L. Osmieri, Transition Metal-Nitrogen-Carbon (M-N-C) Catalysts for Oxygen Reduction Reaction. Insights on Synthesis and Performance in Polymer Electrolyte Fuel Cells, Chem. Eng, vol.3, p.16, 2019.

S. Ünsala, M. B. Ya?c?, S. E. Bozba?a, B. Deljooc, M. Aindow et al., Supercritical Deposition Coupled with Ammonia Treatment: A New Route to Co Promoted N, Carbon Aerogels with High ORR Activity. Energy Technol, 2019.

M. Shao, Q. Chang, J. Dodelet, and R. Chenitz, Recent advances in electrocatalysts for oxygen reduction, Chem. Rev, vol.116, pp.3594-3657, 2016.

D. Banham, T. Kishimoto, Y. Zhou, T. Sato, K. Bai et al., Critical advancements in achieving high power and stable non precious metal catalyst-based MEAs for real world proton exchange membrane fuel cell application, Sci. Adv, 2018.

E. Proietti, F. Jaouen, M. Lefevre, N. Larouche, J. Tian et al., Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cell, Nat. Commun, 2011.

G. A. Goenaga, S. Ma, S. Yuan, and D. Liu, New approaches to Non-PGM electrocatalysts using porous framework materials, ECS Trans, vol.33, pp.579-586, 2010.

Q. Liu, X. Liu, L. Zheng, and J. Shui, The Solid-Phase Synthesis of an Fe-N-C Electrocatalyst for High-Power Proton-Exchange Membrane Fuel Cells, Angew. Chem. Int. Ed, vol.57, pp.1204-1208, 2018.

H. Shen, E. Gracia-espino, J. Ma, K. Zang, J. Luo et al., Synergistic Effects between Atomically Dispersed Fe@N@C and C@S@C for the Oxygen Reduction Reaction in Acidic Media, Angew. Chem. Int. Ed, vol.56, pp.13800-13804, 2017.

M. Longhi, C. Cova, E. Pargoletti, M. Coduri, S. Santangelo et al., Synergistic Effects of Active Sites' Nature and Hydrophilicity on the Oxygen Reduction Reaction Activity of Pt-Free Catalysts Nanomaterials, vol.8, p.643, 2018.

H. Perez, V. Jorda, P. Bonville, J. Vigneron, M. Frégnaux et al., Synthesis and Characterization of Carbon/Nitrogen/Iron Based Nanoparticles by Laser Pyrolysis as Non-Noble Metal Electrocatalysts for Oxygen Reduction, C J. Carbon Res, vol.4, p.43, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01855310

H. Perez, V. Jorda, J. Vigneron, M. Frégnaux, A. Etcheberry et al., Highly Active, High Specific Surface Area Fe/C/N ORR Electrocatalyst from Liquid Precursors by Combination of CO2 Laser Pyrolysis and Single NH3 Thermal Post-Treatment, C J. Carbon Res, vol.5, p.26, 2019.
URL : https://hal.archives-ouvertes.fr/cea-02128486

A. Poozhikunnath, Characterization and Optimization of Carbon Based Electrocatalysts and Supports for Fuel Cell Applications, 2019.

A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Pöschl, Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information, Carbon, vol.43, pp.1731-1742, 2005.

X. Cheng, X. Than, M. Pinault, M. Mayne, C. Reynaud et al., Determination of selectivity and specific area related to oxygen reduction reaction as a function of catalyst loading on non-noble metal based electrocatalyst porous electrodes: An example on nitrogen doped carbon nanotube, Electrochim. Acta, vol.135, pp.293-300, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01075854

B. Baret, P. Aubert, M. Mayne-l'hermite, M. Pinault, C. Reynaud et al., Nanocomposite electrodes based on pre-synthesized organically capped platinum nanoparticles and carbon nanotubes part I: Tuneable low platinum loadings, specific H upd feature and evidence for oxygen reduction, Electrochim. Acta, vol.54, pp.5421-5430, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00415161

G. March, F. Volatron, F. Lachaud, X. Cheng, B. Baret et al., Nanocomposite electrodes based on pre-synthesized organically capped platinum nanoparticles and carbon nanotubes. Part II: Determination of diffusion area for oxygen reduction reflects platinum accessibility, Electrochim. Acta, pp.5151-5157, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00610906

X. Cheng, F. Volatron, E. Pardieu, A. Borta, G. Carrot et al., Nanocomposite electrodes based on pre-synthesized organically grafted platinum nanoparticles and carbon nanotubes III. Determination of oxygen reduction reaction selectivity and specific area of porous electrode related to the oxygen reduction reaction ranging from 2 m 2 .gPt -1 to 310 m 2 .gPt -1, Electrochim. Acta, vol.89, pp.1-12, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00854423

X. Cheng, L. Challier, A. Etcheberry, V. Noël, and H. Perez, The ABTS-HRP system as an alternative method to RRDE for the determination of the selectivity of the oxygen reduction reaction, Int. J. Electrochem. Sci, vol.7, pp.6247-6264, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00724256

K. Artyushkova, A. Serov, S. Rojas-carbonell, and P. Atanassov, Chemistry of Multitudinous Active Sites for Oxygen Reduction Reaction in Transition Metal?Nitrogen?Carbon, J. Phys. Chem. C, vol.119, pp.25917-25928, 2015.

M. Primbs, Y. Sun, A. Roy, D. Malko, A. Mehmood et al., Establishing reactivity descriptors for platinum group metal (PGM)-free Fe-N-C catalysts for PEM fuel cells, Energy Environ. Sci, vol.2020
URL : https://hal.archives-ouvertes.fr/hal-02929268

U. I. Kramm, J. Herranz, N. Larouche, T. M. Arruda, M. Lefevre et al., Structure of the catalytic sites in Fe/N/C-catalysts for O2-reduction in PEM fuel cell, Phys. Chem. Chem. Phys, vol.14, pp.11673-11688, 2012.

Z. Y. Chen, J. P. Zhao, T. Yano, T. Ooie, M. Yoneda et al., Observation of sp3 bonding in tetrahedral amorphous carbon using visible Raman spectroscopy, J. Appl. Phys, vol.88, pp.2305-2308, 2000.

E. Charon, J. N. Rouzaud, and J. Aléon, Graphitization at low temperatures (600-1200 °C) in the presence of iron implications in planetology, Carbon, vol.66, pp.178-190, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00968173

E. Luo, C. Wang, Y. Li, X. Wang, L. Gong et al., Accelerated oxygen reduction on Fe/N/C catalysts derived from precisely-designed ZIF precursors, Nano Res, vol.13, pp.2420-2426, 2020.

C. Lo-vecchio, A. S. Arico, G. Monforte, and V. Baglio, EDTA-derived CoeNeC and FeeNeC electro-catalysts for the oxygen reduction reaction in acid environment, Renew. Energy, vol.120, pp.342-349, 2018.

J. M. Jimenez-mateos and J. L. Fiero, X-ray Photoelectron Spectroscopic Study of Petroleum Fuel Cokes, Surf. Interface Anal, vol.24, pp.223-226, 1996.

J. Casanovas, J. M. Ricart, J. Rubio, F. Illas, and J. M. Jimenez-mateos, Origin of the Large N 1s Binding Energy in X-ray Photoelectron Spectra of Calcined Carbonaceous Materials, J. Am. Chem. Soc, vol.118, pp.8071-8076, 1996.

W. Ding, Z. Wei, S. Chen, X. Qi, T. Yang et al., Nitrogen Space-Confinement-Induced Synthesis of Pyridinic-and Pyrrolic Nitrogen-Doped Graphene for the Catalysis of Oxygen Reduction, Angew. Chem. Int. Ed, vol.52, pp.11755-11759, 2013.

J. R. Pels, F. Kapteijn, J. A. Moulijn, Q. Zhu, and K. M. Thomas, Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis, Carbon, vol.33, pp.154-160, 1995.

R. Arrigo, M. Hävecker, R. Schlög, and D. Su, Dynamic surface rearrangement and thermal stability of nitrogen functional groups on carbon nanotubes, Chem. Commun, vol.40, pp.4891-4893, 2008.