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ABSTRACT

We present a robust approach to estimating the redshift of galaxies using Pan-STARRS1 photometric data. Our approach is an appli-
cation of the algorithm proposed for the SDSS Data Release 12. It uses a training set of 2 313 724 galaxies for which the spectroscopic
redshift is obtained from SDSS, and magnitudes and colours are obtained from the Pan-STARRS1 Data Release 2 survey. The photo-
metric redshift of a galaxy is then estimated by means of a local linear regression in a 5D magnitude and colour space. Our approach
achieves an average bias of ∆znorm = −1.92 × 10−4, a standard deviation of σ(∆znorm) = 0.0299, and an outlier rate of Po = 4.30%
when cross-validating the training set. Even though the relation between each of the Pan-STARRS1 colours and the spectroscopic
redshifts is noisier than for SDSS colours, the results obtained by our approach are very close to those yielded by SDSS data. The
proposed approach has the additional advantage of allowing the estimation of photometric redshifts on a larger portion of the sky
(∼3/4 vs ∼1/3). The training set and the code implementing this approach are publicly available at the project website.
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1. Introduction

In the last two decades, there has been a rise in the develop-
ment of large photometric surveys, like the Sloan Digital Sky
Survey (SDSS, York et al. 2000), the Panoramic Survey Tele-
scope & Rapid Response System (Pan-STARRS, Chambers et al.
2016), and the Dark Energy Survey (DES, Dark Energy Survey
Collaboration 2016). Robust methods to estimate the redshift of
galaxies from photometric data are essential to maximising the
scientific exploitation of these surveys.

Two main approaches are generally used for the computation
of photometric redshifts: methods based on physical models and
data-driven methods. In the model-based approach, the estima-
tion of the redshift is obtained by modelling the physical pro-
cesses that drive the light emission of the object. The simplest
and most commonly used method belonging to this category is
spectral energy distribution (SED) fitting. It is based on the def-
inition of an SED model, either from theory or from observa-
tions, and the fitting of this model to a series of observations in
different bands. The definition of an appropriate model is cru-
cial to the performance of the method, therefore it requires us
to take many different aspects into account (stellar population
models, nebular emissions, and dust attenuation, among others).
Once the model is defined, observations over the entire wave-
length range are required to obtain an accurate fitting. Examples
of these methods are the HYPERZ code (Bolzonella et al. 2000),
the BPZ code (Benítez 2000), the LePhare code (Ilbert et al.
2006), and the EAZY code (Brammer et al. 2008). Saglia et al.
(2012) also apply an SED technique to compute the photometric
redshifts of galaxies using Pan-STARRS broadband photometry.

? The code and the training set are available at the project website:
https://www.galaxyclusterdb.eu/m2c/relatedprojects/
photozPS1.

In large-area photometric surveys like SDSS, Pan-STARRS,
and DES, the number of photometric bands available is relatively
small (5 for each of the cited surveys) and they only cover the
optical part of the spectrum. Thus, if no ancillary data are avail-
able, the SED fitting technique is not very robust in the deter-
mination of photometric redshifts. The same issue affects the
data-driven methods used in the cited surveys, but its effect can
be mitigated when a large and complete training set is available
(Salvato et al. 2019). On the other hand, these surveys offer a
large number of extragalactic sources, and are well suited to the
use of data-driven methods. These methods usually employ a
supervised machine learning algorithm to estimate the unknown
redshift of a galaxy from broadband photometry. Supervised
algorithms require a (large) set of reliable spectroscopic red-
shifts that are used to learn how redshifts correlate with colours.
Some examples of these techniques are ANNz (Collister &
Lahav 2004), ANNz2 (Sadeh et al. 2016), TPZ (Carrasco Kind
& Brunner 2013), GPz (Almosallam et al. 2016), METAPhoR
(Cavuoti et al. 2017), or the nearest-neighbor color-matching
photometric redshift estimator of Graham et al. (2018).

Another example of a machine learning approach to the com-
putation of photometric redshifts is presented in Beck et al.
(2016); a large sample of galaxies (about 2 million) with both
photometric and spectroscopic information is used as a train-
ing set to estimate the redshift of all the galaxies in SDSS
Data Release 12 (DR12, Alam et al. 2015) using a local linear
regression. A similar method was also presented in Csabai et al.
(2007) and in earlier SDSS releases. Nowadays, these photomet-
ric redshifts from SDSS are widely used in a variety of scientific
publications. Examples include the validation of galaxy clus-
ters (Streblyanska et al. 2018), the clustering of galaxies (Ross
et al. 2010), the study of faint dwarfs in nearby groups (Speller
& Taylor 2014), the study of luminosity functions in galaxy
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clusters (Goto et al. 2002), binary quasar selection at high red-
shift (Hennawi et al. 2010), supernovae type Ia studies (Rodney &
Tonry 2010), neutrino counterpart detection (Reusch et al. 2020),
or gamma ray burst validation (Ahumada et al. 2020). The robust-
ness of the SDSS redshift estimation algorithm is well established.

The goal of this paper is to apply the Beck et al. (2016) algo-
rithm to compute photometric redshifts using the Pan-STARRS1
(PS1) photometric data, which cover an area that is twice as large
as the SDSS footprint and with magnitude limits about two mag-
nitudes fainter than the SDSS ones. The SDSS and PS1 surveys
have four photometric bands in common, plus a different fifth
band that is on the bluer side of the spectrum for SDSS and on
the redder side for PS1. To apply the Beck et al. (2016) algorithm
to PS1, we thus needed to select the appropriate PS1 photometric
data that allow us to compute the redshift, to construct a proper
training set, and to reassess the performance of the linear regres-
sion algorithm when using this information. The training set and
the code implementing the PS1 photometric redshift approach
presented in this paper has been made available for the commu-
nity at the project website.

The approach proposed in this paper was initially designed
with the purpose of confirming cluster candidates of the Com-
bined Planck-RASS (ComPRASS) catalogue (Tarrío et al.
2019). This all-sky catalogue of galaxy clusters and cluster can-
didates was validated by careful cross-identification with pre-
viously known clusters, especially in the SDSS and the South
Pole Telescope (SPT) footprints. Still, many candidates remain
unconfirmed outside these areas. Having information on the pho-
tometric redshifts in the PS1 area will enable us to confirm Com-
PRASS candidates in this region. Furthermore, the greater depth
of PS1 compared to SDSS allows us to better detect the over-
densities associated with the clusters, and therefore to obtain a
more robust estimation of their richness. The photometric red-
shifts of PS1 will also facilitate the extension of other scientific
studies performed with SDSS photometric data to the area of the
sky covered by PS1. Some examples are studies related to the
formation and evolution of galaxies, or to the properties of dark
energy (Salvato et al. 2019).

The paper is organised as follows: Sect. 2 summarises the
linear regression method and how it is applied to PS1 data.
Section 3 describes the procedures that we put in place to prepare
the training set using PS1 photometry and SDSS spectroscopy.
Section 4 evaluates the performance of the proposed redshift
estimation approach. Section 5 presents a comparison with the
results obtained using different photometric data from PS1 and
SDSS. Section 6 gives some practical notes on the use of the
method and the associated dataset. Finally, Sect. 7 concludes the
paper with a summary of the main results.

2. Redshift estimation approach

In this Section, we describe our approach to estimate the redshift
of galaxies from PS1 photometric data. The proposed approach is
an application of the linear regression method used in the SDSS
DR12 (Beck et al. 2016) to the PS1 dataset, and thus, it can be
used to calculate photometric redshifts for all galaxies in the PS1
footprint (∼3/4 of the sky). Similarly to Beck et al. (2016), our
approach is data-driven and uses a training set T composed of
galaxies with known spectroscopic redshifts and a set of magni-
tudes and colours, which are obtained in our case from the PS1
survey. The redshift of a galaxy is estimated by means of a local
linear regression in a D-dimensional magnitude and colour space.

The rest of this Section summarises the linear regression
algorithm from Beck et al. (2016) (Sect. 2.1) and describes, in

detail, the magnitude-colour space that has been selected for our
approach (Sects. 2.2 and 2.3). We also explain how we deal with
the potential problem of missing information (Sect. 2.4).

This approach has been designed to work on both Data
Release 1 (DR1) and Data Release 2 (DR2), although in this
paper we present the results corresponding to DR2. The perfor-
mance for DR1 data was also tested, finding no significant dif-
ferences.

2.1. Linear regression algorithm

The local linear model of Beck et al. (2016) establishes that the
redshift of a galaxy can be written as a linear combination of D
galaxy properties (magnitudes and colours), hereafter features,
x1, ..., xD, as follows:

z = xTθ, (1)

where x = [1, x1, ..., xD]T is the feature vector of the galaxy.
The column vector θ contains the D+1 coefficients of the
D-dimensional linear regression, with its first element rep-
resenting a constant offset. The coefficient vector θ can be
estimated by constructing an over-determined system of k equa-
tions using k galaxies of the training set T : zspec = Xθ, with
zspec = [z(1), ..., z(k)]T being the spectroscopic redshifts of the k
chosen galaxies, and X = [x(1), ..., x(k)]T the corresponding k fea-
ture vectors. The least-squares solution of this system is then:

θ̂ = (XTX)−1XTzspec. (2)

The error of the photometric redshift can be estimated from
the difference between the spectroscopic redshifts of the k galax-
ies and the corresponding photometric redshifts provided by the
regression:

δzphot =

√∑
k(zspec − Xθ̂)2

k
. (3)

To apply this method, it is necessary to define how to chose
the k training galaxies used to estimate θ, and to define the D
features that characterise each galaxy.

In our case, the k galaxies are chosen to be the nearest neigh-
bours of the target galaxy in terms of Euclidean distance in the
D-dimensional space. In particular, we chose k = 100, as in Beck
et al. (2016). Additionally, in the case that some of these k neigh-
bours have outlying redshifts (|z( j)

spec−x( j)Tθ̂| > 3δzphot ), we discard
them and repeat the computation of θ̂ (Eq. (2)) using the remain-
ing l < k neighbours. We note that, in some cases, a galaxy can
fall outside the D-dimensional bounding box of its nearest neigh-
bours. In these cases, Eq. (1) constitutes an extrapolation, so the
results may be less reliable. The impact of the extrapolation on
the estimated photometric redshift is evaluated in Sect. 4.2. Our
code provides a flag to indicate these cases.

2.2. Choice of input features

The key point to successfully employ the linear regression algo-
rithm described in Sect. 2.1 (see also Beck et al. 2016) with PS1
photometric data is to appropriately select the D features to be
used. The SDSS and PS1 surveys have both imaged the sky using
five broadband filters. Four of these filters (g, r, i, and z) are
similar in both surveys, although with some minor differences
(Tonry et al. 2012). The fifth filter, however, is completely dif-
ferent: SDSS uses the u filter, which covers the bluest part of
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the measured spectrum (at bluer waveleghts than the g filter),
whereas PS1 uses the y filter, which spans the reddest part of the
spectrum (at redder wavelengths than the z filter). The method
defined in Beck et al. (2016) uses the SDSS r magnitude, and
the u − g, g − r, r − i, and i − z colours to define the 5D space
in which the linear regression takes place to estimate the red-
shift. Since the u-band is not available in PS1, a natural choice
inspired by Beck et al. (2016) is to use the PS1 r magnitude, and
the four colours that can be constructed with consecutive mag-
nitudes, which are g − r, r − i, i − z, and z − y. These are the
five features that we decided to use in our method. However, it is
worth noting that other combinations of the five bands are also
possible without a significant difference in the results, given that
all the photometric information is included.

The PS1 database provides several ways of measuring mag-
nitudes and fluxes of objects in its five photometric bands. We
used stack photometry, since it provides the best signal to noise,
according to Magnier et al. (2019). Then, different photomet-
ric measurements are available: (i) PSF magnitudes are obtained
from fitting a predefined PSF form to the detection. These mag-
nitudes are especially relevant for point sources (e.g. stars). (ii)
Kron magnitudes are inferred from the growth curve, after deter-
mining the Kron radius of the object. These magnitudes are espe-
cially relevant for non-point sources. (iii) Aperture magnitudes
measure the total count rate for a point source based on integra-
tion over an aperture plus an extrapolation involving the PSF.
According to the PS1 database documentation, this photometry
should not be used for extended sources, so we did not use it in
our method. (iv) Fixed-aperture measurements refer to the flux
measured within several predefined aperture radii (1.03, 1.76,
3.00, 4.63, and 7.43 arcsec).

Kron magnitudes are the most appropriate for extended
objects like galaxies, so we chose to use the r-band Kron magni-
tude for defining our r feature. Regarding the four colour features
(g− r, r− i, i− z, z− y), we considered two different approaches:
they can be calculated either from (a) fixed-aperture fluxes, or
(b) from Kron magnitudes.

The first approach (aperture colours) computes the four
colours within a fixed aperture. To obtain the aperture magni-
tudes within the most appropriate aperture, we selected for each
galaxy the g, r, i, z, and y fixed-aperture fluxes corresponding to
the closest aperture to the r-band Kron radius of the galaxy (rkro-
nrad). Then, the five selected aperture fluxes were converted into
aperture magnitudes.

The full PS1 dataset files available for direct download do not
provide the above-mentioned fixed-aperture fluxes, which need
to be queried to the database. Instead, they provide Kron magni-
tudes. As an alternative approach, we evaluated the use of these
magnitudes to compute the four colours required by our method.
We note that the colours constructed from the Kron magnitudes
are not physically motivated, since the five different magnitudes
are not measured within the same aperture. However, we will
show that they provide very similar results to the ones obtained
when using the fixed-aperture colours defined above, so for con-
venience, we added this alternative to our code. Unless other-
wise stated, the results presented in this paper were obtained with
the aperture colours calculated from the fixed-aperture fluxes. We
include a comparison between the different approaches in Sect. 5.

2.3. Feature computation

Before calculating the five features, we need to apply a dered-
dening correction to the downloaded or calculated magnitudes.
Reddening is produced by the scattering of the light by dust in

the interstellar medium, and it depends on the position of the
object in the sky. Therefore, it has to be corrected in order to
obtain magnitudes that are more correlated with redshift.

We obtained this correction in the following way: firstly, we
computed the colour excess E(B − V) for each galaxy using the
Schlegel et al. (1998) maps; then, we obtained the extinction Aλ

for the g, r, i, and z bands by multiplying the colour excess by
the values presented in Table 22 of Stoughton et al. (2002) for
the g, r, i, and z SDSS filters, respectively, which are very similar
to the ones used in PS1. For the y band, which is not present in
SDSS, we calculated the extinction using the parametrisation of
Fitzpatrick (1999) taking the effective λ of the y band (λeff =

9620 Å) presented in Table 4 of Tonry et al. (2012).
We then applied the dereddening correction (g = gdownloaded−

Ag, and equivalently for the other bands), and we computed the
five features (g − r, r − i, i − z, z − y, and r).

Each dimension was then standardised, by removing the
mean and dividing by the standard deviation of the training set
T , whose construction is described in Sect. 3. In this way, all
the features span similar ranges, and, thus, contribute to a simi-
lar extent to the linear regression. This feature scaling is a com-
mon practice in algorithms that use Euclidean distance, like ours,
since otherwise the feature with a larger scale (the magnitude in
our case) would dominate the computation of the distance.

We note that the zero-point correction that is usually taken
into account in public software for the computation of photo-
metric redshifts does not need to be included in our method. The
reason is that our method is not sensitive to the addition of con-
stant terms to the features, since it uses standardised features.

2.4. Missing features

The PS1 dataset contains galaxies for which one or more magni-
tudes may not be available, resulting in missing features. Missing
features can occur due to occasional photometric measurement
errors produced by artifacts or other problems in the image, or
because the galaxy is too faint to be detected in a given band (usu-
ally in the more extreme bands, g or y). In any case, galaxies with
missing features can still be reasonably well represented by their
remaining available features. The redshift estimation approach
described above can still be applied to estimate the photomet-
ric redshift of these galaxies in several ways. In particular, we
decided to calculate the redshift of such galaxies by using only
the available features, that is to say, we construct the feature vec-
tor x with D′ < D features, both for the target galaxy and the
training galaxies, and then use Eqs. (1) and (2) as before. In this
way, we use the subset of the training set T that has all the five
features available (T5) to calculate the redshift of a galaxy that
has the five features. Likewise, when a galaxy is missing one fea-
ture, we also use T5 as training set, but we do not consider the
missing feature in any of the training galaxies. Another possible
approach to follow in the case of a missing feature in the target
galaxy could be to use the subset ofT that has the other 4 features
available as training set (T4, with T5 ⊂ T4 ⊂ T ). In this paper,
we report the results corresponding to the first approach, but we
note that the second option produces similar results and is also
available in the code.

It is worth mentioning that, for simplicity, the standardisa-
tion of the features is done in any case with the mean and the
standard deviation of the subset T5. We verified that other rea-
sonable choices (e.g. using, for each feature, the mean and the
standard deviation of all the galaxies containing that feature) do
not yield any significant difference in the results. In Sect. 4.4, we
evaluate the performance of our redshift estimation approach in
the case of missing features.
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Table 1. Parameters downloaded from PS1 and SDSS databases.

Parameter Database Table Description

ObjID SDSS Beck et al. (2016) Object ID in SDSS
RA SDSS Photoprimary RA in SDSS
Dec SDSS Photoprimary Dec in SDSS
ObjID PS1 StackObjectThin Object ID of closest object in PS1
Distance PS1 – Distance between SDSS and PS1 positions
RA PS1 StackObjectThin RA in PS1
Dec PS1 StackObjectThin Dec in PS1
{g, r, i, z, y}KronMag PS1 StackObjectThin Kron magnitudes
{g, r, i, z, y}KronMagErr PS1 StackObjectThin Kron magnitudes errors
primaryDetection PS1 StackObjectThin Primary stack detection flag
rKronRad PS1 StackObjectAttributes Kron radius in r band
{g, r, i, z, y}c6flxR{3,4,5,6,7} PS1 StackApFlxExGalCon6 Fluxes within 5 different apertures
{g, r, i, z, y}c6flxErrR{3,4,5,6,7} PS1 StackApFlxExGalCon6 Errors in aperture fluxes

3. Construction of the training set T

The training set of Beck et al. (2016) included more than two
million galaxies with spectroscopic redshifts. In this work, our
goal was to use the same training set, but with features obtained
from PS1 magnitudes instead of SDSS. To construct it, we made
use of the CasJobs tool in SDSS, which allowed us to query
both the SDSS and the PS1 databases. In the catalogue of Beck
et al. (2016), each galaxy is identified via its ObjID (a unique
number assigned to each object in the SDSS database). Thus, our
first step was to obtain the coordinates for each object using an
appropriate query to the SDSS database. Then, we performed a
query in the PS1 database (Flewelling et al. 2019) to look for the
PS1 object nearest to each SDSS object. This was done using
the fGetNearestObjEq function, and limiting the search to a
radius of 30′′. This conservative choice allowed us to define, a
posteriori, the matching distance up to which we can consider
the match reliable. Objects with greater matching distances are
not kept in the training set. We show later that this maximum
distance was fixed to 1′′.

Our query produces the following output parameters: the
identifier (ObjID) and coordinates (RA, Dec) of the object in
both the SDSS and PS1 databases, the distance between the two
positions, the g, r, i, z, and y Kron magnitudes and their asso-
ciated errors in the PS1 database (using stack photometry), the
PS1 primarydetection flag, the Kron radius measured in the PS1
r band, and the g, r, i, z, and y PS1 fluxes measured within the
five predefined aperture radii (1.03, 1.76, 3.00, 4.63, and 7.43
arcsec) and their associated errors. Table 1 lists these parameters
and the tables where they are available.

The training set T is constructed from this catalogue, after
cleaning it for unwanted objects, calculating the five features
defined in Sect. 2, and taking the spectroscopic redshift from the
catalogue of Beck et al. (2016). In the following sub-sections,
we describe these steps in detail.

3.1. Cleaning

The catalogue resulting from the query to the PS1 database con-
tains some duplicate entries, i.e. objects with the same ObjID
and the same or different properties. We cleaned this catalogue
from these objects by keeping only one object for each ObjID.

In particular, we selected the ones for which primarydetection
was equal to 1, which indicates that the entry is the primary stack
detection. If there was more than one object satisfying this condi-
tion, we selected the one with more magnitudes available. Exact
duplicates were also removed.

We additionally removed from the downloaded catalogue
two classes of objects. The first class corresponds to objects for
which PS1 and SDSS photometry are very different. PS1 and
SDSS have four photometric bands in common (g, r, i, and z),
so we expect to have a small difference between the magni-
tudes in those four bands measured by PS1 and SDSS. How-
ever, we noticed that our catalogue included some objects for
which the difference between these magnitudes was very high
(even more than ten magnitudes in some cases). As a precaution,
we decided to exclude them from our training set. In particular,
we excluded objects for which the difference between any SDSS
magnitude and the corresponding PS1 magnitude is greater
than 4.

The second class of excluded objects corresponds to those
that appear to be too bright for their assigned spectroscopic red-
shift. We noticed the presence of very bright objects at high
redshift in our catalogue that are not physically possible (e.g.
r = 12.1 at z = 0.82). After a visual inspection in SDSS, we
found that these objects were indeed bad samples due to two
main reasons: (a) low-redshift star-forming galaxies with wrong
(high) SDSS spectroscopic redshift; and (b) wrong magnitude
measurements (for example, in galaxies affected by the light of
close-by saturated stars, or by external regions of foreground
extended galaxies). We decided to remove these objects by set-
ting, for each magnitude, the limits in the magnitude-redshift
relations given in Table 2. Figure 1 shows the magnitude lim-
its for the r-band, together with the galaxies that were removed
after applying the different magnitude limits.

Figure 2 shows the distribution of distances between the PS1
and SDSS objects in the cleaned catalogue. The scale is loga-
rithmic to highlight that there is a small tail of objects far away
from the SDSS position, as allowed from our large search radius
(30′′). Since our goal is to keep only the objects for which the
match is secure, we removed all the objects whose distances to
the SDSS positions were larger than 1′′ from our sample. These
were 2368 objects out of 2 316 092 (corresponding to ∼0.10%),
resulting in a training set T with 2 313 724 objects. This conser-
vative approach allows us to safely use the SDSS spectroscopic
redshift with the PS1 magnitudes.
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Table 2. Magnitude limits for different redshift ranges.

Magnitude limit Redshift range

g= 11.00 + 20.00 zspec 0.1 < zspec < 0.2
g= 12.33 + 13.33 zspec 0.2 < zspec < 0.5
g= 17.75 + 2.50 zspec 0.5 < zspec < 0.9
g= 20.00 zspec > 0.9
r = 10.00 + 20.00 zspec 0.1 < zspec < 0.2
r = 12.00 + 10.00 zspec 0.2 < zspec < 0.5
r = 14.00 + 6.00 zspec 0.5 < zspec < 1.0
r = 20.00 zspec > 1.0
i = 10.00 + 20.00 zspec 0.1 < zspec < 0.2
i = 12.00 + 10.00 zspec 0.2 < zspec < 0.4
i = 14.00 + 5.00 zspec 0.4 < zspec < 1.0
i = 19.00 zspec > 1.0
z = 10.75 + 12.50 zspec 0.1 < zspec < 0.3
z = 12.25 + 7.50 zspec 0.3 < zspec < 0.5
z = 14.00 + 4.00 zspec 0.5 < zspec < 1.0
z = 18.00 zspec > 1.0
y= 9.25 + 17.50 zspec 0.1 < zspec < 0.3
y= 12.25 + 7.50 zspec 0.3 < zspec < 0.5
y= 14.00 + 4.00 zspec 0.5 < zspec < 1.0
y= 18.00 zspec > 1.0

Notes. Objects with magnitudes below these limits are not included in
the training set.

Fig. 1. Scatter plot of r Kron magnitude as a function of the spectro-
scopic redshift for the galaxies in the training set (black dots). Red dots
represent the galaxies that are removed for not satisfying the magnitude
limits defined in Table 2. The red line represents the magnitude limits
for the r-band.

3.2. Final training set

The final training set T contains 2 313 724 galaxies. For each
galaxy, the training set provides the spectroscopic redshift zspec
obtained from the catalogue of Beck et al. (2016), and the five
features (g − r, r − i, i − z, z − y, and r) obtained as explained
in Sect. 2.3. The features that could not be calculated due to a
missing magnitude were set to a default value (−999).

The redshift distribution of the galaxies in T is shown in
Fig. 3, where T has been divided into two subsets: the galaxies
that have the 5 features available (T5, in blue), and the galaxies
that have one or more features missing (in red). For comparison,

Fig. 2. Distribution of distances between the PS1 objects and the SDSS
objects. In the final training sample T we only used objects with dis-
tances smaller than 1′′.

Fig. 3. Distribution of spectroscopic redshifts in our training set. In blue,
we show the galaxies that have the five features available (T5). In red,
the remaining galaxies. The dashed black line shows the redshift distri-
bution of the original SDSS training set.

Figure 3 also shows the spectroscopic redshift distribution of the
original SDSS training set, which contained 2 379 096 galaxies.

The PS1 training set that we present in this section is smaller
than the original SDSS one, as expected when making a match
between different catalogues. This difference can be due to errors
in the astrometry or photometry of the two surveys, as well as to
intrinsic limits of our match methodology. However, we stress
that we tried to use a conservative approach in which the num-
ber of galaxies is smaller, but the robustness of the match is
favoured. This result was reached while loosing less than 3%
of the original galaxies.

Even though PS1 is deeper than SDSS, the chosen training
set is sufficient for our goals. Adding fainter or higher-redshift
galaxies to the training set will not significantly improve the per-
formance of our approach, since the main limitation comes from
the available photometric bands. We have tested that the addition
of high-redshift spectroscopic information from the Extended
Baryon Oscillation Spectroscopic Survey (eBOSS) sample at
z > 0.5 (∼200 000 galaxies) does not improve the estimation
of the photometric redshift.
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Fig. 4. Photometric redshift zphot (left), redshift error zphot − zspec (middle), and error divided by the estimation of the error provided by the method
(zphot − zspec)/δzphot (right) as a function of the spectroscopic redshift zspec. These results were obtained with a 100-fold cross-validation strategy on
the set of galaxies with the five magnitudes available (T5). The black dots represent the individual galaxies. Only 10% of the galaxies are shown,
for better visualisation. The red solid and dotted lines represent the median and the 68% confidence regions, respectively, computed for groups of
10 000 galaxies with consecutive zspec. The orange line shows zphot = zspec.

4. Performance evaluation

4.1. Overall redshift precision

To evaluate the performance of the proposed approach, we per-
formed a k-fold cross-validation. We randomly divided the train-
ing set T into k disjoint subsets of equal sizes. Then, we took
one of the subsets as a test set, and the remaining k−1 subsets as
training set for estimating the photometric redshift of the galax-
ies in the test set. The experiment is repeated k times, with each
of the k subsets used exactly once as the test set. We chose to use
k = 100, in such a way that the validation is performed each time
on 1% of the galaxies, using the remaining 99% for training. The
reasons for this choice, different from the commonly used value
of k = 10, are as follows. First, with a larger value of k, the
training sets used during the validation are closer to the com-
plete training set T that will be used in practice for calculating
redshifts of galaxies. This reduces the bias of the performance
evaluation strategy. Second, given the large size of the training
set, the variance of this strategy is still very low.

Figure 4 shows the photometric redshift zphot, the actual error
zphot − zspec, and the error divided by the estimation of the error
provided by the method (zphot − zspec)/δzphot as a function of
the spectroscopic redshift for the galaxies with the five mag-
nitudes available (T5). The photometric redshift follows quite
well the spectroscopic redshift, especially in the intermediate
redshift range (0.1 < zspec < 0.6), where the average bias,
∆z = |zphot − zspec|, is below 0.02 or 0.5δzphot .

For high-redshift galaxies (zspec > 0.6), the method tends
to underestimate the redshift, and also presents a higher scat-
ter. This behaviour was also observed in Beck et al. (2016).
The increased scatter is due to the low number of high-redshift
galaxies in the training set. The negative bias is an Eddington
bias produced by the limited depth of the PS1 survey: close
to the detection limit, over-luminous galaxies are preferentially
detected, yielding a bias towards lower redshifts. In this redshift
range, 54% of the galaxies are within ±δzphot and 85% are within
±2δzphot . The percentage of galaxies in this range whose redshift
is estimated via extrapolation is 0.13%, seven times higher than
the value in the intermediate redshift range (0.018%). For low-
redshift galaxies (zspec < 0.1), the method tends to overestimate
the redshift, as in Beck et al. (2016). In this redshift range 65%
of the galaxies are within ±δzphot and 94% are within ±2δzphot . The
percentage of galaxies in this range whose redshift is estimated

via extrapolation is 0.065%, higher than in the intermediate red-
shift range, but lower than in the high redshift range.

In order to quantitatively compare the average performance
of the proposed method to the one obtained in Beck et al. (2016),
we used the same definition of the normalised redshift estima-
tion error, that is ∆znorm =

zphot−zspec

1+zspec
. After iteratively removing

the outliers, defined as |∆znorm| > 3σ(∆znorm), the average bias
of our approach is ∆znorm = −1.92 × 10−4, the standard devia-
tion is σ(∆znorm) = 0.0299, and the outlier rate is Po = 4.30%,
when calculated on the ensemble of results from the 100-fold
cross-validation. The differences between the 100 individual
experiments were negligible, with a standard deviation of 5%
on σ(∆znorm), 4% on the outlier rate, and with average biases
always compatible with 0 (below 8 × 10−4). For reference, the
results reported by Beck et al. (2016) were ∆znorm = 5.84×10−5,
σ(∆znorm) = 0.0205, and Po = 4.11%, which are of the same
order, but slightly better than ours. We note, however, that
they were calculated using a different training set, so they are
not directly comparable. A direct comparison is presented in
Sect. 5.2.

Figure 5 shows the normalised histogram of (zphot −

zspec)/δzphot together with a standard normal distribution. The two
distributions are well in agreement, apart from a small bias (as
in Beck et al. 2016, cf. their Fig. 4). This indicates that the esti-
mated errors δzphot represent the accuracy of the redshift estima-
tion quite well.

4.2. Impact of the photometric errors

The errors in the measurements of the photometric magnitudes
have an impact in the final accuracy of the estimated redshift. To
evaluate this effect, we classified the galaxies into five different
classes according to their photometric errors. Class 1 includes
galaxies with low photometric errors, and Classes 2–5 include
galaxies with progressively higher errors. The error limits for the
different classes were manually chosen and are given in Table 3.
We also define an additional Class E, which includes the galaxies
whose redshift is estimated via an extrapolation of Eq. (1). This
occurs when the galaxy features lie outside the bounding box of
its nearest neighbours, as mentioned in Sect. 2.1.

The photometric error corresponding to the r-band Kron
magnitude (∆r) is directly obtained from the query to the PS1
database (rKronMagErr in Table 1). The photometric errors in
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Fig. 5. Normalised histogram of zphot − zspec/δzphot . For reference, the red
line shows a standard Gaussian distribution.

Table 3. Photometric error limits for the defined classes.

Class ∆rmax ∆(g − r)max ∆(r − i)max ∆(i − z)max ∆(z − y)max

1 0.05 0.10 0.05 0.05 0.10
2 0.10 0.20 0.10 0.10 0.20
3 0.15 0.30 0.15 0.15 0.30
4 0.25 0.50 0.25 0.25 0.50

Notes. A galaxy belongs to a given class if its five photometric errors
are below the specified values for that class and it is the lowest possible
class. Class 5 contains galaxies for which one or more of the photomet-
ric errors are above the limits corresponding to Class 4.

the four aperture colours are obtained from the errors in the
corresponding aperture fluxes. If fg is the aperture flux in the
g band and ∆ fg the corresponding error, which are obtained
from the query (rgc6flxR and rgc6flxErrR in Table 1), the
error in the g-band aperture magnitude is calculated as ∆g =
2.5 log(e) × ∆ fg/ fg, and analogously for the other aperture mag-
nitudes. The error in the aperture colours is thus calculated as
∆(g − r) =

√
(∆g)2 + (∆r)2, and similarly for the other colours.

Table 4 summarises the performance of the redshift estima-
tion for the different photometric classes. The bias is very close
to 0 for all the classes, being positive for Class 1 and increas-
ingly negative for Classes 2–5. This results in a slightly negative
bias for the whole sample (∆znorm = −2.01 × 10−4) since, even
though the number of Class 1 galaxies dominates, the negative
bias of the other classes is higher in absolute value. The standard
deviation of the normalised redshift estimation error σ(∆znorm)
increases for higher photometric errors, as expected, and the
same occurs with the outlier rate. For the galaxies in Class E,
the bias and σ(∆znorm) is higher than for the other classes.

The defined photometric classes can be used to filter out,
if needed, the galaxies for which the redshift estimation is less
precise.

4.3. Impact of the position in the colour-magnitude space

The position of the galaxy in the D-dimensional feature space
also has an effect on the redshift estimation error. Galaxies situ-
ated in dense regions are expected to have smaller errors, since

Table 4. Average normalised redshift estimation bias ∆znorm, standard
deviation σ(∆znorm) and outlier rate Po for the defined photometric
classes.

Class ∆znorm σ(∆znorm) Po N

1 9.06 × 10−5 0.0266 2.89 1 263 179
2 −7.59 × 10−4 0.0331 3.82 464 717
3 −6.96 × 10−4 0.0347 4.75 187 214
4 −1.68 × 10−3 0.0400 7.46 127 412
5 −2.20 × 10−3 0.0460 8.39 118 162
E 5.41 × 10−4 0.1228 4.32 810
All −1.92 × 10−4 0.0299 4.30 2 161 494

Notes. These quantities were calculated after iteratively removing the
outliers, defined as |∆znorm| > 3σ(∆znorm). The number of galaxies N
(from the 100 different Ttest sets) belonging to each class is also indi-
cated.

their neighbours are very close to them in the D-dimensional
colour-magnitude space, and likely have similar redshifts. On the
contrary, galaxies situated in sparse regions have larger errors in
the redshift estimation, since their neighbours are further away
in the colour-magnitude space, and probably have a bigger dis-
persion in their redshifts.

To characterise this effect, we computed several error maps
that provide the redshift estimation errors as a function of the
position in the D-dimensional colour-magnitude space. These
error maps can be used to filter out, if required, the regions in
the colour-magnitude space that have larger errors.

Figure 6 illustrates this effect in the g−r and r−i colour plane.
The colour maps in this figure show three measurements of the
redshift estimation error as a function of g− r and r− i: the aver-
age standard deviation of the redshifts of the nearest neighbours
σ(zNN), the root mean square (rms) of the actual error zphot−zspec,
and the average estimated errors δzphot . The different error mea-
surements show a similar behaviour. The estimated error δzphot is
closely related to the actual error, which further supports that it
is a good estimator of the error, as previously shown in Fig. 5. As
expected, both errors are clearly correlated with the deviation of
the redshifts of the nearest neighbours. In the regions where the
dispersion is higher, the redshift estimation has a bigger error.
The contour lines in Fig. 6 represent the galaxy count distribu-
tion of the training set T5. By comparing these contours with the
background error maps, we see that there is a clear correlation
between the photometric redshift errors and the galaxy count dis-
tribution: denser regions yield smaller errors and sparser regions
yield bigger errors.

Figure 7 shows the same three measurements of the redshift
estimation error shown in Fig. 6 as a function of r and i − z. The
behaviour is similar to that observed in Fig. 6, with an estimated
error δzphot closely following the deviation of the redshifts of the
nearest neighbours σ(zNN) and the actual error zphot − zspec. The
contour lines in this figure show the galaxy count distribution as
a function of r and i − z. By comparing these contours with the
error maps, we again see a correlation between the two, although
less clear than in Fig. 6. This is due to an additional effect that
is analysed in the next part: fainter galaxies tend to have larger
errors than brighter galaxies.

In fact, one of the input features of the proposed method
depends directly on the r-band magnitude of the galaxies, and
thus, on their apparent brightness. This feature has a strong
impact on the estimation of the photometric redshift, as shown
in Fig. 8. The left panel of Fig. 8 shows the average normalised
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Fig. 6. Photometric redshift results as a function of the r− i and g− r colours. These results were obtained with a 100-fold cross-validation strategy
on the set of galaxies with the five magnitudes available (T5). Left panel: average standard deviation of the redshifts of the nearest neighbours
σ(zNN), middle panel: rms of the actual error zphot − zspec, and right panel: average estimated errors δzphot . For easier comparison, the scale in the
three panels was set between 0 and 0.1, with red indicating errors that are bigger than or equal to 0.1. For reference, the black lines represent the
contours of the galaxy count distribution of the training set T5, with the four displayed contours corresponding to 1000, 300, 100, and 10 galaxies
per colour bin.

Fig. 7. Photometric redshift results as a function of the r magnitude and the i−z colour. These results were obtained with a 100-fold cross-validation
strategy on the galaxy set with the five magnitudes available (T5). Left panel: average standard deviation of the redshifts of the nearest neighbours
σ(zNN), middle panel: rms of the actual error zphot − zspec, and right panel: average estimated errors δzphot . The colour scale and the black contours
are set as in Fig. 6.

error ∆znorm = (zphot − zspec)/(1 + zspec) as a function of the mag-
nitude r and the spectroscopic redshift zspec. While for brighter
galaxies (r < 20) the average normalised error is below 0.1, for
fainter galaxies (r > 20) the error increases significantly, espe-
cially for galaxies at z < 0.4 or z > 0.8. The right panel of
Fig. 8 shows the redshift error zphot−zspec for bright (18 < r < 20)
and faint (20 < r < 21) galaxies. While the redshift of brighter
galaxies is well estimated, with a small bias both at low and high
redshift, the error for fainter galaxies is higher, especially when
the true redshift is far from 0.5−0.6.

4.4. Impact of missing features

The proposed approach is also able to work when one or several
features are missing. When this occurs, the performance of the
method degrades, with an increased scatter in the photometric
versus spectroscopic redshift relation. Missing features usually
appear in very faint galaxies, but can also occur in brighter galax-
ies due to photometric measurement errors. In our training set T
with 2 313 724 galaxies, the r Kron magnitude is missing from
48 416 galaxies (2.1%), and the g−r, r− i, i−z and z−y aperture
colours are missing from 144 352 (6.2%), 51 150 (2.2%), 52 357
(2.3%), and 57 350 (2.5%) galaxies, respectively. Most of these
galaxies are faint. For example, approximately 91% of the galax-
ies without the g − r aperture colour have an r Kron magnitude
r > 20, while only 9% are brighter than r = 20.

To evaluate the effect of a missing feature independently of
the position of the galaxy in the magnitude-colour space, we
artificially removed one of the features from our training set
T5, and repeated the experiment described in Sect. 4.1, using
the four remaining features for both the test and training sub-
sets. The results are similar to those presented in Fig. 4, but
with a higher scatter. Table 5 summarises the results obtained
when the different features are removed. When the r Kron mag-
nitude is removed, the standard deviation of the normalised bias
is σ(∆znorm) = 0.0364, 22% higher than when using the five fea-
tures (σ(∆znorm) = 0.0299). The effect is smaller when one of
the aperture colours is removed, with an increase of 13%, 11%,
4%, and 1% in σ(∆znorm) for g − r, r − i, i − z, and z − y, respec-
tively. This indicates that, among the five features, the r Kron
magnitude has the strongest effect in the determination of the
photometric redshifts, while the aperture colours play a weaker
role. On the other hand, the average bias remains small, and the
outlier rate is not affected much by the removal of any of the
colour features, but increases when the r magnitude is removed.

5. Comparison with other photometric features

The photometric redshift estimation method described in Sect. 2
is a general technique that can be applied to different sets of fea-
tures. In the previous section, we presented the results obtained
when using the five PS1 features described in Sect. 2.2, meaning
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Fig. 8. Left panel: average normalised error ∆znorm = (zphot − zspec)/(1 + zspec) as a function of the magnitude r and the spectroscopic redshift zspec.
Right panel: redshift error zphot − zspec as a function of the spectroscopic redshift zspec for galaxies with 18 < r < 20 (orange dots) and 20 < r < 21
(black dots). Each dot represents an individual galaxy (only 10% of the galaxies are shown, for better visualisation). The thick solid and dotted
lines represent the median and the 68% confidence regions, respectively, computed in small zspec intervals for the galaxies with 18 < r < 20 (blue
lines) and 20 < r < 21 (red lines). The green line shows zphot = zspec. The results in both panels were obtained with a 100-fold cross-validation
strategy on T5.

Table 5. Average normalised redshift estimation bias ∆znorm, standard
deviation σ(∆znorm) and outlier rate Po for the experiments in which
one of the features is removed.

Removed feature ∆znorm σ(∆znorm) Po

r 1.03 × 10−3 0.0364 5.62
g − r −2.97 × 10−4 0.0340 4.01
r − i −1.12 × 10−3 0.0330 4.39
i − z −1.85 × 10−4 0.0310 4.11
z − y −2.44 × 10−4 0.0302 4.18

Notes. These quantities were calculated after iteratively removing the
outliers, defined as |∆znorm| > 3σ(∆znorm).

the PS1 r-band Kron magnitude and the g−r, r− i, i−z, and z−y
aperture colours. In this section, we analyse the effects of using
different sets of features. In particular, we consider two differ-
ent cases: (1) PS1 Kron colours, and (2) SDSS features, as in
Beck et al. (2016). In the first case, we assess whether the Kron
colours, which are not physically motivated (see Sect. 2.2) but
directly available for download for the complete PS1 survey, can
be used if more convenient. Considering the SDSS features will
allow us to compare the performance of the method using PS1
information with respect to the original method of Beck et al.
(2016).

In order to make a fair comparison, we restricted our training
set to the galaxies in T that have the r-band Kron magnitude, the
four aperture colours, and the four Kron colours available in the
PS1 dataset. Moreover, we also discard the galaxies that do not
satisfy the colour cut and photometric error criteria defined in
Eq. (7) of Beck et al. (2016), based on SDSS information. The
resulting training set, T Beck

9 , contains 1 776 508 galaxies. As in
the previous experiments described in Sect. 4, we performed a
100-fold cross-validation to evaluate the performance, but using
T Beck

9 instead of T5. We computed the photometric redshift of
the galaxies in the 100 test sets using: (1) the r-band Kron mag-
nitude and the four aperture colours from PS1; (2) the r-band

Table 6. Average normalised redshift estimation bias ∆znorm, standard
deviation σ(∆znorm), and outlier rate Po obtained when using different
sets of features in the training set T Beck

9 .

Features ∆znorm σ(∆znorm) Po

PS1 aperture colours −3.97 × 10−5 0.0279 3.15
PS1 Kron colours 1.24 × 10−4 0.0283 3.10
SDSS −2.02 × 10−4 0.0197 3.82

Notes. These quantities were calculated after iteratively removing the
outliers, defined as |∆znorm| > 3σ(∆znorm).

Kron magnitude and the four Kron colours from PS1; and (3)
the five SDSS features defined in Beck et al. (2016) as features.

Table 6 reports the average bias, standard deviation, and out-
lier rate obtained in the three cases. Figure 9 shows the average
normalised bias in the three cases as a function of the r-band
Kron magnitude and the spectroscopic redshift zspec. The results
obtained with PS1 aperture colours are not exactly the same as
in the experiment presented in Sect. 4 (see Table 4 and Fig. 8)
because the training set (T Beck

9 instead ofT5) now contains fewer
galaxies. The galaxies that were removed with respect to T5 are
those for which a PS1 Kron magnitude is missing or that do not
satisfy the SDSS criteria defined in Beck et al. (2016). These
are probably galaxies with poorer photometry, which explains
the slight improvement in the performance (lower standard devi-
ation and outlier rate) with respect to the results presented in
Sect. 4.

5.1. Aperture colours versus Kron colours

As shown in Table 6 and Fig. 9, the results obtained when
using Kron colours are very similar to the ones obtained when
using aperture colours. We also saw a nearly identical perfor-
mance to the one shown in Figs. 4 and 5: the photometric red-
shift calculated from Kron colours follows the spectroscopic
redshift quite well, especially in the intermediate redshift range
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Fig. 9. Average normalised error ∆znorm = (zphot − zspec)/(1 + zspec) as a function of the magnitude r and the spectroscopic redshift zspec, for three
different sets of features: left panel: PS1 features with aperture colours; middle panel: PS1 features with Kron colours; and right panel: SDSS
features. In the three cases, the results were obtained with a 100-fold cross-validation strategy on T Beck

9 .

Fig. 10. Correlation between the r − i colour and the spectroscopic redshift zspec for SDSS (left panel) and PS1 (right panel) datasets. In the PS1
case, the aperture colour is represented. Each point represents a galaxy of the training set T Beck

9 .

(0.1 < zspec < 0.6), and the method tends to underestimate the
redshift for high-redshift galaxies (zspec > 0.6) and to overesti-
mate it for low-redshift galaxies (zspec < 0.1).

Since the difference between using PS1 aperture colours or
PS1 Kron colours is negligible, we have included the possibil-
ity of selecting which features to use in the code available at the
project website. The user may choose the one that is more con-
venient, without significant impact on the results.

5.2. PS1 features versus SDSS features

Figure 9 and Table 6 show that using SDSS information instead
of PS1 information results in a slightly better performance.
The standard deviation of the normalised redshift error is lower
with SDSS features. Moreover, although the global average bias
is smaller for PS1 (with aperture colours), Fig. 9 shows that
SDSS features result in a lower bias both at high and low
redshift. This effect is especially noticeable for fainter galax-
ies. In the following, we analyse the possible causes of this
behaviour.

Firstly, PS1 and SDSS features are defined differently. One
of the SDSS features is the u − g colour, which is not available
in PS1; whereas the z − y colour is available in PS1 but not in
SDSS. Including a bluer information in SDSS allows a better
estimation of the redshift of lower redshift galaxies. To check if

this is enough to explain the observed behaviour, we repeated the
calculation of the photometric redshift removing the u−g colour
from SDSS features and removing the z−y colour from PS1 fea-
tures. The results with SDSS features degrade, but still show a
slightly better performance than with PS1 features, so this fea-
ture difference does not entirely explain the better behaviour of
SDSS features.

Secondly, the magnitudes g, r, i, and z have different values
in SDSS and PS1. It turns out that SDSS magnitudes show a
better correlation with the spectroscopic redshift, which explains
their power to better estimate the photometric redshift. Figure 10
shows a comparison of the correlation between the r − i colour
and the spectroscopic redshift for SDSS and PS1 (considering
the r − i aperture colour). For a given redshift, PS1 values show
a larger dispersion than SDSS. The same occurs for the g− r and
i − z aperture colours, for the Kron colours, and for the r Kron
magnitude. The reason for this larger scatter could be that PS1
aperture colours are not measured exactly at the Kron radius, but
at the closest one from the five available apertures, resulting in
colours that do not correspond to the same percentage of flux for
all the galaxies. Conversely, SDSS colours are computed from
ModelMagmagnitudes, so they correspond to the total flux of the
galaxy. On the other hand, PS1 Kron colours are not physically
motivated, since they are calculated as the difference between
two magnitudes that may be measured in different radii.
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Fig. 11. Photometric redshift as a function of spectroscopic redshift for three different sets. The red solid and dashed lines represent the median
and the 68% confidence regions, respectively, computed at small zspec intervals. The orange line shows zphot = zspec. On panel a, we included the
galaxies with a reported redshift error of δzphot < 0.05. On panel b, we included the galaxies with a reported redshift error of δzphot < 0.03. On panel
c, we included the galaxies with a reported redshift error of δzphot < 0.02. Only 10% of the galaxies are shown, for better visualisation.

Fig. 12. Photometric redshift as a function of spectroscopic redshift, for three different sets. The red solid and dashed lines represent the median
and the 68% confidence regions, respectively, computed in small zspec intervals. The orange line shows zphot = zspec. On panel a, we included the
galaxies in photometric error Class 1 and with a reported redshift error of δzphot < 0.05. On panel b, we included the galaxies in photometric error
Class 1 and with a reported redshift error of δzphot < 0.03. On panel c, we included the galaxies in photometric error Class 1 and with a reported
redshift error of δzphot < 0.02. Only 10% of the galaxies are shown, for better visualisation.

6. Practical guidelines for using the method

The training set T and the code implementing our approach are
available for download at the project website. This allows the
estimation of the photometric redshift of any galaxy in the PS1
survey. The code includes several configuration options that are
described in detail in the webpage. The two main options are the
choice between aperture or Kron magnitudes, and the choice of
the subset of T to be used for training.

Depending on the required accuracy and on the specific use
of the photometric redshifts provided by our approach, one may
want to use all the possible photometric redshifts regardless of
their error, or prefer to use a lower amount of more accurate pho-
tometric redshifts. In this section, we present different options to
select the best redshifts.

There are three main parameters that can be used for this
selection: the estimated error δzphot , the photometric error class,
and the extrapolation flag. Figure 11 shows the effect of using
different cuts in the photometric redshift errors. As expected,
introducing a cut in δzphot reduces the errors (see for compari-
son Fig. 4, where no cuts were used). However, if the cut is too
severe, the resulting sample may be limited in terms of redshift
and colour space coverage. Therefore, we suggest testing differ-
ent values to find the most appropriate one for a particular goal.
Figure 12 shows the effect of adding a cut using the photomet-
ric error class. By comparing Figs. 11 and 12, we can see that
the photometric error class selection mainly reduces the scatter
at high redshifts, where the photometric errors are larger.

Given the low number of galaxies in our dataset for which an
extrapolation was performed, filtering them out does not bring
a noticeable effect overall. However, this parameter is a good
indicator of the accuracy of the results, as shown in Table 4, so
it can be used to filter out some of the calculated redshifts when
there is a need for high accuracy.

Finally, the error maps presented in Sect. 4.3 can be used
to filter out some of the galaxies located in the regions of the
magnitude-colour space that are more prone to errors.

Since we provide the training set and the redshift estimation
code separately, the user may modify the training set by adding
additional galaxies according to his/her needs. Additionally, our
training set can be used as well with different data-driven red-
shift estimation algorithms (neural networks, decision trees, etc).
A comparison of the performance using different algorithms is
beyond the scope of this paper, but we checked that the proposed
approach provides very similar results to the ones obtained with
PhotoRaptor (Cavuoti et al. 2016) and a 100-trees random for-
est from scikit-learn (Pedregosa et al. 2011). It is worth noting,
however, that our approach has the advantages of providing an
estimation of the photometric redshift error and being less com-
putationally complex.

7. Summary

We present a data-driven approach to compute photometric red-
shifts for galaxies using the PS1 survey. In this work, we used
data from the PS1 DR2, but we tested the results also for the
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DR1, finding no significant difference. Our approach is an appli-
cation of the method proposed by Beck et al. (2016) for the
SDSS DR12, based on a local linear regression in a 5D magni-
tude and colour space. To apply the Beck et al. (2016) algorithm
to PS1, we selected appropriate magnitudes and colours (r, g− r,
r − i, i − z, and z − y) to define the 5D space, and we constructed
a proper and clean training set composed of 2 313 724 galaxies,
of which the spectroscopic redshift is available from SDSS and
the magnitudes and colours were obtained from the PS1 DR2
survey. A version of the code and training set is available for
download at the project website.

We assessed the performance of this approach by means of
a cross-validation on the training set, meaning we used part of
the galaxies of our training set as test galaxies to estimate their
photometric redshifts, and we then compared them to their true
(spectroscopic) redshifts. We estimate that the average bias of
our approach is ∆znorm = −1.92 × 10−4, its standard deviation,
σ(∆znorm) = 0.0299, and the outlier rate Po = 4.30%.

We also evaluated the impact of the photometric uncertain-
ties on our redshift determination. This was done by dividing
the entire sample in five photometric classes of growing photo-
metric errors. As expected, the uncertainties on the photometric
redshifts are smaller where the photometric errors are smaller.
There is also a fraction of galaxies for which the method extrap-
olates the photometric redshift, since their features lie outside
the bounding box of their nearest neighbours. In these cases, the
errors on photometric redshifts are larger and these galaxies are
flagged appropriately.

Moreover, we analysed the impact of the galaxy density (in
the feature space) on the redshift determination. In fact, there are
regions in the 5D space that are more populated than others. As
expected, we find that galaxies located in crowded regions have
a better redshift estimation than galaxies found in sparse regions.

Since galaxies in PS1 may have incomplete photometry, our
approach is prepared to deal with the case of missing features.
We evaluated the effect that a missing feature may produce on
the results using an ablation test (artificially removing existing
features). As expected, the scatter increases in these cases. This
effect is especially important when the r Kron magnitude is miss-
ing, whereas a missing colour has a smaller impact.

Furthermore, we tested the use of PS1 Kron colours instead
of aperture colours, finding no significant difference in the
results. Although Kron colours have no physical meaning, they
are easier to obtain, and it is worth stressing that they can
be safely used for computing photometric redshifts with our
approach.

Finally, we compared our results with those presented in
Beck et al. (2016) for the SDSS DR12. We find that SDSS data
perform slightly better than PS1 features, especially for faint
galaxies (r > 20). We suggest that these differences could be
caused by two main factors: different available filters, with SDSS
offering a bluer band, and a stronger correlation between the
SDSS magnitudes and the spectroscopic redshift. However, it
is worth noting that the overall performance of our approach
is fully in agreement (within the uncertainties) with the SDSS
results.
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