actual open-string amplitude is expanded in on-shell momenta. At
tree-level, the leading term is directly proportional to AYM(1, 2, 3, 4), and reproduces the four-point Yang-Mills
contact interaction as well as s-, t- and u-channel gluon exchange diagrams, while the next term in the α′

expansion gives a stringy four-derivative correction of the form t8F
4. At one-loop, the leading term starts at

the four-derivative level, and has the same kinematical structure of t8F
4.

As demonstrated in [24], closed string amplitudes can be written as a combination of left- and right-moving
open-string amplitudes. Working in the NSNS sector, we take the closed string polarization to be a tensor
product

θµν = eµ ⊗ ēν . (2.4)

This can be decomposed into a combination of NSNS fields according to

θµν = hµν + bµν +
1
2 (ηµν − k̄µkν − kµk̄ν)φ, (2.5)

where hmuν are transverse-traceless metric fluctuations, gµν = ηµν + hµν , with kµhµν = hµ
µ = 0, and bµν are

anti-symmetric tensor fluctuations with H = db and kµbµν = 0. The dilaton φ corresponds to the trace mode,
and k̄ is introduced with k̄2 = 0 and k · k̄ = 1 in order to enforce the transversality condition kµθ

µν = 0 for all
modes including the dilaton. While k̄ is only implicitly defined by these properties, it drops out of all physical
amplitudes involving the dilaton.

At tree-level, the closed string four-point function takes the form [2]

M tree
4 ∼

(

8

s12s23s13
+ α′32ζ(3) + · · ·

)

|s12s23AYM(1, 2, 3, 4)|2 , (2.6)
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where sij = ki · kj . This expression is valid for the scattering of any combination of gravitons, antisymmetric
tensors and dilatons (although it vanishes by world-sheet parity for the scattering of an odd number of bµν ’s).
The first term reproduces the leading two-derivative action in the Einstein frame, while the second term gives
rise to the familiar eight-derivative coupling of the form t8t8R

4. In fact, M tree
4 provides information on the

full closed-string NSNS sector, and it is easy to see that the eight-derivative coupling is built from the gauge
invariant combination

¯̃Rµ1µ2

ν1ν2 = 2θ[µ1

[ν1k
µ2]kν2], (2.7)

where µ1µ2 are associated with the left-movers, while ν1ν2 are associated with the right-movers. Here the tilde
indicates that the curvature tensor is given in the Einstein frame, which is the natural frame corresponding to
the string amplitudes as the two-point functions are diagonal between hµν , bµν and φ. Noting the polarization

decomposition (2.5), we see that ¯̃R can be written as

¯̃Rµ1µ2

ν1ν2 = R̃µ1µ2

ν1ν2 + e−φ/2∇[µ1
Hµ2]

ν1ν2 − δ[µ1

[ν1∇µ2]∇ν2]φ, (2.8)

which is the linearised form of a connection with torsion. Note that we have introduced the e−φ/2 factor in
front of ∇H , which has no effect on the four-point function, but ensures that H has the proper weight in the
Einstein frame. In addition, the Bianchi identity dH = 0 ensures that

¯̃Rµ1µ2ν1ν2(H) = ¯̃Rν1ν2µ1µ2
(−H), (2.9)

which is compatible with worldsheet parity.
Although the string amplitudes directly reproduce the effective action in the Einstein frame, we can trans-

form into the string frame by taking g̃µν = eφ/2gµν . In the string frame, the curvature tensor with torsion,
(2.8), takes a particularly simple form as the curvature of a connection with torsion Ω+ = Ω + 1

2H, where H
is viewed as a one-form taking values in the tangent space

Hαβ = Hµ
αβdxµ. (2.10)

The curvature computed out of Ω+ is then

R(Ω+) = R+ 1
2dH + 1

4H ∧H, (2.11)

which has the component form

R(Ω+)µν
αβ = Rµν

αβ +∇[µHν]
αβ + 1

2H[µ
αγHν]γ

β . (2.12)

In the string frame, the tree-level effective action reproducing the eight-derivative four-point function then
takes the form [2, 10]

Ltree =
√−g e−2φ

[

R+ 4∂φ2 − 1

12
H2 +

ζ(3)

3 · 211α
′3(t8t8 − 1

4ǫ8ǫ8)R(Ω+)
4 + · · ·

]

, (2.13)

where we have restored the tree-level numerical factor. Here we should explain our notation for the ǫnǫn tensor.
While ǫ10 is the fully antisymmetric tensor in ten dimensions, a repeated ǫnǫn will denote the antisymmetric
delta function with n pairs of indices

ǫnµ1···µn
ǫν1···νnn = n!δ[ν1µ1

· · · δνn]µn

= − 1

m!
ǫα1···αmµ1···µn

ǫα1···αmν1···νn with m+ n = 10. (2.14)

The sign arises because we are working with a Lorentzian signature in ten dimensions.
At this point, several comments are in order. Firstly, we have included the ǫ8ǫ8R(Ω+)

4 term, even though
it does not contribute to the four-point function. This term is implicit in the Green-Schwarz formalism and
moreover is needed for agreement with the σ-model approach [7, 8]. Secondly, while the four-point function is
only sensitive to the linearised curvature, the natural object in the effective action is the full non-linear curvature
tensor R(Ω+). This non-linear completion was anticipated in [37] and further support for its structure was
given in [13]. Both of these features will be seen directly at the level of the five-point function. Finally,

6



although we have focused on the NSNS sector, the full tree-level quartic effective action has been computed
using pure-spinor methods [17, 18].

Just as for the open string, the closed-string tree and one-loop four-point functions are based on identical
kinematical factors. In particular, we have [38]

M loop
4 ∼ α′3

(

2π2

3
+ α′3 ζ(2)ζ(3)

2
s12s23s13 + · · ·

)

|s12s23AYM(1, 2, 3, 4)|2 . (2.15)

This time, the eight-derivative term is leading, corresponding to the one-loop effective action

Lloop =
√−g

[

π2

9 · 211α
′3(t8t8 ± 1

4ǫ8ǫ8)R(Ω+)
4 + · · ·

]

, (2.16)

where the top sign corresponds to the IIA string. The difference in sign between the IIA and IIB strings
arises because of the difference in GSO projections (or equivalently the difference in SO(8) chiralities in the
Green-Schwarz formalism). Again, the ǫ10ǫ10 term is not visible at the level of the four-point function, but can
be seen in the five-point function.

2.2 The one-loop five-point function

As indicated above, many of the additional features of the eight-derivative couplings are not visible at the
level of the four-point function. Thus we now consider the additional input arising from five-point functions.
The tree-level open string five-point amplitude was computed in [19,39–41] using the covariant approach, and
the one-loop amplitude was computed in [20–23] in the Green-Schwarz formalism and in [42] in the even-even
sector in the covariant formalism. More recently, following the development of the pure-spinor formalism [25],
enormous progress has been made in computing string amplitudes [26], including higher-point trees [27,28] and
loops [29]. More concretely, the five-point open-string tree amplitude was revisited in [43] and the five-point
loop amplitude in [44]; the closed string amplitudes then follow using the KLT relations.

Of course, the string amplitudes themselves are not the end of the story, as we are interested in recreating
the eight-derivative effective-action from the amplitudes. The one-loop effective action was investigated in [45]
for the scattering of five gravitons and in [11,12] for anti-symmetric tensors and gravitons. The starting point
is the closed-string one-loop five-point amplitude, given here for the CP-even sector and at the eight-derivative
level [45]

M loop
5 ∼ − 1

s12

[

k1 · e2t8(e1, k1 + k2, e3, k3, e4, k4, e5, k5)− k2 · e1t8(e2, k1 + k2, e3, k3, e4, k4, e5, k5)

− e1 · e2t8(k1, k2, e3, k3, e4, k4, e5, k5)− s12t8(e1, e2, e3, k3, e4, k4, e5, k5)
]

×
[

k1 · ē2t8(ē1, k1 + k2, ē3, k3, ē4, k4, ē5, k5)− k2 · ē1t8(ē2, k1 + k2, ē3, k3, ē4, k4, ē5, k5)

− ē1 · ē2t8(k1, k2, ē3, k3, ē4, k4, ē5, k5)− s12t8(ē1, ē2, ē3, k3, ē4, k4, ē5, k5)
]

− e1 · ē2t8(e2, k2, e3, k3, e4, k4, e5, k5)t8(ē1, k1, ē3, k3, ē4, k4, ē5, k5)
− e2 · ē1t8(e1, k1, e3, k3, e4, k4, e5, k5)t8(ē2, k2, ē3, k3, ē4, k4, ē5, k5)

∓ 1

4

[

s12ǫ8(e1, e2, e3, k3, e4, k4, e5, k5)ǫ8(ē1, ē2, ē3, k3, ē4, k4, ē5, k5)

+ e1 · ē2ǫ8(e2, k2, e3, k3, e4, k4, e5, k5)ǫ8(ē1, k1, ē3, k3, ē4, k4, ē5, k5)
+ e2 · ē1ǫ8(e1, k1, e3, k3, e4, k4, e5, k5)ǫ8(ē2, k2, ē3, k3, ē4, k4, ē5, k5)

]

+ 9 more in the other sij channels

− e1 · ē1t8(e2, k2, e3, k3, e4, k4, e5, k5)t8(ē2, k2, ē3, k3, ē4, k4, ē5, k5)

∓ 1

4
e1 · ē1ǫ8(e2, k2, e3, k3, e4, k4, e5, k5)ǫ8(ē2, k2, ē3, k3, ē4, k4, ē5, k5)

+ 4 more for vertices 2, . . . , 5. (2.17)
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Here the top signs correspond to the IIA string while the bottom signs correspond to the IIB string. This
amplitude was computed in [45] in the Green-Schwarz formalism, and we have explicitly written out the
combination t8 ± 1

2ǫ8. Here ǫ8 is the fully antisymmetric tensor in eight dimensions with Euclidean signature.
Note that the final three lines in (2.17) correspond to trace polarizations, which are important when considering
amplitudes involving dilatons. In particular, they were not included in [12,45], which only dealt with graviton
and anti-symmetric tensor amplitudes. The normalization here is such that the right-hand side of (2.17)
reproduces

L ∼ 2

24 · 4! (t8t8 ±
1
4ǫ8ǫ8)R

4 + · · · , (2.18)

where 1/4! is a symmetry factor, and each factor of two in the denominator arises from the normalization of
the linearised Riemann tensor, Rabcd = 2k[aeb]k[cēd].

Note that the ǫ8ǫ8 terms in (2.17) arise directly from the odd-odd spin structure sector in the covariant
worldsheet approach. This amplitude first appears at the level of the five-point function, as ten fermion zero
modes need to be soaked up on each side of the string. The odd-odd amplitude takes the simple form [11, 13]

Mo-o
5 ∼ ∓1

4
ǫ9(e1, e2, k2, e3, k3, e4, k4, e5, k5)ǫ9(ē1, ē2, k2, ē3, k3, ē4, k4, ē5, k5), (2.19)

in the same normalization as (2.17). Here ǫ9 is given in Euclidean signature, and ǫ9ǫ9 arises from a single
bosonic zero mode contraction between two ǫ10 tensors. This amplitude is particularly simple because of the
absence of any odd-odd four-point amplitude that would give rise to pole terms from intermediate state particle
exchange. Consistency between the Green-Schwarz and covariant amplitudes demand that the summed ǫ8ǫ8
terms in (2.17) match the single ǫ9ǫ9 expression in (2.19), and this can be shown explicitly using on-shell
five-point kinematics and the schematic decomposition ǫ9ǫ9 ∼ ∑

δijǫ8ǫ8.
As shown in [45], the five-graviton scattering amplitude reproduces the expected one-loop R4 terms (2.16)

at the non-linear level, while the amplitudes involving anti-symmetric tensors and gravitons give rise to new
terms in the odd-odd spin structure sector [12, 13]

Lloop =
√−g

[

π2

9 · 211α
′3
(

t8t8R(Ω+)
4 ± 1

4ǫ8ǫ8R(Ω+)
4 ± 1

3ǫ9ǫ9H
2R(Ω+)

3 ∓ 4
9ǫ9ǫ9H

2(∇H)2R(Ω+) + · · ·
)

+ · · ·
]

− (2π)2

3 · 26 α
′3B2 ∧

[

trR(Ω+)
4 − 1

4 (trR(Ω+)
2)2

]

even(odd) in B2 for IIA(IIB)
, (2.20)

where

ǫ9ǫ9H
2R(Ω+)

3 ≡ −ǫαµ0µ1···µ8
ǫαν0ν1···ν8Hµ1µ2

ν0Hν1ν2
µ0Rµ3µ4

ν3ν4(Ω+)R
µ5µ6

ν5ν6(Ω+)R
µ7µ8

ν7ν8(Ω+), (2.21)

and

ǫ9ǫ9H
2(∇H)2R(Ω+) ≡ −ǫαµ0µ1···µ8

ǫαν0ν1···ν8Hµ1µ2µ0Hν1ν2ν0∇µ3Hµ4

ν3ν4∇µ5Hµ6

ν5ν6R
µ7µ8

ν7ν8(Ω+). (2.22)

Note that, compared to [13], we have simplified the ǫǫH2(∇H)2R term using the identity

ǫαµ0µ1···µ8
ǫαν0ν1···ν8Hµ1µ2

ν0Hν1ν2
µ0∇µ3Hµ4

ν3ν4∇µ5Hµ6

ν5ν6R
µ7µ8

ν7ν8

= 7
9ǫαµ0µ1···µ8

ǫαν0ν1···ν8Hµ1µ2µ0Hν1ν2ν0∇µ3Hµ4

ν3ν4∇µ5Hµ6

ν5ν6R
µ7µ8

ν7ν8 + · · · , (2.23)

which is valid at the level of the on-shell five-point function. While this effective Lagrangian is only complete up
to the five-point function, there is evidence that the CP-odd sector as well as the even-even spin structure term
is complete at it stands [13]. On the other hand, the odd-odd spin structure term will receive contributions
from six and presumably higher-point functions, as can be seen from the reduction to six dimensions.

2.3 The tree-level five-point function

We now return to our main focus, which is on the tree-level five-point function and its implication on the eight-
derivative effective action. The closed-string tree-level amplitude can be obtained using the KLT relations [24]
and, at the eight-derivative level, takes the form [46–48]

M tree
5 ∼ α′32ζ(3)

(

ĀYM(1, 2, 3, 5, 4)
AYM(1, 3, 2, 5, 4)

)T

S0M3

(

AYM(1, 2, 3, 4, 5)
AYM(1, 3, 2, 4, 5)

)

. (2.24)
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Here AYM(1, 2, 3, 4, 5) is the Yang-Mills five-point amplitude and S0 and M3 are 2× 2 matrices

S0 =

(

s12(s13 + s23) s12s13
s12s13 s13(s12 + s23)

)

, M3 =

(

m11 m12

m21 m22

)

, (2.25)

with

m11 = s3
(

−s1(s1 + 2s2 + s3) + s3s4 + s24
)

+ s1s5(s1 + s5),

m12 = −s13s24(s1 + s2 + s3 + s4 + s5),

m21 = m12

∣

∣

2↔3
= −s1s3(s13 + s2 + s24 + s4 + s5),

m22 = m11

∣

∣

2↔3
= s24

(

−s13(s13 + 2s2 + s24) + s24s4 + s24
)

+ s13s5(s13 + s5), (2.26)

where sij = ki ·kj and si ≡ si,i+1. In general, we can form ten Mandelstam invariants sij with i < j. However,
massless five-particle kinematics allows us to reduce this to five independent variables, say s1, . . . , s5. The
other five variables can then be expressed as

s13 = s4 − s1 − s2, s14 = s2 − s4 − s5, s24 = s5 − s2 − s3,

s25 = s3 − s1 − s5, s35 = s1 − s3 − s4. (2.27)

The explicit form of AYM(1, 2, 3, 4, 5) is available from [49], and contains poles corresponding to factorization
on intermediate gluon states. The KLT product (2.24) superficially appears to have pole-squared terms, but
explicit evaluation with Mathematica [50] shows that no such terms are present. Single pole terms, however,
do remain, corresponding to factorization on intermediate NSNS closed string states.

From an effective action point of view, the five-point amplitude receives two types of contributions. The
first type corresponds to intermediate closed-string exchange in the sij channel connecting a leading-order
three-point amplitude for particles i, j and the intermediate state to a tree-level α′3 four-point amplitude for
the intermediate state with the remaining three external particles. Here the intermediate closed-string state
could be any one of the massless NSNS states, namely the graviton, anti-symmetric tensor or dilaton. The
second type of contribution is the actual five-point contact interaction, and this is what we are mostly interested
in since it corresponds to additional couplings beyond what appears in the quartic effective action.

For the one-loop amplitude, the subtraction of pole terms from the intermediate channel particle exchanges
was carried out in [45] for the five-graviton amplitude and in [12] for the mixed anti-symmetric tensor and
graviton amplitudes. This process is similar for all combination of external particles, and the resulting contact
interaction is then used to recreate the one-loop effective action (2.20). In principle, we can repeat this
subtraction procedure for the tree-level amplitude. However, we find it convenient to take a shortcut of
working with the difference between tree and loop amplitudes

∆M5 = M tree
5 −M IIB loop

5 . (2.28)

Here the tree and loop factors, proportional to 2ζ(3) and 2π2/3, respectively, have been removed so the
difference would vanish for identical kinematics. Although the tree and loop amplitudes differ by a dilaton
factor e2φ, the amplitudes correspond to a perturbative expansion with vanishing dilaton vev so their difference
is still meaningful. Furthermore, while the tree-level amplitude is identical for the IIA and IIB strings, we
compare with the one-loop IIB amplitude because of the expected S-duality invariance of the IIB string. In
particular, at the level of the four-point function, the difference ∆M4 vanishes identically for any combination
of external NSNS states, as the kinematical factors in (2.6) and (2.15) are fixed by supersymmetry and hence
are forced to be identical. When combined with non-perturbative contributions, this leads to the SL(2,Z)
invariant combination [31, 32]

LR4 ∼ α′3E3/2(τ, τ̄ )(t8t8 − 1
4ǫ8ǫ8)R

4, (2.29)

at least in the purely gravitational sector.
Returning to the five-point function, (2.28), this difference turns out to be non-vanishing in general when

the external closed-string polarizations are unspecified. However, all pole terms cancel so ∆M5 is purely a
contact interaction. This greatly simplifies our task of obtaining the tree-level effective action as we will not
have to subtract out any underlying pole terms. Even without any poles, the expression for ∆M5 in terms of
polarizations and momenta is quite long, so we have used Mathematica [50] for simplification.
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Projection of ⊗3R Representation Multiplicity
Si [0, 0, 0, 0, 0] 2
W i [2, 0, 0, 0, 0] 3
X i [0, 2, 0, 0, 0] 8
T i [0, 0, 0, 1, 1] 3
Qi [0, 0, 2, 0, 0] 6
V i
+ [1, 0, 0, 0, 2] 2

V i
− [1, 0, 0, 2, 0] 2

Table 2: Irreducible SO(1, 9) representations and their multiplicities in the decomposition of ⊗3R that can be
used to form singlets with H2.

Although ∆M5 is not identically zero, it does vanish in the case of five graviton scattering where all five
external polarizations are taken to be symmetric and trace-free. (Note that we are not considering any dilaton
external states where the difference between tree and loop amplitudes will be manifested.) As a result, the
SL(2,Z) invariant structure (2.29) continues to hold at the next non-linear level, as expected.

The more interesting case to consider is the scattering of two anti-symmetric tensors and three gravitons.
Here it turns out that ∆M5 does not vanish, and moreover has a long and unilluminating expansion in terms
of external polarizations and momenta. Nevertheless, we expect that this amplitude can be reproduced by a
suitable quintic effective action made out of gauge-invariant combinations ofH2R3. We thus start by construct-
ing a complete basis of scalar H2R3 invariants and then computing the five-point amplitudes corresponding
to these invariants. After this, we finally decompose ∆M5 into a linear combination of these invariants and
thereby deduce the effective action.

In order to obtain a complete basis of H2R3 invariants, we first consider the tensor decomposition of H2

and R3 and then look for singlet combinations under the Lorentz group SO(1, 9). We start with the symmetric
tensor product of H2

⊗2H → [0, 0, 0, 0, 0] + [2, 0, 0, 0, 0] + [0, 2, 0, 0, 0] + [0, 0, 0, 1, 1] + [0, 0, 2, 0, 0] + [1, 0, 0, 0, 2] + [1, 0, 0, 2, 0]

H2 + H2
(µν) + H2

[µν][ρσ] + H2
[µνρσ] + H2

[µνλ][αβγ] + H2
[µνλρσ]ζ . (2.30)

The representations are given in terms of Dynkin labels and also shown schematically on the second line. Note
that the last two irreducible representations correspond to the self-dual and anti-self-dual components of the
five-form indices. This decomposition now singles out the corresponding representations in the decomposition
of R3 that can be used to form overall singlets. The symmetric tensor product of R3 is more involved, but can
be obtained with the assistance of the LiE computer algebra package [51–53]. Since we are free to ignore Ricci
terms at this order, we actually consider the symmetric product of three [0, 2, 0, 0, 0] irreducible representations,
corresponding to the Weyl tensor. The relevant terms for forming singlet combinations with H2 are shown in
Table 2, where the notation parallels that of [54] with the exception of Qi, which did not appear there.

The main result from Table 2 is that there are two scalar R3 invariants Si, three two-index invariants W i,
eleven four-index invariants {X i, T i} and eight parity conserving six-index invariants {Qi, V i}. This requires
us to introduce a total of 24 basis terms to span the full set of possible H2R3 combinations in the CP-even
sector. Although the above decomposition is given in a basis of irreducible representations, we find the use of
a reducible basis to be more straightforward as this obviates the need to project out traces and mixed tensor
structures. We then take

Lbasis =
√−g

[

aiH
2S̃i + biH

µ
abH

ν abW̃ i
µν + ciH

µν
aH

ρσ aX̃ i
µνρσ + diH

µνλHρσζQ̃i
µνλρσζ

]

(2.31)

where the specific R3 combinations are given in Appendix A.
It is now a straightforward exercise to take the difference in amplitudes, (2.28), and decompose it into the

above basis. The result is given in the first line of Table 3. Although this decomposition is not particularly
illuminating by itself, it can be partially rewritten using the t8 and ǫ10 tensors, as shown in the additional lines
of the table. Here the ǫ9ǫ9H

2R3 term has the same form as (2.21), while the t8t8H
2R3 term has the explicit

index structure

t8t8H
2R3 ≡ t8µ1···µ8

tν1···ν88 Hµ1µ2αHν1ν2αR
µ3µ4

ν3ν4R
µ5µ6

ν5ν6R
µ7µ8

ν7ν8 . (2.32)
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a1 a2 b1 b2 b3 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 d1 d2 d3 d4 d5 d6 d7 d8

∆M5
1
72

1
36

1
4 − 1

4
1
2 0 0 0 0 0 0 0 1 −2 1

2 − 1
2 1 − 1

2 − 1
2 0 0 0 0 0

− 1
4·4! t8t8H

2R3 0 0 0 0 0 − 1
32

1
2 − 1

16 0 − 1
2 − 1

2
1
2 1 −1 1

4 0 0 0 0 0 0 0 0 0

1
48·4! ǫ9ǫ9H

2R3 1
72

1
36

1
4 − 1

4
1
2

1
32 − 1

2
1
16 0 1

2
1
2 − 1

2 0 −1 1
4 − 1

2 0 − 1
4 − 1

2 − 1
3 −1 − 1

4 2 − 1
8

Table 3: The difference ∆M5 between the tree and loop amplitudes decomposed into the 24 basis elements.
The decomposition of relevant H2R3 terms is also shown for comparison.

This term was initially proposed in [14] in order to recover four-dimensional supersymmetry based on Calabi-
Yau compactification. As indicated in Table 3, the difference ∆M5 can be written in terms of t8t8H

2R3 and
ǫ9ǫ9H

2R3 and a set of terms of the form HµνλHρσζQ̃i
µνλρσζ where H2 is fully uncontracted. Adding back in

the IIB one-loop amplitude and restoring the appropriate tree-level factor of 2ζ(3) then gives

Ltree =
√−g e−2φ

[

ζ(3)

3 · 211α
′3
(

t8t8R(Ω+)
4 − 1

4ǫ8ǫ8R(Ω+)
4 − 2t8t8H

2R(Ω+)
3 − 1

6ǫ9ǫ9H
2R(Ω+)

3

+ 8 · 4!
∑

i

diH
µνλHρσζQ̃i

µνλρσζ + · · ·
)

+ · · ·
]

, (2.33)

where
{di} = (1,− 1

4 , 0,
1
3 , 1,

1
4 ,−2, 18 ), (2.34)

and the R3 combinations Q̃i
µνλρσζ can be found in Appendix A. Note that we have chosen to write the H2R3

terms using the curvature R(Ω+) given in (2.11), as the distinction between H2R3 and H2R(Ω+)
3 only arises

at the level of the six-point function and beyond.
While the tree-level effective Lagrangian, (2.33), fully captures the H2R3 terms, it is important to keep

in mind that it is still incomplete at the quintic level, as we have not considered H2(∇H)2R terms nor have
we considered couplings involving the dilaton. Since the tree-level five-point amplitude, (2.24), includes all
polarizations in the NSNS sector, it would be straightforward to extend (2.33) to the entire NSNS sector at the
quintic level. However, such additional couplings will not be important for the reductions considered below.

This explicit construction of the tree-level H2R3 couplings confirms the prediction of [14] that a tree-level
term of the form δJ = −2t8t8H

2R3 is needed for the reduction of IIA theory on CY3 to be supersymmetric in
four dimensions. In addition, it demonstrates that the ǫǫH2R3 coupling, which arises from the odd-odd sector
in a covariant one-loop computation [13], is also present at tree-level, however with a relative factor of one
half compared to the one-loop coupling. Because of this relative factor, and because of the additional terms
in (2.33), we see that SL(2,Z) invariance of the IIB theory cannot be obtained simply by the use of a single
automorphic function of the form (2.29) once additional fields beyond the graviton are included. We will return
to this point below, when we consider S-duality of IIB theory with higher derivative terms.

Finally, the presence of the fully uncontracted H2 terms in the second line of (2.33) came as somewhat of
a surprise since they are not present in such a form at the one-loop level. Actually, the expansion of ǫ9ǫ9H

2R3

contains such terms, as can be seen in the last row of Table 3. However, this expansion yields a different
combination than that of the left over terms in the tree-level effective action. Along these lines, we have
attempted but failed to rewrite the fully uncontracted H2 terms in terms of invariants built out of t8, ǫ10 and
the metric tensor. Of course, we have not been exhaustive in doing so, and it remains an open question whether
any further simplification of (2.33) is possible.

3 Testing the couplings: K3 reduction

Starting from the tree-level closed string five-point amplitude in the NSNS sector, we have constructed a
supergravity effective action, (2.33), that reproduces the tree-level eight derivative couplings up to H2R3 order.
Although this is not the full quintic effective action, as it lacks H2(∇H)2R terms as well as potentially dilaton
terms, it nevertheless indicates the presence of additional couplings that can be investigated upon dimensional
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reduction. For example, reduction on K3 gives rise to four-derivative couplings (among others) arising from
factorized (four derivative)×R2 terms in ten dimensions and reduction on a Calabi-Yau threefold gives rise to
renormalized two-derivative interactions arising from factorized (two derivative) × R3 terms. Supersymmetry
provides strong constraints on these sort of terms, and this provides a convenient check on the ten-dimensional
couplings.

Here we consider the K3 reduction of the quintic couplings and consider both tree and loop terms for
completeness. In order to reduce an eight-derivative term in ten dimensions to a four-derivative term, we
must soak up four derivatives using the curvature of K3. This means we are only sensitive to terms involving a
factorized R2

µνρσ . Gauge invariant four-derivative contact terms built from the antisymmetric tensor and metric
range schematically from R2 up to H4, and hence can be probed completely using four-point functions in six
dimensions. When combined with R2

µνρσ , this lifts to six-point functions in ten dimensions, which we have not
explored. In particular, the quintic effective action, (2.33), can be used to constrain no more than three-point
contact terms in six dimensions, so we will be unable to provide a full test of the couplings. Nevertheless, the
partial information is still illuminating.

3.1 The six-dimensional tree-level couplings

We begin with an examination of the tree-level couplings. While four-derivative couplings are generally non-
vanishing in theories preserving 16 real supercharges, the tree-level interactions within the six-dimensional
gravity multiplet begin at the four-point, eight-derivative level, just as in the ten-dimensional type-II case.
One quick way to see this is to consider the orbifold limit of K3. The tree-level amplitude in the untwisted
sector, which is where the gravity multiplet lives, is then identical to that on T 4, and it is well known that the
latter only receives corrections starting at the eight-derivative level.

On the other hand, the reduction of the tree-level quintic action, (2.33), on K3 yields

Ld=6
tree =

√−ge−2φ
[

R + 4∂φ2 − 1
12H

2 + α
(

(t4t4 − 1
4ǫ4ǫ4)R(Ω+)

2 − t4t4H
2R(Ω+)− 1

12ǫ5ǫ5H
2R(Ω+) + · · ·

)]

,

(3.1)
where α is inversely proportional to the volume of K3, and the t4 tensor is taken to be t4µ1ν1µ2ν2 = ην2µ1

ην1µ2

up to antisymmetrization in index pairs. Our aim is to show that this vanishes, at least at the order of the
cubic interactions that can be probed by the reduction of the quintic ten-dimensional action. Actually, it is
sufficient to demonstrate that this vanishes up to on-shell field redefinitions. Thus we allow the use of the
six-dimensional equations of motion

∇µHµαβ = 2Hµαβ∂
µφ, Rµν − 1

4H
2
µν = −2∇µ∇νφ, R = −4∂φ2 + 5

12H
2, (3.2)

as well as integration by parts in the action.
We begin with the quartic term

LR4 =
√−ge−2φα(t4t4 − 1

4ǫ6ǫ6)R(Ω+)
2, (3.3)

where

t4t4R(Ω+)
2 = Rµν

αβ(Ω+)R
µν

αβ(Ω+),

1
4ǫ4ǫ4R(Ω+)

2 = Rµν
αβ(Ω+)Rαβ

µν(Ω+)− 4Rµ
α(Ω+)Rα

µ(Ω+) +R(Ω+)
2. (3.4)

The curvature with torsion is given by

Rµν
αβ(Ω+) = Rµν

αβ + 1
2 (∇µHν

αβ −∇νHµ
αβ) + 1

4 (Hµ
αρHνρ

β −Hν
αρHµρ

β), (3.5)

and the Ricci contractions are

Rµ
α(Ω+) ≡ Rµρ

αρ(Ω+) = Rµ
α − 1

2∇ρHρµ
α − 1

4HµρσH
αρσ,

R(Ω+) ≡ Rµ
µ(Ω+) = R− 1

4HµνρH
µνρ. (3.6)

12



As expected, the Riemann-squared terms cancel when the t4t4 and ǫ6ǫ6 terms are combined. However, there
is a subtlety when considering the torsionful case, as the order of the index contractions is different between
the terms. In particular, we use the identity

Rµν
αβ(Ω+) = Rαβ

µν(Ω−), (3.7)

which is a consequence of Bianchi, dH = 0, to rewrite the Euler combination as

1
4ǫ4ǫ4R(Ω+)

2 = Rµν
αβ(Ω+)R

µν
αβ(Ω−)− 4Rµ

α(Ω+)R
µ
α(Ω−) +R(Ω+)

2. (3.8)

As a result, we find

(t4t4 − 1
4ǫ4ǫ4)R(Ω+)

2 = 2∇µHν
αβ∇νHµ

αβ + 4Rµ
α(Ω+)R

µ
α(Ω−)−R(Ω+)

2, (3.9)

where we have made use of dH = 0 and Rµ[ναβ] = 0. As we see, the Riemann-squared term cancels, but we
are left with a non-trivial (∇H)2 term as well as Ricci-like terms.

To proceed, we remove the derivatives acting on H by a combination of integration by parts and the H
equation of motion. We furthermore use the Einstein and H equations of motion to rewrite the Ricci terms
(3.6) as

Rµν(Ω+) = −2∇µ∇νφ−Hµνλ∂
λφ, R(Ω+) = −2�φ. (3.10)

Inserting the above expressions into (3.3) then gives

LR4 =
√−ge−2φα[4RµνρσHµραHνσ

α−2RµνH2
µν−4H2

µν∇µ∇νφ+16(∇µ∇νφ)
2−4H2

µν∂
µφ∂νφ−4(�φ)2]. (3.11)

The first term is an irreducible three-point contact term which should not be present in the six-dimensional
tree-level effective action. Therefore it must be canceled by the reduction of the H2R3 terms in (3.1) that we
have yet to consider.

The additional H2R3 terms can be written explicitly as

t4t4H
2R(Ω+) = HµναHρσ

αRµνρσ(Ω+) = 2RµνρσHµραHνσ
α − 1

4H
4, (3.12)

and

ǫ4ǫ4H
2R(Ω+) = −ǫαµ0µ1···µ4

ǫαν0ν1···ν4Hµ1µ2

ν0Hν1ν2
µ0Rµ3µ4

ν3ν4(Ω+)

= 4
[

6RµνρσHµραHνσ
α − 6RµνH2

µν +RH2 − 1
2H

4 − 1
2 (H

2
µν)

2 − 1
4 (H

2)2
]

, (3.13)

where we have defined
H4 ≡ HµνρH

µabHνbcHρca. (3.14)

As a result, the first term in (3.11) is indeed canceled, and we end up with

L∂4

tree =
√−ge−2φα

[

− 1
3RH2 − 4H2

µν∇µ∇νφ+ 1
6 (H

2
µν)

2 + 5
12H

4 + 1
12 (H

2)2

+ 16(∇µ∇νφ)
2 − 4H2

µν∂
µφ∂νφ− 4(�φ)2

]

. (3.15)

This effective four-derivative action still appears to have three-point interactions. However, these can be pushed
to higher order using a combination of equations of motion and integration by parts. The final result is

L∂4

tree =
√−ge−2φα[ 5

12H
4 + 1

6 (H
2
µν)

2 + 19
36 (H

2)2 − 8H2
µν∂

µφ∂νφ+ 8
3H

2∂φ2 − 16(∂φ2)2]. (3.16)

This is now written purely in terms of four-point contact interactions in six dimensions. Of course, the entire
set of tree-level four-derivative couplings in the gravity sector ought to vanish. However, as these lift to six-
point terms in ten dimensions, they remain unconstrained at the level of the five-point function that we have
computed in (2.33). Nevertheless, the presence of these terms directly indicates that the quintic effective action
is incomplete and additional kinematical structures must necessarily be present that can only be probed at the
level of the six-point function and beyond.

Until now, we have evaded the distinction between IIA and IIB compactifications on K3 as the NSNS fields
are identical. In ten dimensions, the NSNS fields can be viewed as the bosonic sector of a N = 1 theory
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that is extended to either IIA or IIB by the RR fields. The compactification of the NSNS sector on K3 then
results in a (1, 0) theory in six dimensions comprising a supergravity multiplet with bosonic fields (gµν , b

+
µν), a

(1, 0) tensor multiplet with bosonic fields (b−µν , φ) and 20 (1, 0) hypermultiplets with four scalars in each. The
hypermatter originates from the K3 moduli along with the ten-dimensional B-field compactified on two-cycles.
Note, however, that we only focus on the reduction to six-dimensional (gµν , bµν , φ), and hence will ignore the
hypermatter couplings.

As noted above, the tree-level NSNS couplings of type II theory on K3 vanish at the four-derivative level. (To
see this from the reduction of the effective action requires knowledge of the six-point function in ten dimensions,
which we have not computed.) This indicates that neither the (1, 0) gravity multiplet nor the (1, 0) tensor
multiplet receives any tree level four-derivative couplings in six dimensions. However, the situation for one-loop
couplings is rather different, and to discuss that we have to consider IIA and IIB reductions separately.

3.2 Type IIA on K3

The compactification of Type IIA theory on K3 gives rise to (1, 1) supergravity coupled to 20 (1, 1) vector
multiplets. In particular, the RR fields can be thought of as adding a (1, 0) gravitino multiplet of opposite
chirality as well as 20 (1, 0) vectors that combine with the (1, 0) hypermultiplets to fill out the (1, 1) vector
multiplets. What this indicates is that the six-dimensional NSNS fields (gµν , bµν , φ) reside in a single (1, 1)
graviton multiplet, so whatever we obtain in the compactification of the IIA NSNS fields will provide information
on the four-derivative couplings of the graviton multiplet.

At tree level, a direct reduction of the quintic action gives the six-dimensional couplings in (3.16). However,
as discussed above, we expect these couplings to be exactly cancelled by the addition of six-point terms in
the ten-dimensional action. Turning now to the one-loop level, the starting point is the one-loop effective
Lagrangian, (2.20), with the top sign chosen for IIA theory, which can be reduced on K3 to give

L∂4

loop =
√−gβ

(

(t4t4 +
1
4ǫ4ǫ4)R(Ω+)

2 + 1
6ǫ5ǫ5H

2R(Ω+) + · · ·+ 4B2 ∧
[

trR(Ω+)
2
]

even in B2

)

, (3.17)

where β is a loop constant inversely related to the volume of K3. Of course, we actually know more than this,
as the one-loop effective action was previously obtained by dualizing the Heterotic tree-level four-derivative
terms and by direct computation of a string four-point amplitude on the K3 orbifold [13]. With a suitable
normalization, the full NSNS result is given by

L∂4

loop =
√−g

α′

16

(

(t4t4 +
1
4ǫ4ǫ4)R(Ω+)

2 + 1
6ǫ5ǫ5H

2R(Ω+) +
1
36ǫ4ǫ4H

4 + 4B2 ∧
[

trR(Ω+)
2
]

even in B2

)

. (3.18)

The additional ǫ4ǫ4H
4 term (with precise definition given in [13] after mapping ǫ4ǫ4H

4 → − 1
2ǫ6ǫ6H

4) can
originate naturally from a ǫ8ǫ8H

4R(Ω+)
2 coupling in ten dimensions. The addition of the RR fields will

extend this effective Lagrangian to a complete set of four-derivative self couplings of the (1, 1) supergravity
multiplet at one-loop level. The full set of couplings can also be obtained by dualizing the heterotic theory
reduced on T 4 while keeping the six-dimensional graviphotons that were not considered in [13].

3.3 Type IIB on K3

We now turn to Type IIB theory on K3, where the RR sector extends the (1, 0) theory into (2, 0) theory
in six dimensions. Here, the (1, 0) supergravity and tensor multiplet from the NSNS sector complete into a
(2, 0) supergravity and tensor multiplet. In addition, the 20 (1, 0) hypermultiplets are completed into (2, 0)
tensor multiplets, thus yielding (2, 0) supergravity coupled to 21 tensor multiplets in all. Since we have only
considered the NSNS fields, we restrict our focus to (gµν , bµν , φ) in six dimensions, corresponding to the
supergravity multiplet and the tensor multiplet that is singled out by having b−µν originating from the NSNS
sector. Nevertheless, in contrast to the IIA case, this is sufficient to provide information on the coupling of
gravity and tensor multiplets, and not just on the gravity multiplet alone.

We start by noting the one-loop couplings for IIB theory on K3 can be obtained from (3.18) by flipping the
sign of the ǫ4ǫ4 and ǫ5ǫ5 terms and by suitable modification in the CP-odd sector [13]

L∂4

loop =
√−gβ

(

(t4t4 − 1
4ǫ4ǫ4)R(Ω+)

2 − 1
6ǫ5ǫ5H

2R(Ω+)− 1
36ǫ4ǫ4H

4 + 4B2 ∧
[

trR(Ω+)
2
]

odd in B2

)

. (3.19)
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Before proceeding, note that the purely gravitational terms take the form

(t4t4 − 1
4ǫ4ǫ4)R

2 = R2
µνρσ − (R2

µνρσ − 4R2
µν +R2) = 4R2

µν −R2, (3.20)

which vanishes on a Ricci-flat background that is consistent with setting B2 = 0 and a constant dilaton. This
suggests that there is significant cancellation in the gravity sector of IIB theory reduced on K3, and we will
see that this is in fact the case.

For the full set of NSNS fields, we start with the CP-even sector and note that the combination (t4t4 −
1
4ǫ4ǫ4)R(Ω+)

2 was already worked out at tree level in (3.9). Again, we can simplify this using on-shell integra-
tion by parts. However, at one-loop this proceeds without the e−2φ tree-level factor. The result is

(t4t4 − 1
4 ǫ4ǫ4)R(Ω+)

2 = 2∇µHν
αβ∇νHµ

αβ + 4Rµ
α(Ω+)R

µ
α(Ω−)−R(Ω+)

2,

= 4RµνρσHµραHνσ
α − 2RµνH2

µν + 4Rµ
α(Ω+)R

µ
α(Ω−)−R(Ω+)

2 + 2(∇µHµαβ)
2

= 4RµνρσHµραHνσ
α − 2RµνH2

µν + 4(Rµν − 1
4H

2
µν)

2 − (R − 1
4H

2)2 + (∇µHµαβ)
2.

(3.21)

This may be combined with

− 1
6ǫ5ǫ5H

2R(Ω+)− 1
36ǫ4ǫ4H

4 = −4RµνρσHµραHνσ
α + 4RµνH2

µν − 2
3RH2 + 1

18 (H
2)2 − 1

3H
4. (3.22)

to give the effective Lagrangian in the CP-even sector

LCP-even =
√−gβ

(

2RµνH2
µν + 4(Rµν − 1

4H
2
µν)

2 − (R + 1
12H

2)2 − 1
3H

4 + (∇µHµαβ)
2
)

=
√−gβ

(

2RµνH2
µν + 16(∇µ∇νφ)

2 − (4∂φ2 − 1
2H

2)2 − 1
3H

4 + 4H2
µν∂

µφ∂νφ
)

, (3.23)

where the second line is obtained by substituting in the lowest order equations of motion.
We now turn to the CP-odd contribution, which takes the form [13]

LCP-odd = 4βB ∧ tr[R(Ω+) ∧R(Ω+)]odd in B2

= 4βB ∧ tr[dH ∧ (R+ 1
4H2)]

= 4βB ∧ d tr[H ∧ (R+ 1
12H2)] = 4βH ∧ tr[H ∧ (R + 1

12H2)]. (3.24)

Note that the one-form Hab = Hµ
abdxµ is what shows up in the torsionful connection Ω+ = ω + 1

2H. The
H ∧ trH ∧R term involves the Riemann tensor. However, as demonstrated in [13], it can be rewritten purely
kinematically in terms of the Ricci tensor. Then, in component notation, (3.24) becomes

LCP-odd =
√−g4β

1

3!
ǫµ1µ2µ3µ4µ5µ6Hµ1µ2µ3

[ 12!Hµ4µ5

aRa
µ6

− 1
12Hµ4

abHµ5

bcHµ6

ca]

= −√−g4β(∗H)µνρ[ 12!Hµν
aRa

ρ − 1
12Hµ

abHν
bcHρ

ca]

= −√−gβ
(

2Rµν(H
(+)
µαβ −H

(−)
µαβ)Hν

αβ − 1
3 (H

(+) −H(−))H3
)

, (3.25)

where the last line is obtained by rewriting H in terms of its self dual and anti-self dual components H =
H(+) +H(−), so that ∗H = H(+) −H(−). Note that in the last term we are using a short-hand notation for
the non-factorized H4 combination.

We are now ready to combine the CP-even and CP-odd couplings, (3.23) and (3.25), respectively, with the
result

L∂4

loop =
√−gβ

(

4RµνH
(−)
µαβHν

αβ + 16(∇µ∇νφ)
2 − (4∂φ2 − 1

2H
2)2 − 2

3H
(−)H3 + 4H2

µν∂
µφ∂νφ

)

. (3.26)

This expression can be simplified through a combination of integration by parts and application of the on-shell
equations of motion, with the result

L∂4

loop =
√−gβ

(

− 2
3H

(−)H3 +H
(−)
µαβHν

αβH2µν − 5
36 (H

2)2 − 8H
(−)
µαβHν

αβ∇µ∇νφ+ 16(∂φ2)2
)

. (3.27)
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The H(−)H∇∇φ term can be simplified by decomposing H
(−)
µαβHν

αβ = H
(−) 2
µν +H

(−)
µαβHν

(+)αβ and using the
identity

H
(−)αβ
(µ H

(+)
ν)αβ = 1

6gµνH
(−)
ραβH

(+) ραβ = 1
12gµνH

2. (3.28)

This results in an H2
�φ term which is then simplified using the equations of motion. The result is

L∂4

loop =
√−gβ

(

− 2
3H

(−)H3 +H
(−)
µαβHν

αβH2µν − 1
12 (H

2)2 − 8H(−) 2
µν ∇µ∇νφ− 4

3H
2∂φ2 + 16(∂φ2)2

)

=
√−gβ

(

4
3H

(−) 4 − 8H(−) 2
µν ∇µ∇νφ− 4

3H
2∂φ2 + 16(∂φ2)2

)

, (3.29)

where the second line is obtained by fully decomposing the H4 terms into self dual and anti-self dual compo-
nents.

As written, the H(−) 2∇∇φ term in (3.29) appears to represent a contact three-point interaction. However,
as demonstrated in Appendix B, it can be on-shell manipulated to give

H(−) 2
µν ∇µ∇νφ = −2H(−) 2

µν ∂µφ∂νφ− 1
6H

2∂φ2. (3.30)

As a result, we find the (2, 0) loop couplings

L∂4

loop =
√−gβ

(

4
3H

(−) 4 + 16H(−) 2
µν ∂µφ∂νφ+ 16(∂φ2)2

)

. (3.31)

Note that this only involves (bµν , φ) which are the bosonic components of the (1, 0) tensor multiplet that is
extended to a (2, 0) tensor with the inclusion of RR fields that we have ignored. Moreover, it is a quartic
four-derivative tensor self-coupling that obeys the requirements of (2, 0) supersymmetry as outlined in [55]. In
fact, the only quartic four-derivative couplings that are allowed are between (2, 0) tensors, and this is consistent
with the absence of any gravity multiplet fields in (3.31)5. The explicit supersymmetrisation of various one-loop
R2 terms in a general (1, 0) setup was carried out in [56, 57]. Similar calculations for the quartic interactions
of (1, 0) and (2, 0) tensor multiplets should be of considerable interest.

The gravity multiplet fields that are accessible from the NSNS sector are (gµν , b
(+)
µν ). The vanishing of

R2
µνρσ and RµνρσH

µν
αH

ρσα terms suggest that the (graviton)4 and mixed (graviton)2(tensor)2 couplings are
not present. However, the full absence of such couplings is only verified after a somewhat intricate splitting
of H into its self dual and anti-self dual components. In particular, a non-trivial IIB CP-odd term, (3.24),
is required to obtain the proper decoupling of the (2, 0) gravity multiplet at the four-derivative level. This
provides direct evidence that ten-dimensional IIB theory has a one-loop eight derivative CP-odd term, even
though it is completely absent at tree level.

3.4 Reduction on CY threefolds

In Calabi-Yau reductions the order of derivatives appearing in the lower dimensional action is controlled by
the power of the CY Riemann tensors appearing in the internal integrals. Hence for the threefold reduction to
four dimensional the four-derivative couplings discussed in the previous subsections are not the lowest order
contributions. These lowest order two-derivative corrections manifest themselves in the corrections to the
moduli space metrics proportional to the CY Euler number. The correction to the vector multiplet moduli
space Gvv is at tree-level and to the hypemultiplet moduli space metric Ghh at one loop [15, 16]. These
calculations are done directly in the CY background and did not rely on a reduction of ten-dimensional R4

terms. However they predict the result of such a reduction, and the corrected four-dimensional effective action
in string frame should be given by

S =
1

2κ2
4

∫

d4x
√−g

[

(

(1 + χT )e
−2φ4 − χ1

)

R(4)

+
(

(1− χT )e
−2φ4 − χ1

)

Gvv(∂v)
2 +

(

(1 + χT )e
−2φ4 + χ1

)

Ghh(∂h)
2
]

, (3.32)

5Note that tree-level quartic couplings among (2, 0) tensors are also expected to be present. In fact, the distinction between
tree and loop is somewhat lost when considering the O(5, 21) structure of the (2, 0) theory, and generically all 21 tensor multiplets
will have moduli-dependent quartic couplings. However, the particular tensor multiplet obtained from the NSNS reduction has
vanishing tree-level self-couplings, as we have seen above.
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where χT and χ1 are defined in terms of the CY Euler number χ and volume V6 as:

χT =
2ζ(3)(2πα′)3

V6
χ,

χ1 =
4ζ(2)

(2π)3
χ. (3.33)

The first step in obtaining (3.32) via reduction is working out the ∼ (α′)3 corrections to the CY background.
The well-known result for the dilaton and Riemann tensor is

φ = φ0 +
α′3

3 · 28
(

ζ(3) +
(2π)2

12
e2φ0

)

E6,

Rij̄ = − α′3

3 · 26
(

ζ(3) +
(2π)2

12
e2φ0

)

∂i∂j̄E6, (3.34)

with the expansion around the constant dilaton φ0 and internal Ricci-flat metric. Here E6 is the Euler density
of the CY manifold. The action (3.32) should be a result of combining the reduction of ten-dimensional classical
action using (3.34) and the R4 terms evaluated on a classical CY metric. This is rather involved and requires a
number of non-trivial cancellations. This computation was carried out in [14], where it was pointed out that a
tree-level −2e−2φt8t8H

2R3 coupling would be necessary for these cancellations to happen. Indeed, the crucial
terms needed to find an agreement with (3.32) are − 1

3ǫ9ǫ9H
2R3 at one loop and −2e−2φt8t8H

2R3 at tree-level.
The other tree-level terms computed here, namely − 1

6e
−2φǫ9ǫ9H

2R3 which has the same kinematic structure

as the one-loop term but a different coefficient and e−2φ
∑

diH
2 · Q̃i, do not contribute to the reduction.

The R2 terms in reductions on a Calabi-Yau manifold X at linearised level were discussed in [15] and work
out in a very similar fashion to K3 reductions with the following replacement:

1

3

∫

K3

p1 = −16 7→ 1

3

∫

X

ωI ∧ p1(TX) = αI ,

1

32π2

∫

K3

(Riem)2 = 24 7→ 1

32π2

∫

X

(Riem)2 = αI t
I , (3.35)

where ωI ∈ H1,1(X,Z) with I = 1, . . . , h1,1(X), αI is a set of topological numbers, and tI are the Käjhler
moduli. In full agreement with the N = 2 special geometry, the only non-vanishing R2 couplings appear at
one loop in the type IIA reductions and are of the form

αI
[

uI trR2 + tIRµνρλR
µνρλ

]

, (3.36)

where uI are the h1,1(X) moduli coming from the B-field. From the point of view of supersymmetry, this
coupling does not need the B-field that is no longer in the gravity multiplet. However four-derivative couplings
are expected in both vector and hyper multiplets. Moreover, starting from four-derivatives there are mixed
couplings involving vectors and hypers, and starting from six derivatives, mixed couplings also involving the
gravity and matter multiplets. The stringy origin of these couplings has been studied only for the reduction of
type IIA one-loop couplings [58] since these are the only ones that lift to M-theory. Their better understanding
on the type IIB side together with the full SO(5) completions of six-dimensional (2, 0) theories should be useful
in finding a completion of the higher-derivative couplings in string theory with RR fields included.

4 Symmetries and dualities

At the linear level, the structure of the R4 couplings is very similar at the tree and loop level, and this has
led to important observations on supersymmetry as well as SL(2,Z) duality of the IIB string. However, as
we have seen above, the non-linear kinematics is surprisingly different at tree-level and one-loop. Thus both
supersymmetry as well as SL(2,Z) invariance of the IIB couplings need to be revisited in light of this difference.
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4.1 Supersymmetry

Based on the linearised computations, and ignoring the dilaton (which is unimportant in the quartic effective
action), the tree-level and one-loop R4 contributions are often grouped into two N = 1 superinvariants:

J0(Ω) =
(

t8t8 − 1
4ǫ8ǫ8

)

R4,

J1(Ω) = t8t8R
4 − 1

4ǫ10t8BR4. (4.1)

The IIA and IIB tree-level couplings are given by J0, while at one-loop IIB is once more given by J0, but IIA
is given by 2J1 − J0. Note that the IIA action has a CP-odd term 1

4ǫ10t8BR4 at one-loop, while IIB does not.
The disparity between the tree-level and one-loop couplings at the non-linear level, as well as the appearance

of a CP-odd coupling even in B-fields in the IIB action, makes it impossible to describe the full action by only
two R4 superinvariants. At the non-linear level, we expect there are two independent one-loop invariants which
may be taken to be

Jt(Ω+) = t8t8R
4(Ω+)− 1

4 t8ǫ10BR4(Ω+),

Jǫ(Ω+) =
1
4ǫ8ǫ8R

4(Ω+)− 1
4ǫ10t8BR4(Ω+) +

1
3ǫ9ǫ9H

2R3(Ω+)− 4
9ǫ9ǫ9H

2(∇H)2R+ · · · . (4.2)

These are expected to be N = (1, 0) invariants built from the NSNS fields, and supersymmetry is essentially
acting by swapping t8 ↔ ǫ10 only on one side of the string worldsheet. Construction of N = 2 invariants then
corresponds to the addition of an N = (1, 0) chiral gravitino or anti-chiral gravitino multiplet depending on
the completion to IIA or IIB. In any case, the IIA/IIB one-loop terms are then given by JIIA/IIB = Jt ± Jǫ.
Note that the parity of the RR-fields and the relative sign between Jt and Jǫ (GSO projection) are correlated.
So at the level of N = 2 we should again recover a single one-loop invariant. Obviously N = (1, 1) and (2, 0)
invariants are different from each other. At the four-point level, combinations of Jt and Jǫ reduce to the
standard invariants (4.1).

The tree-level action (2.28) derived above is supposed to be independently supersymmetric and hence defines
a third N = (1, 0) supersymmetry invariant:

J0(Ω+) = e−2φ
(

t8t8R(Ω+)
4 − 1

4ǫ8ǫ8R(Ω+)
4 − 2t8t8H

2R(Ω+)
3 − 1

6ǫ9ǫ9H
2R(Ω+)

3

+ 8 · 4!
∑

i

diH
µνλHρσζQ̃i

µνλρσζ + · · ·
)

. (4.3)

This invariant can be promoted to either N = (1, 1) or (2, 0). At the non-linear level, the e−2φ dilaton factor
cannot be ignored and makes this invariant distinct from any of the one-loop invariants. As an N = (1, 0)
invariant, we expect this to also appear in the tree-level heterotic action6. It would be interesting to see if this
is the case.

4.2 SL(2,Z) invariance of R4 couplings

At the two-derivative level, the classical IIB action is invariant under SL(2,R) transformations, while the full
theory is expected to be invariant under SL(2,Z) duality transformations. Given the presence of additional
H2R3 couplings with different kinematical structures at both tree and one-loop level, we now address the
question of how they can be reconciled with SL(2,Z) duality.

Since SL(2,Z) invariance is more naturally investigated in the Einstein frame, we transform from the string

frame, which was used above, to the Einstein frame by taking g
(string)
µν = eφ/2g

(Einstein)
µν . Collecting the tree-

level contribution from (2.33) and the one-loop contribution from (2.20), the perturbative part of the type IIB

6Additional couplings to gauge fields in N = (1, 0) vector multiplets may be required as well.
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eight-derivative action up to H2R3 terms is given in the Einstein frame as

L∂8

IIB = α′3√−g

[

(

e−
3

2
φ ζ(3)

3 · 211 + e
1

2
φ π2

9 · 211
)(

t8t8R(Ω̂+)
4 − 1

4ǫ8ǫ8R(Ω̂+)
4
)

+ e−
3

2
φ ζ(3)

3 · 211 e
−φ

(

− 1
6ǫ9ǫ9H

2R(Ω̂+)
3 − 2t8t8H

2R(Ω̂+)
3 + 8 · 4!

∑

i

diH
µνλHρσζQ̃i

µνλρσζ + · · ·
)

+ e
1

2
φ π2

9 · 211 e
−φ

(

− 1
3ǫ9ǫ9H

2R(Ω̂+)
3 + · · ·

)

]

− (2π)2

3 · 26 α
′3B2 ∧

[

trR(Ω̂+)
4 − 1

4 (trR(Ω̂+)
2)2

]

odd in B2

. (4.4)

The first line collects the terms that are kinematically the same at tree-level and one loop. The second and
third lines contain respectively tree-level and one-loop terms that are different. Finally the last line is the
one-loop CP-odd contribution. Note that in the Einstein frame the torsionful connection picks up a dilaton
contribution

(Ω+)µ
αβ −→ (Ω̂+)µ

αβ = ωµ
αβ + 1

2e
−φ/2Hµ

αβ + 1
2e

[α
µ eβ]ρ∂ρφ, (4.5)

where all quantities on the right-hand side are in the Einstein frame. Note that the ellipses in (4.4) include
terms of the form H2(∇H)2R as well as terms at higher order and possible additional dilaton terms. The
additional factor of e−φ in the middle two lines is associated with H2 in the Einstein frame.

Except for the metric and RR five-form, the IIB fields transform nontrivially under SL(2,Z). Hence
the various terms in (4.4) must arrange themselves into combinations that restore the invariance. A full
investigation of how this works requires knowledge of the RR sector. However, even without a complete
picture of the RR couplings, we can go a long way towards exploring the SL(2,Z) structure of the action by
introducing the standard definitions

τ = C0 + ie−φ , Pm =
i

2τ2
∇mτ and G3 =

1√
τ2

(F3 − τH3), (4.6)

where Cn and Fn+1 are respectively RR potentials and their field strengths. Note that the complex fields P
and G transform with charges +2 and +1, respectively, under the local U(1) symmetry of IIB theory. In order
to obtain SL(2,Z) invariant couplings, we must then multiply the contact terms built out of R, P and G by
appropriate SL(2,Z) covariant functions of opposite charge.

In the pure gravity sector, the (t8t8 − 1
4ǫ8ǫ8)R

4 combination in the first line of (4.4) is naturally made
invariant by introduction the function f0(τ, τ̄ ), which is the SL(2,Z)-invariant, non-holomorphic Eisenstein
series of weight 3/2

f0(τ, τ̄ ) = E3/2(τ, τ̄ ) =
∑

(m,n) 6=(0,0)

τ
3/2
2

|m+ nτ |3 . (4.7)

At large values of τ2, this has the expansion

f0(τ, τ̄ ) = 2ζ(3) τ
3/2
2 +

2π2

3
τ
−1/2
2 + O(e−τ2), (4.8)

which generates the tree-level, one-loop and non-perturbative R4 terms in the effective action [31].
In order to account for couplings with P and G that carry U(1) charge, we note that f0(τ, τ̄ ) is part of a

family of functions fk(τ, τ̄ ) given by

fk(τ, τ̄ ) =
∑

(m,n) 6=(0,0)

τ
3

2

2

(m+ nτ)
3

2
+k(m+ nτ̄)

3

2
−k

, (4.9)

which transform under SL(2,Z) as

fk

(

aτ + b

cτ + d
,
aτ̄ + b

cτ̄ + d

)

=

(

cτ + d

cτ̄ + d

)k

fk(τ, τ̄ ), (4.10)
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and which carries U(1) charge −2k. Note that fk(τ, τ̄ ) satisfy the relations

f̄k = f−k ,

(

k + 2iτ2
∂

∂τ

)

fk =

(

k +
3

2

)

fk+1 and

(

k + 2iτ2
∂

∂τ̄

)

fk =

(

k − 3

2

)

fk−1, (4.11)

from which it is possible to demonstrate that

Dmfk = −
(

3

2
+ k

)

fk+1Pm −
(

3

2
− k

)

fk−1P̄m. (4.12)

Here

Dm = ∇m − iq
∂mτ1
2τ2

(4.13)

is the U(1) covariant derivative acting on an expression with charge q. Note that the large τ2 expansion of
(4.9) takes the form

fk(τ, τ̄ ) = 2ζ(3) τ
3/2
2 +

2π2

3(1− 4k2)
τ
−1/2
2 + O(e−τ2). (4.14)

In particular, the tree and loop coefficients are now related by a k-dependent factor.
It was suggested in [37] that the quartic effective action obtained from the first line of (4.4) can be written

in the form

L4pt =
4

∑

k=0

fk(τ, τ̄ )W
(4)
2k (R,∇P,∇P̄ ,∇G,∇Ḡ) + c.c., (4.15)

where W
(4)
2k (. . .) represents combinations of total charge +2k that is quartic in the fields. Note, however, that

the U(1) charge assignment is ambiguous without knowledge of the RR couplings. For example, H3 in the
NSNS sector can be extended to either G3 or Ḡ3, carrying opposite charges. This ambiguity can be resolved
following a complete computation of the quartic action including the RR fields [17,18], with the result valid at
the level of the four-point couplings

L4pt =
α′3

3 · 212
√−g

[

f0(τ, τ̄ )
(

R4 + 6R2(4|∇P |2 + |∇G|2) + 24|∇P |2|∇G|2 + Ô1((|∇P |2)2) + Ô2((|∇G|2)2)

+ 12
(

R∇P (∇Ḡ)2 +R∇P̄ (∇G)2
)

)]

. (4.16)

The terms here are written schematically, and a contraction with t8t8 − 1
4ǫ8ǫ8 is implied except for the Ô1

and Ô2 terms, which do not have this kinematical structure. Note that the last term in (4.16), which can be
expanded as

R∇P (∇Ḡ)2 +R∇P̄ (∇G)2 = 2R(∇∇φ)[H2 − (F3)
2] + 4R∇F1H3F3, (4.17)

is different from the interaction R(∇P+∇P̄ )|∇G|2 carrying U(1) charge±2 that appears in [18]. As mentioned
in the introduction, the combination (4.17) preserves the local U(1) symmetry like all the other quartic terms,
in agreement with the results of [33, 34]. We have verified explicitly from the two NSNS–two RR amplitude
of [17] that there is a relative minus sign between R(∇∇φ)H2 and R(∇∇φ)(F3)

2, thus confirming the (∇G)2

as opposed to the |∇G|2 form of the expression in (4.17). We also note that while all purely NSNS expressions
in IIB theory are all even in powers of H , as required by world-sheet parity under which B → −B, this does not
have to be the case for the mixed interactions. In particular due to F2n+1 → (−1)nF2n+1 under world-sheet
parity, interactions of the form R∇F1H3F3 are perfectly consistent.

As pointed out in [18], the passage from φ and H to τ and G also brings in new kinematic mixing between
the NS and RR sectors. These new contraction structures have the property

Ôi((∇X)4) = (t8t8 − 1
4ǫ8ǫ8)(∇X)4, (4.18)

for X being either of ∇φ, F1, H3 or F3, but

Ôi((∇X)2(∇Y )2) 6= (t8t8 − 1
4ǫ8ǫ8)(∇X)2(∇Y )2, (4.19)

for different X and Y .
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The Ô1((|∇P |2)2) term has been understood in terms of the F-theory lift, and can be compactly written
using the familiar t8t8 and ǫ8ǫ8 structures by formally extending the range of indices and using a special metric
for the contractions. Guessing the structure of these kinds of terms starting from NS expressions is not possible,
and the incorporation of the RR sector is needed in order to fully determine the higher-point kinematics. We
are not going to pursue this here, but will simply discuss the general SL(2,Z) invariance of the IIB action.

Of course, the first line of (4.4) goes well beyond the quartic level and includes terms up to the level of
the eight-point function, such as some combination of H or ∇φ to the eighth power. These quintic and higher
terms carry U(1) charges up to ±16, and hence would need to be multiplied by fk(τ, τ̄ ) up to k = ±8 to create
SL(2,Z) invariants. Again, the form of such terms can only be pinned down with information from the RR
sector. However, we note from (4.14), that the relative factor between the tree and loop contributions will
differ from that in the first line of (4.4) for all terms with k 6= 0. In fact, consistency with the NSNS sector
demands that all terms obtained from the first line of (4.4) with k 6= 0 must vanish when restricted to the
NSNS sector. This actually provides a rather strong constraint on the form of the U(1) charged terms, and
hence also on the RR sector couplings. For example, the quartic action (4.16) could in principle have had
terms up to k = ±4 [37], yet all terms with k 6= 0 are not present as they would be inconsistent with having
identical tree and loop kinematics in the NSNS sector.

We now consider the terms of the form H2R3 in the middle two lines of (4.4). At quintic order, these terms
can be completed to either |G|2R3 or (G2+ Ḡ2)R3. As a result, the SL(2,Z) invariant combination necessarily
takes the form

a0f0(τ, τ̄ )|G2|R3 + a1
(

f1(τ, τ̄ )G
2R3 + c.c.

)

−→
NSNS

(

a0f0(τ, τ̄ ) + a1 (f1(τ, τ̄ ) + f−1(τ, τ̄ ))
)

e−φH2R3

−→
(

2ζ(3)e−3φ/2(a0 + 2a1) +
2π2

3
(a0 − 2

3a1)

)

e−φH2R3,

(4.20)

where we made use of (4.14). Now consider a specific H2R3 term with identical kinematical structure but
tree-level coefficient AT and one-loop coefficient AL. Equating coefficients with the above then gives

a0 =
AT + 3AL

4
, a1 =

3(AT −AL)

8
. (4.21)

This now allows us to write the quintic terms in the middle two lines of (4.4) as

LH2R3 =
α′3

3 · 212
√−g

[

ǫ9ǫ9
(

− 7
24f0(τ, τ̄ )|G|2 + 1

16 (f1(τ, τ̄ )G
2 + c.c.)

)

R3

+ t8t8
(

− 1
2f0(τ, τ̄ )|G|2 − 3

4 (f1(τ, τ̄ )G
2 + c.c.)

)

R3

+ 2 · 4!
∑

i

di
(

f0(τ, τ̄ )G
µνλḠρσζ + 3

2

(

f1(τ, τ̄)G
µνλGρσζ + c.c.

))

Q̃i
µνλρσζ + · · ·

]

.

(4.22)

This is fully constrained by knowledge of the tree and loop coefficients along with SL(2,Z) invariance. Note,
however, that higher order couplings in the NSNS sector which can be extended to a linear combination of
terms with more than two possible U(1) charge assignments will not have a unique SL(2,Z) completion without
additional input.

Finally, we consider the last line in (4.4) containing the CP-odd contribution to the action. Note that
the part of X8(Ω̂+) ∼ [trR(Ω̂+)

4 − 1
4 (trR(Ω̂+)

2)2] odd in B2 can be written as X8(Ω̂+) −X8(Ω̂−) and as a
difference of the same characteristic classes with different connections is exact. Hence the CP-odd term can
be written as H ∧X7(Ω, H). This expression does not depend on the metric (also in the string frame) and is
expected to hold beyond five-point function contributions. Given that H ∧X7(Ω, H) is even in powers of H ,
the prescription for including the RR sector is simple:

H2n → GnḠn,

for n = 1, 2, 3, 4 with some care needed for the combinatorics for n ≥ 2. This term is then SL(2,Z) invariant
by itself.
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Since the non-holomorphic Eisenstein series fk(τ, τ̄ ) expands into tree-level, one-loop and set of non-
perturbative terms with known coefficients, once the tree-level and one-loop couplings are determined, the
non-perturbative couplings can then be read off from the large τ2 expansion, (4.14). In this sense, the quintic
effective action (4.22) predicts a new set of non-perturbative couplings with non-standard kinematics. It would
be interesting to study this further and see what implications it may have for D-instantons [31, 32] or other
non-perturbative objects in type IIB theory. Even at the perturbative level, (4.22) makes predictions for RR
sector couplings without any explicit computation of RR amplitudes. This ability to make predictions in the
RR sector also extends to the use of O(5, 21) duality in the K3 compactification of IIB theory to N = (2, 0)
theory in six dimensions.

5 Discussion

We have made progress towards the determination of the eight-derivative quintic effective action of type II
strings by computing the tree-level H2R3 couplings. However, even in the NSNS sector, this calculation is not
complete. What is missing are possible H2(∇H)2R terms beyond those that originate from R(Ω+)

4 as well as
couplings involving the dilaton. In six-dimensional tests of our couplings, where two gravitons are internal, we
could reduce the tree-level action to four-point contact terms in six dimensions that involve the dilaton, (3.16).
These terms are expected to cancel based on supersymmetry, but their cancellation would clearly require new
six-point contact terms in ten-dimensions, including those containing the dilaton. However we used on-shell
manipulations such as those in Appendix B that allowed us to push some ostensibly three-point terms to the
four-point level. This was done in six dimensions, and is not bound to work in ten. Hence our tests do not
rule our the potential appearance of dilaton couplings already in the ten-dimensional five-point contact terms.

In principle, it would not be difficult to extend the calculation of section 2 to recover the H2(∇H)2R
contact terms by considering four antisymmetric tensor and one graviton scattering, although we would have
to consider a greater number of invariants when constructing the effective action. Likewise, the dilaton can
be included as well, although we would have to explore a wider number of amplitudes involving from one up
to five external dilatons along with an even number of antisymmetric tensors and some number of remaining
gravitons. Nevertheless, given the interesting differences between tree-level and one-loop, and the fact that the
dilaton is closely related to loop counting, it would be important to complete our results with the dilaton.

In addition, there is more to the type II effective action than just the NSNS sector. Pure spinor techniques
have been applied to open string fermion amplitudes, and in principle they can be combined to yield the
corresponding RR amplitudes. This was done at the level of the quartic action [17], and we expect it should
be possible to do the same for the quintic action. Of course, the usual issue of subtracting out the underlying
pole terms from the lower-point functions will still have to be done.

Even without a complete quintic effective action, we were able to test the new couplings in some simple
compactifications. One interesting observation arises from the compactification of type II strings on K3. Based
on heterotic/IIA duality, we can obtain the quartic one-loop action of IIA in six dimensions [13] and map it to
IIB in six dimensions. Reconciling this action with six-dimensional (2, 0) supersymmetry then required a non-
trivial interplay between the CP-even and CP-odd sectors of the theory. When lifted to ten dimensions, this
provides strong evidence that IIB theory indeed has a one-loop CP-odd term, although it is cohomologically
trivial and hence does not represent any anomaly but is nevertheless required by supersymmetry.

Finally, perhaps one of the most intriguing outcomes of this investigation into the non-linear completion of
R4 is a better appreciation on the intricate SL(2,Z) structure of the eight-derivative IIB couplings. While the
picture is still incomplete, the appearance of different numerical factors and kinematical structures between
tree-level and one-loop gives rise to a rather complicated set of terms that simplify when reduced to the purely
gravitational sector. In addition, SL(2,Z) invariance allows us to deduce some information on the RR sector as
well as non-perturbative information, even without any direct computations. These hints of various structures
suggest that we look for some sort of underlying generalised geometrical description of the higher-derivative
couplings or perhaps even some larger hidden symmetries of string theory.
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A The R3 basis tensors

As shown in section 2.3, there are 24 independent Lorentz invariants that can be formed out of H2R3. We
hence introduce a 24-dimensional basis labeled by the number of indices contracted between H2 and R3. The
R3 invariants themselves are denoted {S̃i, W̃ i

µν , X̃
i
µνρσ, Q̃

i
µνλρσζ}, where the tilde is introduced as a reminder

that these tensors (except for the singlets Si) transform reducibly under SO(1, 9).
There are two singlet combinations

S̃1 = Rab
cdRcd

efRef
ab,

S̃2 = Rc
ab

dRe
cd

fRa
ef

b, (A.1)

and three symmetric two-index combinations

W̃ 1
µν = RµaνbR

a
cdeR

bcde,

W̃ 2
µµ = RµeabRν

ecdRab
cd,

W̃ 3
µν = RµaebRν

cedRa
c
b
d. (A.2)

For the four-index combinations, we take a combination of [µν][ρσ] and [µνρσ] tensor structures (along with
trace terms which we do not project out). There are a total of eleven independent terms

X̃1
µνρσ = RµνρσRabcdR

abcd,

X̃2
µνρσ = RµνρaRσbcdR

abcd,

X̃3
µνρσ = RµνabRρσcdR

abcd,

X̃4
µνρσ = RµρabRνσcdR

abcd,

X̃5
µνρσ = RµaρcRνbσdR

abcd,

X̃6
µνρσ = RµρabRν

a
cdRσ

bcd,

X̃7
µνρσ = RµaρbRν

a
cdRσ

bcd,

X̃8
µνρσ = RµρabRνc

a
dRσ

cbd,

X̃9
µνρσ = RµaρbRνc

a
dRσ

cbd,

X̃10
µνρσ = Rµν

abRρacdRσb
cd,

X̃11
µνρσ = RµνabRρc

a
dRσ

cbd. (A.3)

Finally, we have eight CP-even six-index combinations from [µνλ][αβγ] and [µνλαβ]γ

Q̃1
µνλαβγ = Rµαa

bRνβb
cRλcγ

a,

Q̃2
µνλαβγ = Rµνa

bRαβb
cRλcγ

a,

Q̃3
µνλαβγ = Rµνa

bRλαb
cRβcγ

a,

Q̃4
µνλαβγ = Rµaα

bRνbβ
cRλcγ

a,

Q̃5
µνλαβγ = RµabcRνα

bcRλβγ
a,

Q̃6
µνλαβγ = RµabcRαβ

bcRνλγ
a,

Q̃7
µνλαβγ = RµabcRν

a
α
cRλβγ

b,

Q̃8
µνλαβγ = RµναβRλabcRγ

abc. (A.4)
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B Simplification of H(−) 2∇∇φ

Here we prove the on-shell identity

H(−) 2
µν ∇µ∇νφ = −2H(−) 2

µν ∂µφ∂νφ− 1
6H

2∂φ2. (B.1)

We start with the observation

H(−) 2
µν ∇µ∇νφ = ∇µ(H(−) 2

µν ∂νφ) − (∇µH(−)
µ

αβ)H
(−)
ναβ∂

νφ−H(−)µ
αβ∇µH

(−)
ναβ∂

νφ. (B.2)

Although we need to work with the anti-self dual component of H , we can use a combination of Bianchi and
equations of motion to manipulate these expressions. For the last term, we start by replacing H(−) → −∗H(−)

for both of the H(−)’s

H(−)µ
αβ∇µH

(−)
ναβ =

1

3!2
ǫµαβ

λ1λ2λ3ǫναβσ1σ2σ3
H

(−)
λ1λ2λ3

∇µH
(−)σ1σ2σ3

= − 1

18
δµλ1λ2λ3

νσ1σ2σ3
H

(−)
λ1λ2λ3

∇µH
(−)σ1σ2σ3

= − 1

18
(δµν δ

λ1λ2λ3

σ1σ2σ3
− 3δ[λ1|

ν δµ|λ2λ3]
σ1σ2σ3

)H
(−)
λ1λ2λ3

∇µH
(−)σ1σ2σ3

= −1

3
δµνH

(−)
λ1λ2λ3

∇µH
(−)λ1λ2λ3 +H

(−)
νλ2λ3

∇µH
(−)µλ2λ3

= −1

6
∇ν(H

(−) 2) +H
(−)
νλ2λ3

∇µH
(−)µλ2λ3 . (B.3)

The first term vanishes kinematically since H(−) ·H(−) = 0 for anti-self dual H(−). As a result, we find

H(−) 2
µν ∇µ∇νφ = −2(∇µH(−)

µ
αβ)H

(−)
ναβ∂

νφ, (B.4)

where we have dropped the total derivative (at one loop). We now write H(−) in terms of H and its dual

H
(−)
µαβ =

1

2

(

Hµαβ − 1

3!
ǫµαβ

ρδσHρδσ

)

. (B.5)

Taking a divergence then gives

∇µH
(−)
µαβ =

1

2

(

∇µHµαβ − 1

3!
ǫαβ

µρδσ∂µHρδσ

)

. (B.6)

The second term vanishes by Bianchi, dH = 0. For the first term, we use the equation of motion (3.2) to arrive
at

∇µH
(−)
µαβ = Hµαβ∂

µφ. (B.7)

Inserting this into (B.4) then gives

H(−) 2
µν ∇µ∇νφ = −2HµαβH

(−)
ν

αβ∂µφ∂νφ. (B.8)

Finally, we break Hµαβ into its self dual and anti-self dual components and make use of the identity (3.28)

HµαβH
(−)
ν

αβ∂µφ∂νφ = H(−) 2
µν ∂µφ∂νφ+H

(+)
µαβH

(−)
ν

αβ∂µφ∂νφ = H(−) 2
µν ∂µφ∂νφ+ 1

12H
2∂φ2. (B.9)

Combining this with (B.8) then proves the identity (B.1).
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