Measurement of the absolute gamma-ray emission intensities from the decay of 103Pd

Jonathan Riffaud, Philippe Cassette, Margot Corbel, Marie-Christine Lepy, Valérie Lourenço, Mark Kellett

To cite this version:

HAL Id: cea-03044492

https://hal-cea.archives-ouvertes.fr/cea-03044492

Submitted on 8 Dec 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
MEASUREMENT OF THE ABSOLUTE GAMMA-RAY EMISSION INTENSITIES FROM THE DECAY OF 103Pd

Introduction

Palladium-103 is a radioisotope of interest in medical applications which is used in brachytherapy implants for the treatment of prostate cancer. It decays through electron capture to excited levels of 103mRh, and especially (99.959%) to the 39.748 keV metastable state. The radioactive equilibrium between 103Pd (half-life = 16.991 (19) d) and 103mRh (half-life = 56.114 (12) min) is reached within about 9 hours.

103Pd is a radioisotope of interest in medical applications which is used (half-life = 56.114 (12) min) is reached within about 9 hours. The radioactive equilibrium between 103Pd and 103mRh is achieved by a global Monte Carlo simulation, following the recommendations of the supplement 1 of the Guide to the expression of uncertainty in measurement.

Sources preparation

The palladium chloride solution was standardized by liquid scintillation, using the RCTD1 counter of LNHB. Each source was measured 10 times for 1 minute, allowing relative counting uncertainty of 6·10$^{-4}$. The impurity checking on the initial solution did not reveal any impurity and the detection limit was less than 2·10$^{-4}$ Bq.Bq$^{-1}$. A complementary measurement was performed one month after the activity measurement, to benefit from the 103Pd decay: Rhodium-101 (half-life = 3.30 (10) a) was detected with an activity detection limit was less than 2·10$^{-4}$ Bq.Bq$^{-1}$.

For each energy E_i, the photon emission intensity, I_{i}, is derived from the count rate in the relevant peak, n_{ij}: $I_{i} = \frac{n_{ij}}{\varepsilon_{ij} \cdot A}$, where A: source activity (Bq), ε_{ij} represents different correction factors.

Activity measurement

The palladium chloride solution was standardized by liquid scintillation, using the Triple-to-Double Coincidence Ratio (TDCR) method. The detection efficiency was calculated taking into account the asymmetry of the photomultiplier tubes, by considering the three individual TDCR values, i.e. T/AB, T/BC and T/AC. The absorption of the photons was calculated by Monte Carlo simulation, following the recommendations of the supplement 1 of the Guide to the expression of uncertainty in measurement.

Photon emission intensities

The absolute photon emission intensities were derived from gamma- and X-ray spectrometry using HPGe calibrated detectors, with different measuring conditions to cross-reference the results.

Sources

Initial solution: Palladium chloride in ammonium hydroxyde Mass activity ~ 37 GBq.g$^{-1}$. Dilution to 10 MBq.g$^{-1}$ using 3 mol.L$^{-1}$ HCl

In addition, the emission intensities of four other gamma rays are also derived with a significant reduction of the uncertainties.

Half-life

The half-life of 103Pd was measured by gamma-ray spectrometry on a high-purity germanium (HPGe) detector, using an aliquot of the diluted solution, for 50 days. The measurement was carried out by following the 103Pd main line (357.43 keV).

Conclusions and perspectives

The 357.43 keV photon emission intensity is 0.02464 (16) per 100 disintegrations, in agreement with the tabulated data and obtained with a lower uncertainty. In addition, the emission intensities of four other gamma rays are also derived with a significant reduction of the uncertainties.

Three gamma emissions (62.43 keV, 295.00 keV and 497.08 keV) from the third, fourth and fifth excited levels have significantly higher intensities than the tabulated data. Conversely, for the emission from the metastable level (39.75 keV), the present result is 7% lower than the tabulated value. Also, the L- and K-X-ray emission intensities are weaker (around 10%) than the tabulated data.

This would suggest that the intensity of the electron capture towards the first excited level should be weaker, while the electron capture branches to levels 3, 4 and 5 should be more intense. Another possibility would be an electron capture branch towards the stable level.

The present results provide new information and should give some useful clues to be exploited in a future evaluation of the 103Pd decay scheme.

Activity measurement

The palladium chloride solution was standardized by liquid scintillation, using the RCTD1 counter of LNHB. Each source was measured 10 times for 1 minute, allowing relative counting uncertainty of 6·10$^{-4}$.

For each energy E_i, the photon emission intensity, I_{i}, is derived from the count rate in the relevant peak, n_{ij}: $I_{i} = \frac{n_{ij}}{\varepsilon_{ij} \cdot A}$, where A: source activity (Bq), ε_{ij} represents different correction factors.

Sources

Initial solution: Palladium chloride in ammonium hydroxyde Mass activity ~ 37 GBq.g$^{-1}$. Dilution to 10 MBq.g$^{-1}$ using 3 mol.L$^{-1}$ HCl

In addition, the emission intensities of four other gamma rays are also derived with a significant reduction of the uncertainties.

Half-life

The half-life of 103Pd was measured by gamma-ray spectrometry on a high-purity germanium (HPGe) detector, using an aliquot of the diluted solution, for 50 days. The measurement was carried out by following the 103Pd main line (357.43 keV).

Conclusions and perspectives

The 357.43 keV photon emission intensity is 0.02464 (16) per 100 disintegrations, in agreement with the tabulated data and obtained with a lower uncertainty. In addition, the emission intensities of four other gamma rays are also derived with a significant reduction of the uncertainties.

Three gamma emissions (62.43 keV, 295.00 keV and 497.08 keV) from the third, fourth and fifth excited levels have significantly higher intensities than the tabulated data. Conversely, for the emission from the metastable level (39.75 keV), the present result is 7% lower than the tabulated value. Also, the L- and K-X-ray emission intensities are weaker (around 10%) than the tabulated data.

This would suggest that the intensity of the electron capture towards the first excited level should be weaker, while the electron capture branches to levels 3, 4 and 5 should be more intense. Another possibility would be an electron capture branch towards the stable level.

The present results provide new information and should give some useful clues to be exploited in a future evaluation of the 103Pd decay scheme.