M. Dean, A. Rzhetsky, and R. Allikmets, The Human ATP-Binding Cassette (ABC) Transporter Superfamily, Genome Research, vol.11, issue.7, pp.1156-1166, 2001.

S. Cole, G. Bhardwaj, J. H. Gerlach, J. E. Mackie, C. E. Grant et al., Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line, Science, vol.258, pp.1650-1654, 1992.

A. Tabcharani, X. B. Chang, J. R. Riordan, and J. W. Hanrahan, Phosphorylation-regulated Cl ? channel in CHO cells stably expressing the cystic fibrosis gene, Nature, vol.352, pp.628-631, 1991.

M. J. Dunne, C. Kane, R. M. Shepherd, J. A. Sanchez, R. F. James et al., Familial Persistent Hyperinsulinemic Hypoglycemia of Infancy and Mutations in the Sulfonylurea Receptor, New England Journal of Medicine, vol.336, issue.10, pp.703-706, 1997.

D. L. Goksel, K. Fischbach, R. Duggirala, B. D. Mitchell, L. Aguilar-bryan et al., Variant in sulfonylurea receptor-1 gene is associated with high insulin concentrations in non-diabetic Mexican Americans: SUR-1 gene variant and hyperinsulinemia, Human Genetics, vol.103, issue.3, pp.280-285, 1998.

R. G. Deeley, C. Westlake, and S. P. Cole, Transmembrane transport of endo-and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins, Physiol. Rev, vol.86, pp.849-899, 2006.

I. Akan, S. Akan, H. Akca, B. Savas, and T. Ozben, N-acetylcysteine enhances multidrug resistance-associated protein 1 mediated doxorubicin resistance, European Journal of Clinical Investigation, vol.34, issue.10, pp.683-689, 2004.

K. J. Linton, Structure and Function of ABC Transporters, Physiology, vol.22, issue.2, pp.122-130, 2007.

S. P. Cole and R. G. Deeley, Multidrug resistance mediated by the ATP-binding cassette transporter protein MRP, BioEssays, vol.20, pp.931-940, 1998.

C. Kast and P. Gros, Epitope insertion favors a six transmembrane domain model for the carboxy-terminal portion of the multidrug resistance-associated protein, Biochemistry, vol.37, pp.2305-2313, 1998.

C. Kast and P. Gros, Topology Mapping of the Amino-terminal Half of Multidrug Resistance-associated Protein by Epitope Insertion and Immunofluorescence, Journal of Biological Chemistry, vol.272, issue.42, pp.26479-26487, 1997.

D. R. Hipfner, K. C. Almquist, E. M. Leslie, J. H. Gerlach, C. E. Grant et al., Membrane Topology of the Multidrug Resistance Protein (MRP), Journal of Biological Chemistry, vol.272, issue.38, pp.23623-23630, 1997.

E. Bakos, Functional multidrug resistance protein (MRP1) lacking the N-terminal transmembrane domain, J. Biol. Chem, vol.273, pp.32167-32175, 1998.

K. Hollenstein, R. J. Dawson, and K. P. Locher, Structure and mechanism of ABC transporter proteins, Current Opinion in Structural Biology, vol.17, issue.4, pp.412-418, 2007.

A. Ward, C. L. Reyes, J. Yu, C. B. Roth, and G. Chang, Flexibility in the ABC transporter MsbA: alternating access with a twist, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.19005-19010, 2007.

R. J. Dawson and K. P. Locher, Structure of the multidrug ABC transporter Sav1866 from S. aureus in complex with AMP-PNP, Structure of the multidrug ABC transporter Sav 1866 from Staphylococcus aureus in complex with AMP-PNP, vol.581, pp.935-938, 2007.

R. J. Dawson and K. P. Locher, Structure of a bacterial multidrug ABC transporter, Nature, vol.443, pp.180-185, 2006.

M. F. Rosenberg, C. J. Oleschuk, P. Wu, Q. Mao, R. G. Deeley et al., Structure of a human multidrug transporter in an inward-facing conformation, Journal of Structural Biology, vol.170, issue.3, pp.540-547, 2010.

M. K. Degorter, G. Conseil, R. G. Deeley, R. L. Campbell, and S. P. Cole, Molecular modeling of the human multidrug resistance protein 1 (MRP1/ABCC1), Biochemical and Biophysical Research Communications, vol.365, issue.1, pp.29-34, 2008.

J. D. Campbell, K. Koike, C. Moreau, M. S. Sansom, R. G. Deeley et al., Molecular modeling correctly predicts the functional importance of Phe594 in transmembrane helix 11 of the multidrug resistance protein, MRP1 (ABCC1), J. Biol. Chem, vol.279, pp.463-468, 2004.

R. G. Deeley and S. P. Cole, Substrate recognition and transport by multidrug resistance protein 1 (ABCC1), FEBS Lett, vol.580, pp.1103-1111, 2006.

T. Lazarova, K. A. Brewin, K. Stoeber, and C. R. Robinson, Characterization of peptides corresponding to the seven transmembrane domains of human adenosine A2a receptor, Biochemistry, vol.43, pp.12945-12954, 2004.

A. M. Duarte, E. R. Jong, R. B. Koehorst, and M. A. Hemminga, Conformational studies of peptides representing a segment of TM7 from H+-VO-ATPase in SDS micelles, Eur. Biophys. J, vol.39, pp.639-646, 2010.

J. Oates, M. Hicks, T. R. Dafforn, D. Dimaio, and A. M. Dixon, In vitro dimerization of the bovine papillomavirus E5 protein transmembrane domain, Biochemistry, vol.47, pp.8985-8992, 2008.

A. Rath, D. V. Tulumello, and C. M. Deber, Peptide models of membrane protein folding, Biochemistry, vol.48, pp.3036-3045, 2009.

D. V. Tulumello and C. M. Deber, Efficiency of detergents at maintaining membrane protein structures in their biologically relevant forms, Biochim. Biophys. Acta, vol.1818, pp.1351-1358, 2012.

N. Bordag and S. Keller, Helical transmembrane peptides: a "divide and conquer" approach to membrane proteins, Chem. Phys. Lipids, vol.163, pp.1-26, 2010.

J. Popot and D. M. Engelman, Helical membrane protein folding, stability an evolution, Annu. Rev. Biochem, vol.69, pp.881-922, 2000.

J. Popot and D. M. Engelman, Membrane protein folding and oligomerization: the two-stage model, Biochemistry, vol.29, pp.4031-4037, 1990.

D. M. Engelman, Y. Chen, C. Chin, A. R. Curran, A. M. Dixon et al., Membrane protein folding: beyond the two stage model, vol.555, pp.122-125, 2003.

S. H. White and W. C. Wimley, MEMBRANE PROTEIN FOLDING AND STABILITY: Physical Principles, Annual Review of Biophysics and Biomolecular Structure, vol.28, issue.1, pp.319-365, 1999.

J. Karwatsky, R. Daoud, J. Cai, P. Gros, and E. Georges, Binding of a Photoaffinity Analogue of Glutathione to MRP1 (ABCC1) within Two Cytoplasmic Regions (L0 and L1) as Well as Transmembrane Domains 10-11 and 16-17?, Biochemistry, vol.42, issue.11, pp.3286-3294, 2003.

K. Koike, G. Conseil, E. M. Leslie, R. G. Deeley, and S. P. Cole, Identification of proline residues in the core cytoplasmic and transmembrane regions of multidrug resistance protein 1 (MRP1/ABCC1) important for transport function, substrate specificity, and nucleotide interactions, J. Biol. Chem, vol.279, pp.12325-12336, 2004.

K. Koike, C. J. Oleschuk, A. Haimeur, S. L. Olsen, R. G. Deeley et al., Multiple membrane-associated tryptophan residues contribute to the transport activity and substrate specificity of the human multidrug resistance protein, MRP1, J. Biol. Chem, vol.277, pp.49495-49503, 2002.

D. Zhang, K. Nunoya, M. Vasa, H. Gu, S. P. Cole et al., Mutational analysis of polar amino acid residues within predicted transmembrane helices 10 and 16 of multidrug resistance protein 1 (ABCC1): effect on substrate specificity, Drug Metab. Dispos, vol.34, pp.539-546, 2006.

D. Zhang, S. P. Cole, and R. G. Deeley, Determinants of the Substrate Specificity of Multidrug Resistance Protein 1, Journal of Biological Chemistry, vol.277, issue.23, pp.20934-20941, 2002.

D. Situ, A. Haimeur, G. Conseil, K. E. Sparks, D. Zhang et al., Mutational analysis of ionizable residues proximal to the cytoplasmic interface of membrane spanning domain 3 of the multidrug resistance protein, MRP1 (ABCC1): glutamate 1204 is important for both the expression and catalytic activity of the transporter, J. Biol. Chem, vol.279, pp.38871-38880, 2004.

M. Vincent, J. Gallay, N. Jamin, M. Garrigos, and B. De-foresta, The predicted transmembrane fragment 17 of the human multidrug resistance protein 1 (MRP1) behaves as an interfacial helix in membrane mimics, Biochim. Biophys. Acta Biomembr, vol.1768, pp.538-552, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00259005

B. De-foresta, M. Vincent, M. Garrigos, and J. Gallay, Transverse and tangential orientation of predicted transmembrane fragments 4 and 10 from the human multidrug resistance protein (hMRP1/ABCC1) in membrane mimics, Eur. Biophys. J, vol.40, pp.1043-1060, 2011.

B. De-foresta, M. Vincent, J. Gallay, and M. Garrigos, Interaction with membrane mimics of transmembrane fragments 16 and 17 from the human multidrug resistance ABC transporter 1 (hMRP1/ABCC1) and two of their tryptophan variants, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1798, issue.3, pp.401-414, 2010.

C. Snider, S. Jayasinghe, K. Hristova, and S. H. White, MPEx: a tool for exploring membrane proteins, Protein Sci, vol.18, pp.2624-2628, 2009.

M. Buck, Trifluoroethanol and colleagues: cosolvents come of age. Recent studies with peptides and proteins, Q. Rev. Biophys, vol.31, pp.297-355, 1998.

A. Kentsis and T. R. Sosnick, Trifluoroethanol promotes helix formation by destabilizing backbone exposure: desolvation rather than native hydrogen bonding defines the kinetic pathway of dimeric coiled coil folding, Biochemistry, vol.37, pp.14613-14622, 1998.

A. Jasanoff and A. R. Fersht, Quantitative determination of helical propensities from trifluoroethanol titration curves, Biochemistry, vol.33, pp.2129-2135, 1994.

D. Roccatano, G. Colombo, M. Fioroni, and A. E. Mark, Mechanism by which 2,2,2-trifluoroethanol/water mixtures stabilize secondary-structure formation in peptides: a molecular dynamics study, Proc. Natl. Acad. Sci. U. S. A, vol.99, pp.12179-12184, 2002.

F. Sano, M. Koike, K. Nakamura, T. Wakayama, N. Kunika et al., Salvage therapy for recurrent or refractory non-Hodgkin's lymphoma with etoposide, methotrexate, vindesine and prednisolone (EMVP), Gan To Kagaku Ryoho, vol.19, pp.2389-2393, 1992.

D. E. Warschawski, A. A. Arnold, M. Beaugrand, A. Gravel, É. Chartrand et al., Choosing membrane mimetics for NMR structural studies of transmembrane proteins, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1808, issue.8, pp.1957-1974, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02567622

D. A. Kallick, M. R. Tessmer, C. R. Watts, and C. Y. Li, The use of Dodecylphosphocholine micelles in solution NMR, J. Magn. Reson. B, vol.109, pp.60-65, 1995.

G. G. Privé, Detergents for the stabilization and crystallization of membrane proteins, Methods, vol.41, issue.4, pp.388-397, 2007.

Y. Coïc, M. Vincent, J. Gallay, F. Baleux, F. Mousson et al., Single-spanning membrane protein insertion in membrane mimetic systems: role and localization of aromatic residues, Eur. Biophys. J, vol.35, pp.27-39, 2005.

S. Soulié, B. De-foresta, J. V. Møller, G. B. Bloomberg, J. D. Groves et al., Spectroscopic studies of the interaction of Ca 2+ -ATPase-peptides with dodecyl maltoside and its brominated analog, Eur. Biophys. J, vol.257, pp.216-227, 1998.

S. Lund, S. Orlowski, B. De-foresta, P. Champeil, M. Le-maire et al., Detergent structure and associated lipid as determinants in the stabilization of solubilized Ca 2+ -ATPase from sarcoplasmic reticulum, J. Biol. Chem, vol.264, pp.4907-4915, 1989.

T. Odahara, Stability and solubility of integral membrane proteins from photosynthetic bacteria solubilized in different detergents, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1660, issue.1-2, pp.80-92, 2004.

M. A. Ahmed, M. Avila, E. Polverini, K. Bessonov, V. V. Bamm et al., Solution nuclear magnetic resonance structure and molecular dynamics simulations of a murine 185 kDa myelin basic protein segment (S72-S107) in association with dodecylphosphocholine micelles, Biochemistry, vol.51, pp.7475-7487, 2012.

J. Hu, H. Qin, C. Li, M. Sharma, T. A. Cross et al., Structural biology of transmembrane domains: Efficient production and characterization of transmembrane peptides by NMR, Protein Science, vol.16, issue.10, pp.2153-2165, 2007.

G. Manzo, M. Carboni, A. C. Rinaldi, M. Casu, and M. A. Scorciapino, Characterization of sodium dodecylsulphate and dodecylphosphocholine mixed micelles through NMR and dynamic light scattering, Magnetic Resonance in Chemistry, vol.51, issue.3, pp.176-183, 2013.

J. Lauterwein, C. Bösch, L. R. Brown, and K. Wüthrich, Physicochemical studies of the protein-lipid interactions in melittin-containing micelles, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.556, issue.2, pp.244-264, 1979.

L. R. Brown, C. Bösch, and K. Wüthrich, Location and orientation relative to the micelle surface for glucagon in mixed micelles with dodecylphosphocholine EPR and NMR studies, Biochim. Biophys. Acta Biomembr, vol.642, pp.296-312, 1981.

M. Le-maire, P. Champeil, and J. V. Møller, Interaction of membrane proteins and lipids with solubilizing detergents, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1508, issue.1-2, pp.86-111, 2000.

D. Balzer and H. Lüders, Nonionic Surfactants, Nonionic Surfactants: Alkyl Polyglucosides, 2000.

G. G. Krivov, M. V. Shapovalov, and R. L. Dunbrack, Improved prediction of protein side-chain conformations with SCWRL4, Proteins: Structure, Function, and Bioinformatics, vol.77, issue.4, pp.778-795, 2009.

L. Kresten, P. Stefano, P. Kim, M. Paul, L. K. John et al., Improved side-chain torsion potentials for the Amber ff99SB protein force field, Proteins Struct. Funct. Bioinform, vol.78, pp.1950-1958, 2010.

F. Dupradeau, C. Cezard, R. Lelong, E. Stanislawiak, J. Pecher et al., R.E.DD.B.: A database for RESP and ESP atomic charges, and force field libraries, Nucleic Acids Research, vol.36, issue.Database, pp.D360-D367, 2007.

F. Dupradeau, A. Pigache, T. Zaffran, C. Savineau, R. Lelong et al., The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building, Physical Chemistry Chemical Physics, vol.12, issue.28, p.7821, 2010.

T. Radnai, S. Ishiguro, and H. Ohtaki, Intramolecular and liquid structure of 2,2,2-trifluoroethanol by X-ray diffraction, Journal of Solution Chemistry, vol.18, issue.8, pp.771-784, 1989.

I. Bako?, T. T. Radnai, and M. C. Bellisent-funel, Investigation of structure of liquid 2,2,2 trifluoroethanol: Neutron diffraction, molecular dynamics, and ab initio quantum chemical study, The Journal of Chemical Physics, vol.121, issue.24, p.12472, 2004.

R. Chitra and P. E. Smith, A comparison of the properties of 2,2,2-trifluoroethanol and 2,2,2-trifluoroethanol/water mixtures using different force fields, The Journal of Chemical Physics, vol.115, issue.12, pp.5521-5530, 2001.

W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz et al., A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules, Journal of the American Chemical Society, vol.117, issue.19, pp.5179-5197, 1995.

M. J. Bodkin and J. M. Goodfellow, Hydrophobic solvation in aqueous trifluoroethanol solution, Biopolymers, vol.39, issue.1, pp.43-50, 1998.

S. Abel, F. Dupradeau, and M. Marchi, Molecular Dynamics Simulations of a Characteristic DPC Micelle in Water, Journal of Chemical Theory and Computation, vol.8, issue.11, pp.4610-4623, 2012.
URL : https://hal.archives-ouvertes.fr/cea-02999231

S. G. Gouin, E. Vanquelef, J. M. García-fernández, C. Ortiz-mellet, F. Dupradeau et al., Multi-Mannosides Based on a Carbohydrate Scaffold: Synthesis, Force Field Development, Molecular Dynamics Studies, and Binding Affinities for Lectin Con A, The Journal of Organic Chemistry, vol.72, issue.24, pp.9032-9045, 2007.

V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg et al., Comparison of multiple Amber force fields and development of improved protein backbone parameters, Proteins: Structure, Function, and Bioinformatics, vol.65, issue.3, pp.712-725, 2006.

S. Abel, F. Dupradeau, E. P. Raman, A. D. Mackerell, and M. Marchi, Molecular Simulations of Dodecyl-?-maltoside Micelles in Water: Influence of the Headgroup Conformation and Force Field Parameters, The Journal of Physical Chemistry B, vol.115, issue.3, pp.487-499, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00720021

K. N. Kirschner, A. B. Yongye, S. M. Tschampel, J. González-outeiriño, C. R. Daniels et al., GLYCAM06: A generalizable biomolecular force field. Carbohydrates, Journal of Computational Chemistry, vol.29, issue.4, pp.622-655, 2007.

S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar et al., GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit, Bioinformatics, vol.29, issue.7, pp.845-854, 2013.

B. Hess, C. Kutzner, D. Van-der-spoel, and E. Lindahl, GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation, Journal of Chemical Theory and Computation, vol.4, issue.3, pp.435-447, 2008.

J. Zhang and T. Lazaridis, Calculating the Free Energy of Association of Transmembrane Helices, Biophysical Journal, vol.91, issue.5, pp.1710-1723, 2006.

C. Dupuy, X. Auvray, C. Petipas, I. Rico-lattes, and A. Lattes, Anomeric Effects on the Structure of Micelles of Alkyl Maltosides in Water, Langmuir, vol.13, issue.15, pp.3965-3967, 1997.

N. Chakrabarti, C. Neale, J. Payandeh, E. F. Pai, and R. Pomès, An Iris-Like Mechanism of Pore Dilation in the CorA Magnesium Transport System, Biophysical Journal, vol.98, issue.5, pp.784-792, 2010.

W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, Comparison of simple potential functions for simulating liquid water, The Journal of Chemical Physics, vol.79, issue.2, pp.926-935, 1983.

S. Miyamoto and P. A. Kollman, Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models, Journal of Computational Chemistry, vol.13, issue.8, pp.952-962, 1992.

U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee et al., A smooth particle mesh Ewald method, The Journal of Chemical Physics, vol.103, issue.19, pp.8577-8593, 1995.

H. J. Berendsen, J. P. Postma, W. F. Van-gunsteren, A. Dinola, and J. R. Haak, Molecular dynamics with coupling to an external bath, The Journal of Chemical Physics, vol.81, issue.8, pp.3684-3690, 1984.

G. Bussi, D. Donadio, and M. Parrinello, Canonical sampling through velocity rescaling, The Journal of Chemical Physics, vol.126, issue.1, p.014101, 2007.

A. Rahman and F. H. Stillinger, Molecular Dynamics Study of Liquid Water, The Journal of Chemical Physics, vol.55, issue.7, pp.3336-3359, 1971.

M. Parrinello and A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method, Journal of Applied Physics, vol.52, issue.12, pp.7182-7190, 1981.

S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Molecular Physics, vol.52, issue.2, pp.255-268, 1984.

W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Physical Review A, vol.31, issue.3, pp.1695-1697, 1985.

B. Hess, P-LINCS: A Parallel Linear Constraint Solver for Molecular Simulation, Journal of Chemical Theory and Computation, vol.4, issue.1, pp.116-122, 2007.

J. Tian, A. Sethi, D. Anunciado, D. M. Vu, and S. Gnanakaran, Characterization of a Disordered Protein during Micellation: Interactions of ?-Synuclein with Sodium Dodecyl Sulfate, The Journal of Physical Chemistry B, vol.116, issue.15, pp.4417-4424, 2012.

S. A. Sanders, M. Sammalkorpi, and A. Z. Panagiotopoulos, Atomistic Simulations of Micellization of Sodium Hexyl, Heptyl, Octyl, and Nonyl Sulfates, The Journal of Physical Chemistry B, vol.116, issue.8, pp.2430-2437, 2012.

S. Abel, J. Attia, S. Rémita, M. Marchi, W. Urbach et al., Atomistic simulations of spontaneous formation and structural properties of linoleic acid micelles in water, Chemical Physics Letters, vol.481, issue.1-3, pp.124-129, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00429495

I. A. Nyrkova and A. N. Semenov, On the Theory of Micellization Kinetics, Macromolecular Theory and Simulations, vol.14, issue.9, pp.569-585, 2005.

S. Cueille and C. Sire, Smoluchowski's equation for cluster exogenous growth, Europhysics Letters (EPL), vol.40, issue.3, pp.239-244, 1997.

J. Zhang and S. Liu, Kinetics of thermo-induced micelle-to-vesicle transitions in a catanionic surfactant system investigated by stopped-flow temperature jump, Physical Chemistry Chemical Physics, vol.13, issue.27, p.12545, 2011.

W. L. Delano and S. Llc, Delano & Aldrich, 2003.

E. Aicart, G. Tardajos, and M. Diaz-pena, Isothermal compressibility of cyclohexane-n-decane, cyclohexane-n-dodecane, and cyclohexane-n-tetradecane, Journal of Chemical & Engineering Data, vol.26, issue.1, pp.22-26, 1981.

F. D. Rossini, Selected Values of Physical Thermodynamic Properties of Hydrocarbons and Related Compounds, Carnegie P, 1953.

L. Tortech, C. Jaxel, M. Vincent, J. Gallay, and B. De-foresta, The polar headgroup of the detergent governs the accessibility to water of tryptophan octyl ester in host micelles, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1514, issue.1, pp.76-86, 2001.

H. Sun, D. V. Greathouse, O. S. Andersen, and R. E. Koeppe, The Preference of Tryptophan for Membrane Interfaces, Journal of Biological Chemistry, vol.283, issue.32, pp.22233-22243, 2008.

H. Khandelia and Y. N. Kaznessis, Cation?? Interactions Stabilize the Structure of the Antimicrobial Peptide Indolicidin near Membranes: Molecular Dynamics Simulations, The Journal of Physical Chemistry B, vol.111, issue.1, pp.242-250, 2007.

M. P. Aliste, J. L. Maccallum, and D. P. Tieleman, Molecular Dynamics Simulations of Pentapeptides at Interfaces: Salt Bridge and Cation?? Interactions?, Biochemistry, vol.42, issue.30, pp.8976-8987, 2003.

C. Chipot, B. Maigret, D. A. Pearlman, and P. A. Kollman, Molecular Dynamics Potential of Mean Force Calculations: A Study of the Toluene?Ammonium ?-Cation Interactions, Journal of the American Chemical Society, vol.118, issue.12, pp.2998-3005, 1996.

M. Marchi, 3) of C. H. Rycroft to implement the Voronoitessellation for frames of a GROMACS trajectory. It can compute the Voronoi volume and surfaces of any given atoms, C++, which uses the voro++ library

C. H. Rycroft, VORO++: A three-dimensional Voronoi cell library in C++, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.19, issue.4, p.041111, 2009.

V. P. Voloshin, N. N. Medvedev, M. N. Andrews, R. R. Burri, R. Winter et al., Volumetric Properties of Hydrated Peptides: Voronoi?Delaunay Analysis of Molecular Simulation Runs, The Journal of Physical Chemistry B, vol.115, issue.48, pp.14217-14228, 2011.

E. Paci and M. Marchi, Intrinsic compressibility and volume compression in solvated proteins by molecular dynamics simulation at high pressure., Proceedings of the National Academy of Sciences, vol.93, issue.21, pp.11609-11614, 1996.

J. Kyte and R. F. Doolittle, A simple method for displaying the hydropathic character of a protein, Journal of Molecular Biology, vol.157, issue.1, pp.105-132, 1982.

E. Gasteiger, C. Hoogland, A. Gattiker, S. Duvaud, M. R. Wilkins et al., Protein Identification and Analysis Tools on the ExPASy Server, The Proteomics Protocols Handbook, pp.571-607, 2005.

W. Kabsch and C. Sander, Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, vol.22, issue.12, pp.2577-2637, 1983.

W. Kim and M. H. Hecht, Generic hydrophobic residues are sufficient to promote aggregation of the Alzheimer's Abeta42 peptide, Proceedings of the National Academy of Sciences, vol.103, issue.43, pp.15824-15829, 2006.

U. Das, G. Hariprasad, A. S. Ethayathulla, P. Manral, T. K. Das et al., Inhibition of Protein Aggregation: Supramolecular Assemblies of Arginine Hold the Key, PLoS ONE, vol.2, issue.11, p.e1176, 2007.