, Energy, transport and environment statistics, 2019.

H. Kerskes,

I. Storing-energy, T. M. Letcher, and . Ed, , pp.345-372, 2016.

A. Züttel, A. Borgschulte, and L. Schlapbach, Hydrogen as a Future Energy Carrier

A. Züttel, M. Hirscher, B. Panella, K. Yvon, S. Orimo et al., Hydrogen as a Future Energy Carrier, pp.165-263, 2008.

K. Sordakis, C. Tang, L. K. Vogt, H. Junge, P. J. Dyson et al., Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols, Chem. Rev, vol.118, pp.372-433, 2018.

Z. Li and Q. Xu, Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid, Acc. Chem. Res, vol.50, pp.1449-1458, 2017.

N. Onishi, G. Laurenczy, M. Beller, and Y. Himeda, Recent progress for reversible homogeneous catalytic hydrogen storage in formic acid and in methanol, Coord. Chem. Rev, vol.373, pp.317-332, 2018.

D. Mellmann, P. Sponholz, H. Junge, and M. Beller, Formic acid as a hydrogen storage material -development of homogeneous catalysts for selective hydrogen release, Chem. Soc. Rev, vol.45, pp.3954-3988, 2016.

S. Lu, Z. Wang, J. Wang, J. Li, and C. Li, Hydrogen generation from formic acid decomposition on a highly efficient iridium catalyst bearing a diaminoglyoxime ligand, Green Chem, vol.20, pp.1835-1840, 2018.

G. Papp, G. Ölveti, H. Horváth, Á. Kathó, and F. Joó, Highly efficient dehydrogenation of formic acid in aqueous solution catalysed by an easily available water-soluble iridium(iii) dihydride, Dalton Trans, vol.45, pp.14516-14519, 2016.

J. J. Celaje, Z. Lu, E. A. Kedzie, N. J. Terrile, J. N. Lo et al., A prolific catalyst for dehydrogenation of neat formic acid, Nature Comm, 2016.

Z. Wang, S. Lu, J. Wu, C. Li, and J. Xiao, Iodide-Promoted Dehydrogenation of Formic Acid on a Rhodium Complex

, Eur. J. Inorg. Chem, pp.490-496, 2016.

C. Fink and G. Laurenczy, CO2 as a hydrogen vectortransition metal diamine catalysts for selective HCOOH dehydrogenation, Dalton Trans, vol.46, pp.1670-1676, 2017.

C. Fink, G. Laurenczy, M. C. Neary, and G. Parkin, Dehydrogenation, disproportionation and transfer hydrogenation reactions of formic acid catalyzed by molybdenum hydride compounds, Eur. J. Inorg. Chem, vol.6, pp.1859-1865, 2015.

M. Czaun, A. Goeppert, J. Kothandaraman, R. B. May, R. Haiges et al., Selective Hydrogen Generation from Formic Acid with Well-Defined Complexes of Ruthenium and Phosphorus-Nitrogen PN3-Pincer Ligand, Chem. Asian. J, vol.4, pp.1357-1360, 2014.

I. Mellone, F. Bertini, M. Peruzzini, and L. Gonsalvi, An active, stable and recyclable Ru(ii) tetraphosphine-based catalytic system for hydrogen production by selective formic acid dehydrogenation, Catal. Sci. Tech, vol.6, pp.6504-6512, 2016.

N. H. Anderson, J. M. Boncella, and A. M. Tondreau, Reactivity of Silanes with (tBuPONOP)Ruthenium Dichloride: Facile Synthesis of Chloro-Silyl Ruthenium Compounds and Formic Acid Decomposition, Chem. Eur. J, vol.23, pp.13617-13622, 2017.

M. A. Esteruelas, C. García-yebra, J. Martín, and E. Oñate, Dehydrogenation of Formic Acid Promoted by a Trihydride-Hydroxo-Osmium(IV) Complex: Kinetics and Mechanism, ACS Catal, vol.8, pp.11314-11323, 2018.

C. Guan, Y. Pan, T. Zhang, M. J. Ajitha, and K. Huang, An Update on Formic Acid Dehydrogenation by Homogeneous Catalysis, Chem. Asian. J, vol.15, pp.937-946, 2020.

A. Boddien, F. Gärtner, R. Jackstell, H. Junge, A. Spannenberg et al., ortho-Metalation of Iron(0) Tribenzylphosphine Complexes: Homogeneous

A. Aloisi, E. Crochet, E. Nicolas, J. Berthet, C. Lescot et al., , 2020.

R. W. Collect and . Hooft, The Netherlands, 1998, 3 [20] processing of x-ray diffraction data collected in oscillation mode, Z. Otwinowski and W. Minor, in Methods enzymol, vol.276, pp.307-326, 1997.

G. Sheldrick, Acta Crystallographica Section A, vol.71, pp.3-8, 2015.

G. Sheldrick, Acta Crystallographica Section C, vol.71, pp.3-8, 2015.

L. Farrugia, J. Appl. Crystallogr, vol.45, pp.849-854, 2012.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al., Gaussian 16 rev. C.01, vol.8, 2016.

R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys, vol.72, pp.650-654, 1980.

W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys, vol.56, pp.2257-2261, 1972.

P. C. Hariharan and J. A. Pople, Theor. Chim. Acta, vol.28, pp.213-222, 1973.

M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro, and W. J. Hehre, J. Am. Chem. Soc, vol.104, pp.2797-2803, 1982.

M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, and M. ,

D. J. Gordon, J. A. Defrees, and . Pople, J. Chem. Phys, vol.77, pp.3654-3665, 1982.

W. J. Ditchfield, J. A. Hehre, and . Pople, J. Chem. Phys, vol.54, pp.724-728, 1971.

R. Weigend and . Ahlrichs, Phys. Chem. Chem. Phys, 2005.

A. V. Marenich, C. J. Cramer, and D. G. Truhlar, The Journal of Physical Chemistry B, vol.113, pp.6378-6396, 2009.

, Geac: Gaussian esi automated creator, E. Nicolas, 2009.