Homogeneous and Graded Ag Alloying in (Cu$_{1‐x}$Ag$_x$)$_2$ZnSnSe$_4$ Solar Cells - Archive ouverte HAL Access content directly
Journal Articles physica status solidi (a) Year : 2020

Homogeneous and Graded Ag Alloying in (Cu$_{1‐x}$Ag$_x$)$_2$ZnSnSe$_4$ Solar Cells

(1, 2) , (1, 2) , (1, 2)
1
2

Abstract

Cu$_2$ZnSn(S,Se)$_4$ (CZTSSE)-based solar cell performances are limited by band tailing due to a large amount of CuZ$_n$ antisite defects. Partially replacing the Cu atoms by larger Ag ones can significantly reduce the prevalence of these defects, which are particularly detrimental close to the front interface. Herein, the possibility of synthesizing (Cu$_{1‐x}$Ag$_x$)$_2$ZnSnSe$_4$ absorbers with various Ag contents by vacuum-based processes is demonstrated. Although the synthesis of high-quality materials is demonstrated, their use in thin film photovoltaic devices does not exhibit performance improvement compared with efficient pure CZTSSE-based solar cells. Moreover, the comparison with literature data reopens the debate of the beneficial effect of homogeneous Ag alloying in kesterite. On the contrary, a new method is proposed to fabricate graded (Cu$_{1‐x}$Ag$_x$)$_2$ZnSnSe$_4$) absorbers with increased Ag content at the interfaces. The solar cells with graded absorbers exhibit better performances than the reference Ag-free ones. Particularly, improved current collection at the back contact and slight reduction of the front interface recombination are demonstrated
Fichier principal
Vignette du fichier
20 Grenet - Homogeneous and Graded Ag Alloying in CAZTS solar cells.pdf (1.1 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

cea-02952497 , version 1 (29-09-2020)

Identifiers

Cite

Louis Grenet, Fabrice Emieux, Frédéric Roux. Homogeneous and Graded Ag Alloying in (Cu$_{1‐x}$Ag$_x$)$_2$ZnSnSe$_4$ Solar Cells. physica status solidi (a), 2020, 217 (9), pp.2000040. ⟨10.1002/pssa.202000040⟩. ⟨cea-02952497⟩
49 View
103 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More