, Table 5-12: Performances of InterEvScore with 2-body and 2/3-body potentials. Top 10 success rates of InterEvScore with complete coMSAs (IES) on 10,000 decoys, InterEvScore using homology models (IES-h) on coMSA 40 and 10,000 decoys and on coMSA 10 and 1,000 decoys using only 2-body potentials or 2-and 3-body

J. Andreani, G. Faure, and R. Guerois, InterEvScore: a novel coarse-grained interface scoring function using a multi-body statistical potential coupled to evolution, Bioinformatics, vol.29, issue.14, pp.1742-1749, 2013.

J. Andreani, C. Quignot, and R. Guerois, Structural prediction of protein interactions and docking using conservation and coevolution, Wires Comput Mol Sci, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02877928

S. Basu and B. Wallner, DockQ: A Quality Measure for Protein-Protein Docking Models, PLoS One, vol.11, issue.8, p.161879, 2016.

S. Chaudhury, Benchmarking and analysis of protein docking performance in Rosetta v3.2, PLoS One, vol.6, issue.8, p.22477, 2011.

S. Cocco, Inverse statistical physics of protein sequences: a key issues review, Rep Prog Phys, vol.81, issue.3, p.32601, 2018.

Q. Cong, Protein interaction networks revealed by proteome coevolution, Science, vol.365, issue.6449, pp.185-189, 2019.

I. T. Desta, Performance and Its Limits in Rigid Body Protein-Protein Docking, Structure, vol.28, issue.9, pp.1071-1081, 2020.

G. Q. Dong, Optimized atomic statistical potentials: assessment of protein interfaces and loops, Bioinformatics, vol.29, issue.24, pp.3158-3166, 2013.

C. Geng, A novel graph kernel-based function for scoring protein-protein docking models, Bioinformatics, 2019.

J. J. Gray, Protein-Protein Docking with Simultaneous Optimization of Rigid-body Displacement and Side-chain Conformations, Journal of Molecular Biology, vol.331, issue.1, pp.281-299, 2003.

S. Y. Huang, Search strategies and evaluation in protein-protein docking: principles, advances and challenges, Drug Discov Today, vol.19, issue.8, pp.1081-1096, 2014.

S. Y. Huang, Exploring the potential of global protein-protein docking: an overview and critical assessment of current programs for automatic ab initio docking, Drug Discov Today, vol.20, issue.8, pp.969-977, 2015.

K. Katoh and D. M. Standley, MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol Biol Evol, vol.30, issue.4, pp.772-780, 2013.

P. I. Koukos and A. Bonvin, Integrative modelling of biomolecular complexes, J Mol Biol, 2019.

M. A. Larkin, Clustal W and Clustal X version 2.0, Bioinformatics, vol.23, issue.21, pp.2947-2948, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00206210

R. Mendez, Assessment of blind predictions of protein-protein interactions: current status of docking methods, Proteins, vol.52, issue.1, pp.51-67, 2003.

J. Mintseris and Z. Weng, Structure, function, and evolution of transient and obligate protein-protein interactions, Proc Natl Acad Sci U S A, vol.102, issue.31, pp.10930-10935, 2005.

I. H. Moal, The scoring of poses in protein-protein docking: current capabilities and future directions, BMC Bioinformatics, vol.14, p.286, 2013.

F. Morcos, Direct-coupling analysis of residue coevolution captures native contacts across many protein families, Proc Natl Acad Sci U S A, vol.108, issue.49, pp.1293-1301, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01589010

K. A. Porter, What method to use for protein-protein docking?, Curr Opin Struct Biol, vol.55, pp.1-7, 2019.

C. Quignot, InterEvDock2: an expanded server for protein docking using evolutionary and biological information from homology models and multimeric inputs, Nucleic Acids Res, vol.46, issue.W1, pp.408-416, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02183317

E. Ramírez-aportela, J. R. López-blanco, and P. Chacón, FRODOCK 2.0: Fast Protein-Protein docking server, Bioinformatics, p.141, 2016.

M. Remmert, HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment, Nat Methods, vol.9, issue.2, pp.173-175, 2011.

F. Simkovic, Applications of contact predictions to structural biology, IUCrJ, vol.4, pp.291-300, 2017.

M. Socolich, Evolutionary information for specifying a protein fold, Nature, vol.437, issue.7058, pp.512-518, 2005.

Y. Song, High-resolution comparative modeling with RosettaCM, Structure, vol.21, issue.10, pp.1735-1742, 2013.

S. A. Teichmann, The constraints protein-protein interactions place on sequence divergence

, J Mol Biol, vol.324, issue.3, pp.399-407, 2002.

M. Torchala, SwarmDock: a server for flexible protein-protein docking, Bioinformatics, vol.29, issue.6, pp.807-809, 2013.

J. Yu and R. Guerois, PPI4DOCK: large scale assessment of the use of homology models in free docking over more than 1000 realistic targets, Bioinformatics, vol.32, issue.24, pp.3760-3767, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01355798

J. Yu, InterEvDock: a docking server to predict the structure of protein-protein interactions using evolutionary information, Nucleic Acids Res, vol.44, issue.W1, pp.542-549, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01455572