A. M. Marconnet, N. Yamamoto, M. A. Panzer, B. L. Wardle, and K. E. Goodson, Thermal 553 Conduction in Aligned Carbon Nanotube-Polymer Nanocomposites with High Packing 554

A. Density and . Nano, , vol.5, pp.4818-4825, 2011.

S. Lagoutte, P. Aubert, M. Pinault, F. O. Tran-van, M. Mayne-l-'hermite et al., , p.556

. Poly, -methylthiophene)/Vertically Aligned Multi-walled Carbon Nanotubes, p.557

, Electrochemical Synthesis, Characterizations and Electrochemical Storage Properties in 558 Ionic Liquids, vol.130, 2014.

K. Evanoff, J. Khan, A. A. Balandin, A. Magasinski, W. J. Ready et al., , p.561

, Towards ultrathick battery electrodes: Aligned carbon nanotube-enabled architecture, vol.562

, Adv. Mater, vol.24, pp.533-537, 2012.

H. Cebeci, I. Y. Stein, and B. L. Wardle, Effect of nanofiber proximity on the mechanical 564 behavior of high volume fraction aligned carbon nanotube arrays, Appl. Phys. Lett, vol.104, p.565, 2014.

J. R. Raney, F. Fraternali, and C. Daraio, Rate-independent dissipation and loading direction 567 effects in compressed carbon nanotube arrays, Nanotechnology, vol.24, p.255707, 2013.

M. Kumar and Y. Ando, Chemical Vapor Deposition of Carbon Nanotubes: A Review on 570

, Growth Mechanism and Mass Production, J. Nanosci. Nanotechnol, vol.10, p.3758, 2010.

R. Guzmán-de-villoria, S. L. Figueredo, A. J. Hart, S. A. Steiner, A. H. Slocum et al.,

. Wardle, High-yield growth of vertically aligned carbon nanotubes on a continuously 574 moving substrate, Nanotechnology, vol.20, p.405611, 2009.

V. Jourdain and C. Bichara, Current understanding of the growth of carbon nanotubes in 577 catalytic chemical vapour deposition, Carbon N. Y, vol.58, 2013.

R. Andrews, D. Jacques, .. M. Rao, F. Derbyshire, D. Qian et al.,

C. , Continuous production of aligned carbon nanotubes: a step closer to commercial 581 realization, Chem. Phys. Lett, vol.303, pp.467-474, 1999.

M. Mayne, N. Grobert, M. Terrones, R. Kamalakaran, M. Rühle et al.,

. Walton, Pyrolytic production of aligned carbon nanotubes from homogeneously 585 dispersed benzene-based aerosols, Chem. Phys. Lett, vol.338, pp.101-107, 2001.

X. Zhang, B. Cao, Y. Wei, J. Li, C. Wei et al., Rapid growth of well-aligned 588 carbon nanotube arrays, Chem. Phys. Lett, vol.362, issue.02, pp.1025-1029, 2002.

R. A. Afre, T. Soga, T. Jimbo, M. Kumar, Y. Ando et al., Growth of vertically 591 aligned carbon nanotubes on silicon and quartz substrate by spray pyrolysis of a natural 592 precursor: Turpentine oil, Chem. Phys. Lett, vol.414, pp.6-10, 2005.

C. Singh, M. S. Shaffer, and A. H. Windle, Production of controlled architectures of aligned 595 carbon nanotubes by an injection chemical vapour deposition method, Carbon N. Y, vol.41, pp.359-368, 2003.

P. Boulanger, L. Belkadi, J. Descarpentries, D. Porterat, E. Hibert et al., , p.598

S. Patel, M. Pinault, C. Reynaud, M. Mayne-l'hermite, and J. M. Decamps, Towards 599 large scale aligned carbon nanotube composites: an industrial safe-by-design and 600 sustainable approach, J. Phys. Conf. Ser, vol.429, p.12050, 2013.

C. Castro, M. Pinault, S. Coste-leconte, D. Porterat, N. Bendiab et al.,

-. Mayne and . Hermite, Dynamics of catalyst particle formation and multi-walled carbon 604 nanotube growth in aerosol-assisted catalytic chemical vapor deposition, Carbon N. Y, vol.605, pp.3807-3816, 2010.

M. Pinault, M. Mayne-l'hermite, C. Reynaud, V. Pichot, P. Launois et al.,

C. Mayne-l'hermite, V. Reynaud, P. Pichot, D. Launois, and . Ballutaud, Growth of 608 multiwalled carbon nanotubes during the initial stages of aerosol-assisted CCVD, p.609

, Carbon N. Y, vol.43, pp.2968-2976, 2005.

R. Xiang, G. Luo, W. Qian, Q. Zhang, Y. Wang et al., , p.611

, substitution of catalyst particles during continuous growth of carbon 612 nanotubes, Adv. Mater, vol.19, pp.2360-2363, 2007.

P. Landois, M. Pinault, S. Rouzière, D. Porterat, C. Mocuta et al., , p.614

P. L'hermite and . Launois, In situ time resolved wide angle X-ray diffraction study of 615 nanotube carpet growth: Nature of catalyst particles and progressive nanotube alignment, p.616

, Carbon N. Y, vol.87, pp.246-256, 2015.

G. S. Mckee, C. P. Deck, and K. S. Vecchio, Dimensional control of multi-walled carbon 618 nanotubes in floating-catalyst CVD synthesis, Carbon N. Y, vol.47, pp.2085-2094, 2009.

J. Cho, A. R. Boccaccini, and M. S. Shaffer, The influence of reagent stoichiometry on the 621 yield and aspect ratio of acid-oxidised injection CVD-grown multi-walled carbon 622 nanotubes, Carbon N. Y, vol.50, pp.3967-3976, 2012.

S. S. Meysami, A. Koós, F. Dillon, and N. Grobert, Aerosol-assisted chemical vapour 624 deposition synthesis of multi-wall carbon nanotubes: II. An analytical study

Y. , , pp.151-158, 2013.

P. X. Hou, C. Liu, and H. M. Cheng, Purification of carbon nanotubes, Carbon N. Y, vol.46, pp.627-2003, 2008.

I. W. Chiang, B. E. Brinson, R. E. Smalley, J. L. Margrave, and R. H. Hauge, Purification and 629 Characterization of Single-Wall Carbon Nanotubes, J. Phys. Chem. B, vol.105, p.1161, 2001.

A. Leino, M. Mohl, J. Kukkola, P. Mäki-arvela, T. Kokkonen et al.,

. Kordas, Low-temperature catalytic oxidation of multi-walled carbon nanotubes, Carbon 633 N. Y, vol.57, pp.99-107, 2013.

C. Wang, S. Guo, X. Pan, W. Chen, and X. Bao, Tailored cutting of carbon nanotubes and 635 controlled dispersion of metal nanoparticles inside their channels, J. Mater. Chem, vol.18, p.5782, 2008.

E. R. Edwards, E. F. Antunes, E. C. Botelho, M. R. Baldan, and E. J. Corat, Evaluation of 638 residual iron in carbon nanotubes purified by acid treatments, Appl. Surf. Sci, vol.258, pp.641-648, 2011.

B. H. Suryanto, T. Fang, S. Cheong, R. D. Tilley, and C. Zhao, From the inside-out: 641 Leached metal impurities in multiwall carbon nanotubes for purification or 642 electrocatalysis, J. Mater. Chem. A, vol.6, pp.4686-4694, 2018.

X. Yang, M. Yang, H. Zhang, J. Zhao, X. Zhang et al., Electro-purification of carbon 644 nanotube networks without damaging the assembly structure and crystallinity

, Surf. Sci, vol.442, pp.232-238, 2018.

M. Pinault, M. Mayne-l'hermite, C. Reynaud, O. Beyssac, J. N. Rouzaud et al., , p.647

, Carbon nanotubes produced by aerosol pyrolysis: growth mechanisms and post-648 annealing effects, Diam. Relat. Mater, vol.13, 2004.

W. Huang, Y. Wang, G. Luo, and F. Wei, 99.9% Purity Multi-Walled Carbon Nanotubes By, p.651
URL : https://hal.archives-ouvertes.fr/in2p3-00011574

, Vacuum High-Temperature Annealing, vol.41, 2003.

T. Kinoshita, M. Karita, T. Nakano, and Y. Inoue, Two step floating catalyst chemical vapor 654 deposition including in situ fabrication of catalyst nanoparticles and carbon nanotube 655 forest growth with low impurity level, Carbon N. Y, vol.144, pp.152-160, 2019.

M. I. Ionescu, Y. Zhang, R. Li, X. Sun, H. Abou-rachid et al., Hydrogen-free 658 spray pyrolysis chemical vapor deposition method for the carbon nanotube growth: 659 Parametric studies, Appl. Surf. Sci, vol.257, pp.6843-6849, 2011.

X. Bai, D. Li, Y. Wang, and J. Liang, Effects of temperature and catalyst concentration on 662 the growth of aligned carbon nanotubes, Tsinghua Sci. Technol, vol.10, 2005.

C. Castro, M. Pinault, D. Porterat, C. Reynaud, and M. Mayne-l'hermite, The role of 665 hydrogen in the aerosol-assisted chemical vapor deposition process in producing thin 666 and densely packed vertically aligned carbon nanotubes, Carbon N. Y, vol.61, pp.585-667, 2013.

M. Pinault, V. Pichot, H. Khodja, P. Launois, C. Reynaud et al., , p.669

, Evidence of sequential lift in growth of aligned multiwalled carbon nanotube 670 multilayers, Nano Lett, vol.5, pp.2394-2398, 2005.

S. S. Meysami, F. Dillon, A. Koós, Z. Aslam, and N. Grobert, Aerosol-assisted chemical 672 vapour deposition synthesis of multi-wall carbon nanotubes: I. Mapping the reactor, p.673

, Carbon N. Y, vol.58, pp.159-169, 2013.

E. Charon, J. Rouzaud, and J. Aléon, Graphitization at low temperatures (600-1200°C) in 675 the presence of iron implications in planetology, Carbon N. Y, vol.66, 2014.

M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio et al., , p.678

, Studying disorder in graphite-based systems by Raman spectroscopy, Phys. Chem

, Chem. Phys, vol.9, pp.1276-1291, 2007.

J. Maultzsch, S. Reich, C. Thomsen, S. Webster, R. Czerw et al., , p.681

P. R. Birkett and C. A. Rego, Raman characterization of boron-doped multiwalled carbon 682 nanotubes, Appl. Phys. Lett, vol.81, pp.2647-2649, 2002.

M. Bedewy, E. R. Meshot, H. Guo, E. A. Verploegen, W. Lu et al., Collective 684 mechanism for the evolution and self-termination of vertically aligned carbon nanotube 685 growth, J. Phys. Chem. C, vol.113, pp.20576-20582, 2009.

R. W. Call, C. G. Read, C. Mart, and T. C. Shen, The density factor in the synthesis of carbon 687 nanotube forest by injection chemical vapor deposition, J. Appl. Phys, vol.112, 2012.

R. Xiang, Z. Yang, Q. Zhang, G. Luo, W. Qian et al.,

. Maruyama, Growth deceleration of vertically aligned carbon nanotube arrays: Catalyst 691 deactivation or feedstock diffusion controlled?, J. Phys. Chem. C, vol.112, pp.4892-692, 2008.

S. Santangelo, G. Messina, G. Faggio, M. Lanza, and C. Milone, Evaluation of crystalline 694 perfection degree of multi-walled carbon nanotubes: Correlations between thermal 695 kinetic analysis and micro-Raman spectroscopy, J. Raman Spectrosc, vol.42, p.602, 2011.