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TWENTY-VERTEX MODEL WITH DOMAIN WALL BOUNDARIES
AND DOMINO TILINGS

PHILIPPE DI FRANCESCO AND EMMANUEL GUITTER

ABSTRACT. We consider the triangular lattice ice model (20-Vertex model) with four types of
domain-wall type boundary conditions. In types 1 and 2, the configurations are shown to be
equinumerous to the quarter-turn symmetric domino tilings of an Aztec-like holey square, with
a central cross-shaped hole. The proof of this statement makes extensive use of integrability
and of a connection to the 6-Vertex model. The type 3 configurations are conjectured to be in
same number as domino tilings of a particular triangle. The four enumeration problems are
reformulated in terms of four types of Alternating Phase Matrices with entries 0 and sixth roots
of unity, subject to suitable alternation conditions. Our result is a generalization of the ASM-
DPP correspondence. Several refined versions of the above correspondences are also discussed.
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1. INTRODUCTION

Few combinatorial objects have fostered as many and as interesting developments as Alter-
nating Sign Matrices (ASM). As described in the beautiful saga told by Bressoud [Bre99], these
had a purely combinatorial life of their own from their discovery in the 80’s by Mills, Rob-
bins and Rumsey [MRR83] to their enumeration [Zei96a, Zei96b] in relation to other intrigu-
ing combinatorial objects such as plane partitions with maximal symmetries [MRR86] or de-
scending plane partitions (DPP)[And80, Lal03, Kra06, BDFZJ12, BDFZJ13], until they crashed
against the tip of the iceberg of two-dimensional integrable lattice models of statistical physics
[Bax89]. This allowed not only for an elegant proof of the so-called ASM conjecture [Kup96]
and its variations by changing its symmetry classes [Kup02], but set the stage for future devel-
opments, with some new input from physics of the underlying six-vertex (6V) “ice" model in
the presence of special domain wall boundary conditions (DWBC), and its relations to a fully-
packed loop gas, giving eventually rise to the Razumov-Stroganov conjecture [RS04], finally
proved by Cantini and Sportiello in 2010 [CS11].

The ice model involves configurations on a domain of square lattice, obtained by orienting
each individual edge in such a way that the ice rule is obeyed at each node, namely that exactly
two edges point in and two edges point out of the node. It is now recognized that the statistical
model for two-dimensional ice, solved in [GAL72] is at the crossroads of many combinatorial
wonders, in relation with loop gases, osculating paths, rhombus and domino tiling problems,
and even equivariant cohomology of the nilpotent matrix variety. Moreover, due to its inher-
ent integrable structure, the model offers a panel of powerful techniques for solving, such as
transfer matrix techniques, the various available Bethe Ansätze, Izergin and Korepin’s deter-
minant, the quantum Knikhnik-Zamolodchikov equation, etc. [GAL72, Bax89, ICK92, Che92,
DFZJ05a, DFZJ05b].
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In the present paper, we develop and study the combinatorics of the ice model on the reg-
ular triangular lattice, known as the Twenty-vertex (20V) model [Kel74, Bax89]. Focussing on
the combinatorial content, we introduce particular “square" domains (n ×n rhombi of the
triangular lattice) with special boundary conditions meant to create domain walls, i.e. sep-
arations between domains of opposite directions of oriented edges, in an attempt to imitate
the 6V situation. Among the many possibilities offered by the triangular lattice geometry, we
found two particularly interesting classes of models, which we refer to as 20V-DWBC1,2 (where
DWBC1 and DWBC2 are two flavors of the same class viewed from different perspectives) and
20V-DWBC3. These are respectively enumerated by the sequences:

An = 1, 3, 23, 433, 19705, 2151843, 561696335, 349667866305... (DWBC1,2)(1.1)

Bn = 1, 3, 29, 901, 89893, 28793575... (DWBC3)(1.2)

for n = 1,2, ...
From their definition, both models can be interpreted as generalizations of ASMs, in which

non-zero entries may now belong to the set of sixth roots of unity, and we shall refer to them
as Alternating Phase Matrices (APM) of types 1,2,3 respectively. To further study both sets
of objects, we use the integrable version of the 20V model [Kel74, Bax89] to (i) decorate the
model’s configurations with Boltzmann weights parameterized by complex spectral parame-
ters; and (ii) reformulate whenever possible the partition function. In this paper, we succeed
in performing this program in the case of 20V-DWBC1,2, which is eventually reformulated
as an ordinary 6V-DWBC model on a square grid, but with non-trivial Boltzmann weights
(a,b,c) = (1,

p
2,1). The case of DWBC3 is more subtle as the model can be rephrased as a

6V model with staggered boundary conditions.
Among other possibilities, the 20V configurations may be represented as configurations of

some non-intersecting paths with steps along the edges of the triangular lattice, with the pos-
sibility of double or triple kissing (osculation) points at vertices. Individually, the same paths,
once drawn on a straightened triangular lattice equal to the square lattice supplemented with
a second diagonal edge on each face, are nothing but the Schröder paths on Z2, with hori-
zontal, vertical and diagonal steps (1,0), (0,−1) and (1,−1). These are intimately related to
problems of tiling of domains of the quare lattice by means of 1×2 and 2×1 dominos, such as
the celebrated Aztec diamond domino tiling problem [CEP96], or the more recently consid-
ered Aztec rectangles with boundary defects [BK18, DFG19].

Looking for candidates in the domino tiling world for being enumerated by the sequences
An or Bn , we found the two following remarkable models.

In the case of An , the associated domino tiling problem is a natural generalization of the
descending plane partitions introduced by Andrews [And80] and reformulated as the rhom-
bus tiling model of a hexagon with a central triangular hole, with 2π/3 rotational symmetry
[Lal03, Kra06], which allows to interpret it also as rhombus tilings of a cone. In the same
spirit, we find that An counts the domino tiling configurations of an Aztec-like, quasi-square
domain, with a cross-shaped central hole, and with π/2 rotational symmetry, or equivalently
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the domino tilings of a cone. The fact that 20V DWBC1,2 configurations and quarter-turn sym-
metric domino tilings of a holey square are enumerated by the sane sequence An is proved in
the present paper, together with a refinement, which parallels the refinement in the so-called
ASM-DPP conjecture of Mills, Robbins and Rumsey [MRR83]. We use similar techniques to
those of [BDFZJ12, BDFZJ13], namely identify both counting problems as given by determi-
nants of finite truncations of infinite matrices, whose generating functions are simply related.

In the case of Bn , a natural candidate was found by using the online encyclopedia of in-
teger sequences (OEIS). The number of domino tilings of a square of size 2n × 2n is 2nb2

n
[Kas63, FMP+15], where bn itself counts the number of domino tilings of a triangle obtained
by splitting the square into two equal domains [Pat97]. We found perfect agreement between
our data for Bn and bn , which we conjecture to be equal for all n. Despite many interesting
properties of the model, we have not been able to prove this correspondence.

The paper is organized as follows.
In Section 2, we introduce the 20V model and define a first class of models in its two flavors

of domain wall boundary conditions DWBC1,2, conveniently expressed in terms of osculating
Schröder paths. We also define the special integrable weights, parameterized by triples of
complex spectral parameters z, t , w , and obeying the celebrated Yang-Baxter relation.

These models are mapped onto the 6V-DWBC model (Theorem 3.1) with anisotropy param-
eter∆= 1/

p
2 in Section 3, by use of the integrability property, leading to compact formulas for

the partition function and in particular the numbers An , in the form of some simple determi-
nant, with known asymptotics leading to the free energy f = 3

2 Log 4
3 per site. The integrability

of the model allows us moreover to keep track of a refinement of the number An according
to the number of occupied vertical edges in the last column of the domain, in the osculating
Schröder path formulation (Theorem 3.2). The generating polynomial of the refined numbers
is also given by some simple determinant.

Section 4 is devoted to the definition and enumeration of the domino tiling problem of a
cone corresponding to the sequence An , which generalizes the notion of Andrews’ descend-
ing plane partitions in domino terms. After defining the tiling problem, we perform enumer-
ation using a non-intersecting Schröder path formulation and Gessel-Viennot determinants
(Theorem 4.1). We also introduce refinements in the same spirit as the refinements of the DPP
conjecture of [MRR83] (Theorem 4.2).

The equivalence between the enumerations in Sections 3 and 4 is proved in Section 5, in the
same spirit as the refined ASM-DPP proof of [BDFZJ12]. We first evaluate the homogeneous
limit of the Izergin-Korepin determinantal formula for the 6V-DWBC partition function, and
write it in the form of the determinant of the finite n ×n truncation of an infinite matrix in-
dependent of n. We then identify this determinant with the Gessel-Viennot determinant of
Section 4 (Theorem 5.1). We also work out the refined version of this result, by keeping one
non-trivial spectral parameter in the 20V model, and identifying it in a special weighting of
the Schröder path configurations for the domino tiling of the cone of Section 4 (Theorem 5.2).
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FIGURE 1. Left: A sample configuration of a 20V model configuration with DWBC1.
Right: The equivalent osculating path configuration.

We turn to other possible domain wall boundary conditions in Section 6. We first define the
20V-DWBC3 model and formulate the Conjecture 6.1 that its configurations are also enumer-
ated by the domino tilings of the triangle of [Pat97]. We extend this to a sequence of models
corresponding to half-hexagonal shapes with the same boundary conditions, conjecturally
enumerated by the domino tilings of Aztec-like extensions of the former triangle (Conjecture
6.2). We complete the section with another possible DWBC4 for which no general conjecture
was formulated.

In Section 7, we identify the various 20V-DWBC configurations considered in this paper with
sets of matrices with entries made of triples of elements in {0,1,−1}, or equivalently taking
values among 0 and the sixth roots of unity, that generalize the notion of Alternating Sign
Matrix.

We gather a few concluding remarks in Section 8.

Acknowledgments.
PDF is partially supported by the Morris and Gertrude Fine endowment and the NSF grant

DMS18-02044. EG acknowledges the support of the grant ANR-14-CE25-0014 (ANR GRAAL).

2. THE 20V MODEL WITH DOMAIN WALL BOUNDARY CONDITIONS

2.1. Definition of the model: ice rule and osculating paths. The combinatorial problem that
we wish to address corresponds to a particular instance of the 20V model on a finite regular
domain with specific boundary conditions. The corresponding geometry is directly inspired
from that of the 6V model on a portion of square lattice with Domain Wall Boundary Condi-
tions (DWBC) [Kor82], suitably adapted to the triangular lattice as follows: we first straighten
the triangular lattice into a square lattice supplemented with a second diagonal within each
face. In this setting, the regular domain underlying our 20V model is an n ×n square portion
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FIGURE 2. Left: A sample configuration of a 20V model configuration with DWBC2.
The boundary condition differs from that of Fig. 1 by the orientation imposed on the
upper-left and lower-right edges. Right: The equivalent osculating path configuration.

of lattice1, whose vertices occupy all points with integer coordinates (i , j ) for i , j = 1,2, . . . ,n.
Its set of inner edges is made of all the elementary horizontal segments (i , j ) → (i +1, j ) (i < n)
and vertical segments (i , j ) → (i , j +1) ( j < n) joining neighboring vertices, as well as all the
second diagonals (i , j +1) → (i +1, j ) (i , j < n). This edge set is completed by a set of oriented
boundary edges, with the following prescribed orientations:

• West boundary: horizontal edges oriented from (0, j ) to (1, j ), j = 1,2, . . . ,n and diago-
nal edges oriented from (0, j +1) to (1, j ) for j = 1,2, . . .n −1;

• South boundary: vertical edges oriented from (i ,1) to (i ,0), i = 1,2, . . . ,n and diagonal
edges oriented from (i ,1) to (i +1,0) for i = 1,2, . . .n −1;

• East boundary: horizontal edges oriented from (n + 1, j ) to (n, j ), j = 1,2, . . . ,n and
diagonal edges oriented from (n +1, j ) to (n, j +1) for j = 1,2, . . .n −1;

• North boundary: vertical edges oriented from (i ,n) to (i ,n +1), i = 1,2, . . . ,n and diag-
onal edges oriented from (i +1,n) to (i ,n +1) for i = 1,2, . . .n −1;

The boundary edge set itself is finally completed by two diagonal corner edges, and we distin-
guish two types of DWBC, referred to as DWBC1 and DWBC2 respectively, depending on the
orientation of these corner edges:

• DWBC1: the diagonal edge oriented from (0,n +1) to (1,n) and the diagonal edge ori-
ented from (n,1) to (n +1,0);

or
• DWBC2: the diagonal edge oriented from (1,n) to (0,n +1) and the diagonal edge ori-

ented from (n +1,0) to (n,1).

1Before straightening, this domain is an n ×n rhombus of the triangular lattice.
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FIGURE 3. Top: The 20 possible environments allowed by the ice rule for a node of the
triangular lattice. Bottom: the equivalent 20 vertices in the osculating path language. A
path edge is drawn whenever the underlying orientation runs from North, Northwest
or West to East, Southeast or South. Path steps are then concatenated into non-crossing
paths.

The domain thus defined is clearly a portion of triangular lattice where each inner node
(i , j ), i , j = 1,2, . . . ,n is incident to six edges. A configuration of the 20V model on this domain
consists in the assignment of an orientation to all the inner edges satisfying the (triangular) ice
rule condition that each node is incident to three outgoing and three incoming edges. Figures
1 and 2 show examples of configurations corresponding to the DWBC1 and DWBC2 ensembles
respectively. The ice rule gives rise to exactly 20 possible environments around a given node,
as displayed in Fig. 3, hence the name of the model. In the following, unless otherwise stated,
we will be interested in enumerating the 20V configurations without discrimination on the
possible node environments. In other words, we attach the same weight 1 to each of the 20
vertices of the model.

As in the case of the 6V model, the edge orientations of a configuration of the 20V model
may be coded bijectively by configurations of so-called osculating paths visiting the edges of
the lattice and obtained as follows: we first assign to each edge of the lattice a natural orien-
tation, namely from West to East for the horizontal edges, from North to South for the vertical
edges, and from Northwest to Southeast for the diagonal edges. Each edge of the lattice is then
covered by a path step if and only of its actual orientation matches the natural orientation.
Note that the path steps are de facto naturally oriented from North, Northwest or West (NW
for short) to East, Southeast or South (SE) and the ice rule ensures that the number of paths
steps coming from NW at each node is equal to that leaving towards SE. This allows to concate-
nate the path steps into global paths. When four or six path steps are incident to a given node,
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the prescription for concatenation is the unique choice ensuring that the paths do not cross
each other, even though they meet at the node at hand. Such paths are called “osculating".
Note that no two paths can share a common edge. By construction, the path configuration
consists of 2n (respectively 2n−1) paths in the DWBC1 (respectively DWBC2) ensemble, con-
necting the 2n edges of the West boundary plus the upper-left corner edge (respectively the
2n−1 edges of the West boundary) to the 2n edges of the South boundary plus the lower-right
corner edge (respectively the 2n −1 edges of the South boundary) without crossing. Figures 1
and 2 show examples of such osculating path configurations.

The simplest question we may ask about 20V configuration with DWBC is that of the num-
ber An = Z 20V (n) of configurations for a given n. First we note that this number is the same
for the prescriptions DWBC1 and DWBC2 due to a simple duality between the two mod-
els: performing a rotation by 180◦ in the plane sends a configuration of arrows obeying the
DWBC1 prescription to one obeying the DWBC2 and conversely (the symmetry being an in-
volution). Indeed, the ice rule is invariant under this rotation and the boundary conditions
are unchanged, except for the orientation of the corner edges which are reversed. This gives
a bijection between the configurations in the two ensembles which thus have the same cardi-
nality. In the osculating path language, the DWBC2 path configuration is obtained by taking
the complement of the DWBC1 path configuration (i.e. covering uncovered edges and con-
versely) and rotating it by 180◦ . The configuration in Fig. 2 is the image of that of Fig. 1 by this
bijection. The distinction between the two ensembles will still be significant when we address
more refined question in the next sections.

The sequence of the first values of the numbers An = Z 20V (n) for n up to 8 are listed in (1.1).
The 23 configurations for n = 3 are represented for illustration in Fig. 4

2.2. General properties. Following Baxter [Bax89], we may transform the 20V model into an
ice model on the Kagome lattice as follows: starting from our portion of triangular lattice and
splitting each node into a small triangle, say by slightly sliding each horizontal line to the
North, results in a portion of Kagome lattice, as shown in Fig. 5. Clearly, any orientation of
the edges of the Kagome lattice satisfying the ice rule (i.e. with two incoming and two outgo-
ing edges incident to each node) results into a configuration where the six edges of the origi-
nal triangular lattice satisfy the ice rule around any small triangle replacing an original node.
Conversely, any orientation satisfying the ice rule on the original triangular lattice may be
completed via some appropriate choice of orientation of the newly formed edges so as to cre-
ate an ice model configuration on the Kagome lattice (note that the choice of orientation for
the new edges is not unique in general). This construction allows to rephrase our 20V model
in terms of an ice model on the Kagome lattice. Let us now discuss how to recover the desired
weight 1 per vertex of the 20V model by some appropriate weighting of the vertex configura-
tions around each node of the Kagome lattice. The Kagome lattice is naturally decomposed
into three sublattices, denoted 1, 2 and 3 with the following choice:

• lattice 1: vertices at the crossing of a horizontal and a vertical line;
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FIGURE 4. The 23 configurations of the 20V model with DWBC1 for n = 3, represented
in the osculating path language.

• lattice 2: vertices at the crossing of a horizontal and a diagonal line;
• lattice 3: vertices at the crossing of a vertical and a diagonal line.

Due to the ice rule, each vertex of sublattice 1 (respectively 2 and 3) matches one of the six
vertex configurations of the 6V model and we may naturally weight these configurations with
three weights a1,b1,c1 (respectively a2,b2,c2 and a3,b3,c3) according to the rules of Fig. 6.
In order to recover the desired weight 1 for each vertex of the 20V model, the weights of the
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1 1

1 1 1

1

11

2 2

2 2

22 2

2

2

3

3

3 3

3

3 3

3

3

FIGURE 5. The deformation of the triangular lattice into the Kagome lattice by sliding
the horizontal lines to the North, splitting each node into a small triangle (colored in
light blue). The Kagome lattice is naturally split into three sublattices denoted 1, 2
and 3 as shown. Each configuration of the 20V model (left) may be completed into a
configuration satisfying the ice rule at each vertex of the Kagome lattice by some (non-
unique) appropriate choice of orientation for the newly created edges (blue arrows).

3

11 11 11 11 111111

3 3 3 3

2 2 2 2 2 2

111

3

a1 a1 b1 b1

b3b3a3a3

a2 a2 b2 b2 c2

c1

c3

c1

c2

c3

FIGURE 6. The weight denomination for the three copies of 6V models on the Kagome
lattice. The index of the weights corresponds to that of the underlying sublattice. Ver-
tices related by a global reversing of all arrows are chosen to have the same weight.

Kagome model must satisfy the following 10 relations2

1 = a1a2a3 = b1a2b3 = b1a2c3 = c1a2a3 = b1c2a3 = b1b2a3

= a1b2c3 + c1c2b3 = a1b2b3 + c1c2c3 = c1b2b3 +a1c2c3 = c1b2c3 +a1c2b3
(2.1)

2Note that our definition of the weights on the Kagome lattice differ from that of Baxter in [Bax89] upon the
exchange a1 ↔ b1. The 20 relations for the 20 possible vertices reduce to 10 by symmetry.
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1

2

3

1

2

3

1 a1b2c3 c1c2b3= +

FIGURE 7. The relation a1b2c3+c1c2b3 = 1 ensuring a weight 1 for the vertex of the 20V
model shown on the left, as obtained by summing over the two possible orientations
for the edges of the central small triangle in the equivalent Kagome lattice setting
(right).

1

2

3

1

2

3

α2

α4

α6α1

α5

α3

Sα4,α5,α6α1,α2,α3

=
31

2

3

α2

α4

α6α1

α5

α3

T α4,α5,α6α1,α2,α3

FIGURE 8. A schematic picture of the Yang-Baxter equation Sα4,α5,α6
α1,α2,α3

= Tα4,α5,α6
α1,α2,α3

. For
fixed orientations α1, · · · ,α6, Sα4,α5,α6

α1,α2,α3
and Tα4,α5,α6

α1,α2,α3
are obtained by summing over the

orientations of the edges of the central triangle allowed by the ice rule on the Kagome
lattice, with their associated weights of Fig. 6.

For instance, the relation a1b2c3+c1c2b3 = 1 comes from the summation over the two possible
orientations in the small triangle shown in Fig. 7. A possible choice of solution for the system
of equations (2.1) is
(2.2)

(a1,b1,c1) = α

21/3
(1,

p
2,1) , (a2,b2,c2) = β

21/3
(
p

2,1,1) , (a3,b3,c3) = γ

21/3
(
p

2,1,1)

for any choice of α, β and γ such that αβγ = 1. A very efficient tool in solving the 6V model
is the use of the so called Yang-Baxter relations which allow to deform and eventually unravel
the underlying lattice into a simpler graph. In the above Kagome lattice setting, denoting by
α1, · · · ,α6 the six orientations around a small triangle as shown in Fig. 8, with αi = 1 if the
orientation matches the natural (from NW to SE) orientation and 0 otherwise, these relations
ensure that the weight Sα4,α5,α6

α1,α2,α3
obtained by summing over the possible orientations of the
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w1 wj wn

z1

zn

z1

zn

t1

tk

tn t2n−1

· · ·· · ·

· · ·

··
···
·

zizizizi
(i, j)

FIGURE 9. Spectral parameters for the Kagome lattice version of the 20V model.

edges of the small triangle is equal, for any choice of the αi ’s, to that, Tα4,α5,α6
α1,α2,α3

, obtained by
sliding the diagonal line (passing through vertices of sublattices 2 and 3) to the other side of
the node of the sublattice 1 (see Fig. 8). In terms of the weights (ai ,bi ,ci ), it is easily checked
that this equality holds if and only if we have the three relations:

(2.3) (a1b2−b1a2)c3+c1c2b3 = 0 , (a1b3−b1a3)c2+c1c3b2 = 0 , (b2b3−a2a3)c1+c2c3a1 = 0 .

Note that these relations are in practice weaker than the relations (2.1) in the sense that im-
posing (2.1) automatically implies (2.3). For instance, the relation (a1b2 −b1a2)c3 + c1c2b3 = 0
is a direct consequence of the two identities b1a2c3 = a1b2c3+c1c2b3 = 1. In particular, (2.3) is
satisfied by the solution (2.2), as easily verified by a direct computation.

2.3. Integrable weight parametrization. It is useful to introduce more general weights for
our 20V model, or equivalently for its Kagome reformulation, by introducing so called spectral
parameters in the following way, mimicking the well known use of spectral parameters for
the 6V model. Let us number the horizontal lines of our lattice by i = 1,2, . . . ,n from bottom
to top and attach a (complex) parameter zi to the i ’th line. Similarly, we label the vertical
lines by j = 1,2, . . . ,n from left to right and attach a parameter w j to the j ’th line. Finally,
the diagonal lines are labeled by k = 1,2. . . ,2n −1 from bottom left to top right and we attach
a parameter tk to the k-th line. This labeling induces a similar labeling for the horizontal,
vertical and diagonal lines of the Kagome lattice, see Fig. 9. Each node of the sublattice 1 is
then at the crossing of a horizontal and a vertical line, hence naturally labeled by a pair (i , j )
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with i , j = 1,2, . . . ,n. Similarly, each node of the sublattice 2 is labeled by a pair (i ,k), with
i = 1,2, . . . ,n and k = i , i + 1, . . . , i +n − 1, while each node of the sublattice 3 corresponds to
a pair (k, j ) with j = 1,2, . . . ,n and k = j , j +1, . . . , j +n −1. This allows us to introduce non-
homogeneous weights (a1(i , j ),b1(i , j ),c1(i , j )) for the configurations around vertices of the
sublattice 1 according to the dictionary of Fig. 6, and similarly weights (a2(i ,k),b2(i ,k),c2(i ,k))
and (a3(k, j ),b3(k, j ),c3(k, j )).

Introducing the notations

A(u, v) = u − v , B(u, v) = q−2 u −q2 v , C (u, v) = (q2 −q−2)
p

u v ,

with u, v and q some complex numbers, we consider the following integrable weight parametriza-
tion:

(2.4)
a1(i , j ) = A(zi , w j ) , b1(i , j ) = B(zi , w j ) , c1(i , j ) =C (zi , w j ) ,
a2(i ,k) = A(q zi , q−1 tk ) , b2(i ,k) = B(q zi , q−1 tk ) , c2(i ,k) =C (q zi , q−1 tk ) ,
a3(k, j ) = A(q tk , q−1 w j ) , b3(k, j ) = B(q tk , q−1 w j ) , c3(k, j ) =C (q tk , q−1 w j ) ,

where the complex numbers zi , i −1,2, . . . ,n, w j , j = 1,2, . . . ,n, and tk , k = 1,2, . . . ,2n −1 are
arbitrarily fixed spectral parameters. The main feature of this integrable parametrization is
that, for any choice of the spectral parameters, the Yang Baxter relations (2.3) are automatically
satisfied for any triple (i , j ,k) in (2.4), as easily checked by a direct computation.

The solution (2.2) of (2.1) may be recovered in this framework by choosing

(2.5) tk = t , zi = q6 t , w j = q−6 t

for all k, i and j , leading to the homogeneous weights:

a1 = (q6 −q−6)t , b1 = (q4 −q−4)t , c1 = (q2 −q−2)t ,
a2 = (q7 −q−1)t , b2 = (q5 −q)t , c2 = (q5 −q)t ,
a3 = (q −q−7)t , b3 = (q−1 −q−5)t , c3 = (q−1 −q−5)t .

Upon taking the particular value

(2.6) q = eiπ/8 ,

these weights reduce, using q8 =−1 and (q4 −q−4) =p
2(q2 −q−2), to

(2.7)
(a1,b1,c1) = (q2 −q−2)t (1,

p
2,1) ,

(a2,b2,c2) = q3 (q2 −q−2)t (
p

2,1,1) ,
(a3,b3,c3) = q−3 (q2 −q−2)t (

p
2,1,1) ,

a form which matches precisely that of (2.2) withα= 1,β= q3 andγ= q−3 whenever
(
(q2 −q−2)t

)3 =
1/2, namely, say

(2.8) t = 1

21/3 (q2 −q−2)
=− i

25/6
.
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FIGURE 10. The unraveling of a configuration of the 20V model with DWBC1 (top left).
Using the Yang Baxter property allows to deform the diagonal lines and expel them out
of the central square grid (top right). Note the that the main diagonal is expelled to-
wards the lower-left of the square grid, a choice adapted to the DWBC1 prescription.
Due to the ice rule and the boundary conditions, the orientation of all the edges out-
side of the central square grid are entirely fixed (lower left), leaving as only degrees of
freedom the orientation of the edges inside the central square grid, reproducing a 6V
model with DWBC (lower right).

3. MAPPING TO A 6V MODEL WITH DOMAIN WALL BOUNDARY CONDITIONS

3.1. Unraveling the 20V configurations. We now return to our 20V model with, say the DWBC1
prescription and with a weight 1 per vertex and consider its Kagome equivalent formulation
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a c} } }}b

FIGURE 11. Vertex configurations of the 6V model on the square grid and the associ-
ated weights a, b and c (top row) and their equivalent osculating path representation
(bottom row).

with the weights given by (2.2). As already mentioned, as solution of the equation (2.1), these
weights automatically satisfy the conditions (2.3) ensuring the Yang Baxter property. This al-
lows to deform the lattice by expelling the diagonal lines from the n ×n square grid as shown
in Fig. 10. The diagonal lines with index k ≤ n are expelled towards the lower-left of the square
grid and those with index k > n towards the upper-right. The choice for the main diagonal
(k = n) is adapted to the DWBC1 prescription. For the DWBC2 prescription, the proper choice
would be to move this diagonal towards the upper-right instead. In the deformed configura-
tion, all the vertices of the sublattices 2 and 3 have been expelled outside of the n ×n square
grid which contains only vertices of the sublattice 1. More interestingly, due to the ice rule
and to the prescribed boundary conditions, the orientations of all the edges outside the cen-
tral n ×n square grid are entirely fixed (see Fig. 10), and all correspond to configurations of
"type a", namely receive the weight a2 if they belong to sublattice 2 and a3 is they belong to
the sublattice 3. This leads to a global contribution (a2 a3)n2

while the remaining configura-
tion is that of a standard 6V model on the n ×n square grid with the celebrated Domain Wall
Boundary Conditions. We immediately deduce the following:

Theorem 3.1. The number An of configurations of the 20V model with DWBC1,2 on an n ×n
grid reads

An = Z 20V (n) = Z 6V[
1,
p

2,1
](n) .

where Z 6V
[a,b,c](n) denotes the partition function of the 6V model on an n ×n square grid with

DWBC and weights (a,b,c) according to the dictionary of Fig. 11.
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1 2 2 2

844

FIGURE 12. Illustration of the property Z 6V[
1,
p

2,1
](3) = 1+2+2+2+4+4+8 = 23 ob-

tained by listing all the 6V model configurations with DWBC (here in the osculating
path language) and their associated weight (as indicated for each configuration), cor-
responding to attaching a factor

p
2 to each node traversed vertically or horizontally by

a path (as shown by cross marks).

Proof. We indeed have

An = Z 20V (n) = (a2 a3)n2
Z 6V

[a1,b1,c1](n) =
(
βγ

( p
2

21/3

)2)n2

Z 6V[
α 1

21/3 ,α
p

2
21/3 ,α 1

21/3

](n)

= Z 6V[
αβγ

( p
2

21/3

)2
1

21/3 ,αβγ
( p

2
21/3

)2 p
2

21/3 ,αβγ
( p

2
21/3

)2
1

21/3

](n)

where we used the multiplicative nature of the weights to redistribute the prefactor within the
weights of the n2 nodes of the sublattice 1. Since αβγ= 1, the theorem follows. �

Using Theorem 3.1 and straightforward generalizations, we will recourse to known results
on the 6V model with DWBC to address a number of enumeration results for the 20V model.
In the following, we will mainly use the osculating path formulation of the 20V model and
the corresponding one for the 6V model according to the correspondence of Fig. 11. Fig. 12
shows how to recover the value A3 = Z 20V (3) = 23 from that of Z 6V[

1,
p

2,1
](3) in the osculating

path framework.

3.2. Refined enumeration. A refined enumeration of the 20V model configurations consists,
in the osculating path language, in keeping track of the position i = ` (`= 1,2, . . . ,n) where the
uppermost path3 first hits the vertical line j = n. Alternatively, `−1 is the number of occupied

3The uppermost path corresponds to the 2n-th path from the bottom for DWBC1 and to the (2n −1)-th path
for DWBC2.
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inner vertical edges in the last column. We denote by Z 20VBC 1
`

= Z 20VBC 1
`

(n) the number of

configurations with a given ` for the DWBC1 prescription and Z 20VBC 2
`

this number for the
DWBC2 prescription. These numbers are encoded in the generating functions

Ẑ 20VBC 1 (τ) =
n∑
`=1

Z 20VBC 1
`

τ`−1 ,

Ẑ 20VBC 2 (τ) =
n∑
`=1

Z 20VBC 2
`

τ`−1 ,

(with an implicit n-dependence) which clearly satisfy Ẑ 20VBC 1 (1) = Ẑ 20VBC 2 (1) = Z 20V (n). Simi-
larly we denote by Z 6V[

1,
p

2,1
]
;`
= Z 6V[

1,
p

2,1
]
;`

(n) the number of configurations of the 6V model with

DWBC for which the uppermost osculating path first hits the vertical line j = n at position i = `
and set

(3.1) Ẑ 6V[
1,
p

2,1
](σ) =

n∑
`=1

Z 6V[
1,
p

2,1
]
;`
σ`−1

with Ẑ 6V[
1,
p

2,1
](1) = Z 6V[

1,
p

2,1
](n).

Let us now show the following:

Theorem 3.2. The generating polynomials Ẑ 20VBC 1,2 (τ) for the refined 20V model are deter-
mined by the relations

(3.2) Ẑ 20VBC 2 (τ) = Ẑ 6V[
1,
p

2,1
] (1+τ

2

)
= Ẑ 20VBC 1 (0)+ 1+τ

2τ

(
Ẑ 20VBC 1 (τ)− Ẑ 20VBC 1 (0)

)
.

Equivalently, coefficient-wise:

Z 20VBC 1
1 = Z 6V[

1,
p

2,1
]
;1

and Z 20VBC 1
`

=
n∑

m=`

(
m −2

`−2

)
1

2m−2
Z 6V[

1,
p

2,1
]
;m

for `≥ 2 ,

Z 20VBC 2
`

=
n∑

m=`

(
m −1

`−1

)
1

2m−1
Z 6V[

1,
p

2,1
]
;m

.

Note that the second relation in (3.2) may alternatively be rewritten as

Corollary 3.3.

(3.3) Ẑ 20VBC 1 (τ) = 2τ

1+τ Ẑ 6V[
1,
p

2,1
] (1+τ

2

)
+ 1−τ

1+τ Ẑ 6V[
1,
p

2,1
](0) .

To prove Theorem 3.2, let us start with the simplest case of DWBC2. The generating function
Ẑ 20VBC 2 (τ) may easily be obtained, in the equivalent Kagome formulation of the 20V model,
by slightly modifying the spectral parameter wn for the last column. Choosing the integrable
parametrization (2.4) for the Kagome vertex weights with q as in (2.6), tk = t as in (2.8) for all
k, zi = q6 t for all i and w j = q−6 t for all j < n while wn = q−6 t u for some parameter u, only
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==

=

=

=

+

a1(i, n)a2(i, k)a3(k, n)

+

+

b1(i, n)a2(i, k)b3(k, n)

a1(i, n)b2(i, k)c3(k, n)

c1(i, n)c2(i, k)b3(k, n)

+
a1(i, n)c2(i, k)c3(k, n)

c1(i, n)b2(i, k)b3(k, n)

=

=

=

=

√
u(1+u)
2

√
u(1+u)
2

(1+u)(u+i)(1−i)
4

(1+u)(u−i)(1+i)
4

=

=

=

=

W1

W2

W3

W4

i = `

j = nj = n

FIGURE 13. Left: modification of the weights of the 20V model with DWBC2 when
performing the change wn → wn u for the spectral parameter attached to the last
column from the special values (2.5), (2.6) and (2.8). We display only the four ver-
tices which may appear in the last column due to the boundary condition at the East
boundary. The weights are easily computed in the Kagome formulation, with the result
W1, . . . ,W4 shown, satisfying Wi → 1 when u → 1, as required. Right: the configuration
in the the last column is, from bottom to top, made of a sequence of vertices weighted
by W2, then of a single vertex with weight W3 or W4 (hitting point) and finally of a com-
plementary sequence of vertices weighted by W1.

the weights (a1(i ,n),b1(i ,n),c1(i ,n)) and (a3(k,n),b3(k,n),c3(k,n)) are modified with respect
to the homogeneous values of (2.7). The new values are

a1(i ,n) = (q2 u −q−2)t , b1(i ,n) = (q4 −q−4 u)t , c1(i ,n) = (q2 −q−2)
p

u t ,
a3(i ,n) = q−3(q4 −q−4 u)t , b3(i ,n) = q−3(q2 −q−2 u)t , c3(i ,n) = q−3(q2 −q−2)

p
u t .

This in turns leaves all the vertex weights of the 20V model equal to 1, except for those of
the last column ( j = n). Due to the boundary condition on the right of this column, only
four vertex configurations are possible, as displayed in Fig. 13, corresponding to a vertex not
visited by the uppermost path (weight W1), a vertex crossed vertically by the uppermost path
(weight W2), or a vertex where the uppermost path hits the last column for the first time after
a diagonal step (weight W3) or a horizontal step (weight W4). The respective new weights
W1, . . .W4 are easily computed from the new Kagome weights above (see Fig. 13), with the
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result:

W1 = (1+u)(u + i)(1− i)

4
, W2 = (1+u)(u − i)(1+ i)

4
W3 =W4 =

p
u(1+u)

2
.

Clearly, a configuration for which the uppermost path hits the last column at position ` corre-
sponds to a last column formed (from bottom to top) of `−1 vertices with weight W2 (below
the hitting point), one vertex with weight W3 or W4 (the hitting point) and (n−`) vertices with
weight W1 (above the hitting point). Note the crucial property W3 = W4 which ensures that
configurations, when hitting the last column, are weighted independently on the way (hor-
izontal or diagonal) they reach this column and receive the weight W `−1

2 W3W n−`
1 . To sum-

marize, setting wn = q−6 t u instead of q−6 t changes the partition function Z 20V (n) into the
quantity

(3.4)
n∑
`=1

Z 20VBC 2
`

(
(1+u)(u − i)(1+ i)

4

)`−1 p
u(1+u)

2

(
(1+u)(u + i)(1− i)

4

)n−`
.

This quantity may be computed alternatively in the 6V model language by unraveling our con-
figuration of the 20V model, or more precisely its Kagome lattice equivalent, as we did in pre-
vious section. Indeed, the Yang Baxter relations still hold with the modified value of wn . Note
that since we are now considering the DWBC2 prescription, the diagonal line k = n must be
moved towards the upper-right of the central square grid. As shown in Fig. 14, changing wn

from q−6 t to q−6 t u generates, compared with the fully homogeneous case, the following
modifications:

• a global factor
(

A(q t ,q−7 t u)
A(q t ,q−7 t)

)n
=

(
q4−q−4 u
q4−q−4

)n
= (1+u

2

)n
for the vertices of the sublattice 3

crossing the vertical line j = n (top encircled set of nodes in Fig. 14);
• a change of the weights (1,

p
2,1) for the equivalent DWBC 6V model in the last col-

umn of the central square grid into weights
(

A(q6 t ,q−6 t u)
A(q6 t ,q−6 t) ,

B(q6 t ,q−6 t u)
B(q6 t ,q−6 t) ,

C(q6 t ,q−6 t u)
C(q6 t ,q−6 t)

)
=(

1× (u+i)(1−i)
2 ,

p
2× 1+u

2 ,1×p
u

)
(bottom encircled set of nodes in Fig. 14).

Gathering the weights in the last column for a configuration where the uppermost path hits
the last column at position i = ` (with the same argument as for the 20V model), we obtain for
the modified partition function (3.4) the alternative expression

(3.5)

(
1+u

2

)n n∑
`=1

Z 6V[
1,
p

2,1
]
;`

(
1+u

2

)`−1 p
u

(
(u + i)(1− i)

2

)n−`
.

Equating (3.4) and (3.5) leads directly to the announced relation (3.2) identifying Ẑ 20VBC 2 (τ) to
Ẑ 6V[

1,
p

2,1
] (1+τ

2

)
upon setting τ= i u−i

u+i .

We may now easily repeat the argument in the case of the DWBC1 prescription. The mod-
ified weights are the same as those listed in Fig. 13 but the lower right vertex (i = 1, j = n)



20 PHILIPPE DI FRANCESCO AND EMMANUEL GUITTER

FIGURE 14. In the unraveled configuration (here for DWBC2, hence with the main
diagonal expelled towards the upper-right corner), changing wn → wn u modifies only
those weights corresponding to the encircled sets of nodes. The top set results into a
global factor while the bottom set corresponds to a change of the 6V weights in the last
column (see text).

involves new modified vertex weights W5, W6 and W7 listed in Fig. 15. Again we note the cru-
cial property W5 = W6 which ensures that configurations are weighted independently on the
way the penultimate (just below the uppermost) path reaches the (i = 1, j = n) vertex. For
` > 1, a configuration where the uppermost path hits the last column at position i = ` re-
ceives a weight W5W `−2

2 W3W n−`
1 while for `= 1, it receives the weight W7W n−1

1 . The partition
function Z 20V is now transformed into the quantity

Z 20VBC 1
1

(p
u(1+u)

2

)(
(1+u)(u + i)(1− i)

4

)n−1

+
n∑
`=2

Z 20VBC 1
`

(
1+u

2

)2 (
(1+u)(u − i)(1+ i)

4

)`−2 p
u(1+u)

2

(
(1+u)(u + i)(1− i)

4

)n−`
.

(3.6)

As before, this quantity must be equal to that of (3.5) for the equivalent 6V model after unravel-
ing (note that the diagonal line with k = n must now be moved to the lower-left of the central
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==

=

=

b1(i, n)c2(i, k)a3(k, n)

b1(i, n)b2(i, k)a3(k, n) =

=
(
1+u
2

)2

=

W5

W6 i = `

j = nj = n

===

=

c1(i, n)a2(i, k)a3(k, n) =
√
u(1+u)
2 W7=

(
1+u
2

)2

FIGURE 15. Left: modification of the weights of the 20V model with DWBC1 when
performing the change wn → wn u for the spectral parameter attached to the last col-
umn from the special values (2.5), (2.6) and (2.8). We display only the three new ver-
tices specific to DWBC1 (and thus not encountered in Fig. 13), corresponding to the
three possible environments of the lower-right node. The associated values W5,W6,W7

satisfy Wi → 1 when u → 1, as required. Right: a sample configuration of the last col-
umn.

square grid but this does not alter the global prefactor in (3.5)). Setting τ = i u−i
u+i and equat-

ing the two expressions (3.6) and (3.5) leads directly to the announced relation (3.2) between
Ẑ 20VBC 1 (τ) and Ẑ 6V[

1,
p

2,1
] (1+τ

2

)
. This completes the proof of Theorem 3.2 and its Corollary 3.3.

3.3. Free energy and partition function from the 6V solution. From the above identifica-
tions, we may now rely on known results on the 6V model with DWBC to explore the statistic of
the 20V model with DWBC1 or DWBC2. A first result concerns the asymptotics of An = Z 20V (n)
for large n, directly given from that of Z 6V[

1,
p

2,1
](n). For (a,b,c) = (1,

p
2,1), the value of the

anisotropy parameter is ∆= a2+b2−c2

2 a b = 1p
2

, meaning that the 6V model is in the so-called “dis-

ordered phase" region. Using the standard parametrization

a = ρ sin(λ−φ) , b = ρ sin(λ+φ) , c = ρ sin(2λ) ,

with |φ| < λ, where we may take in our case λ = 3π/8, φ = π/8 and ρ = p
2, the exponential

growth of Z 6V[
1,
p

2,1
](n), hence of Z 20V (n) at large n is known to be [BF06, ZJ00].

An = Z 20V (n) = Z 6V[
1,
p

2,1
](n) ∼

n→∞

(
ρ
π

(
cos(2φ)−cos(2λ)

)
4λ cos

(
π t
2λ

) )n2

=
(

4

3

) 3
2 n2

,
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hence a free energy per site

f = 3

2
Log

4

3
.

If we use for the 6V model a parametrization of the form (2.4) by taking

(3.7) a(i , j ) = zi −w j , b(i , j ) = q−2 zi −q2 w j , c(i , j ) = (q2 −q−2)
√

zi w j ,

for the weights at the nodes (i , j ), the homogeneous values (a,b,c) = (1,
p

2,1) correspond to
choosing4

(3.8) q = eiπ/8 zi = z = 1

1−q4
= 1+ i

2
w j = w = q4

1−q4
= i−1

2

for all i , j = 1, . . . ,n.
For arbitrary spectral parameters, the partition function of the 6V model with DWBC is ob-

tained via the celebrated so-called Izergin-Korepin determinant formula [Kor82, Ize87, ICK92]:

(3.9) Z 6V =

n∏
i=1

c(i , i )
n∏

i , j=1

(
a(i , j )b(i , j )

)
∏

1≤i< j≤n
(zi − z j )(w j −wi )

det
1≤i , j≤n

(
1

a(i , j )b(i , j )

)

with a(i , j ), b(i , j ) and c(i , j ) as in (3.7). This expression is singular when the zi and w j tend
to their homogeneous values (3.8) but we will explain in Section 5 how to circumvent this
problem.

4. QUARTER-TURN SYMMETRIC DOMINO TILINGS OF A HOLEY AZTEC SQUARE

Leaving the ice models aside for a while, we now turn to a different class of problems, that
of domino tilings of conic domains. Our interest in these problems is motivated by the obser-
vation that their configurations are enumerated by the same sequence An of (1.1). A proof of
this remarkable fact will given in Section 5 below.

4.1. Definition of the model: domain and domino tilings. We consider the domain An de-
picted in Fig. 16 (a) forming a quasi-square of Aztec-like shape of size 2n ×2n, with a cross-
shaped hole in the middle. We wish to enumerate the domino tilings of this domain that
are invariant under a quarter-turn rotation (i.e. of angle π/2) around the center of the cross.
Equivalently, identifying the domain modulo quarter-turns, the problem is equivalent to domi-
no tilings of a cone with a hole at its apex.

4Here when computing c, we adopt the convention that
√

(q2 −q−2)2 = (q2−q−2). Choosing the other branch
of the square root would yield c =−1 but, from the relation Z 6V[

1,
p

2,1
](n) = (−1)n Z 6V[

1,
p

2,−1
](n) for the 6V model with

DWBC, we would eventually recover for Z 6V[
1,
p

2,1
](n) the very same expression as that (5.2) presented in Section 5

below.
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n−1

n−1

(c)(b)

(a)

1 3 70

1

2

4

8

FIGURE 16. (a) The quasi-square Aztec-like domain An with a central cross-shaped
hole. (b) A sample tiling configuration of An invariant under quarter-turn rotations
around the central cross. The dashed lines identify a fundamental domain w.r.t. rota-
tional symmetry. We have shaded the dominos from the top right domain that touch
the vertical dashed line: these determine the zig-zag boundary of the fundamental do-
main. Summing over all positions of shaded dominos and all tiling configurations of
the corresponding fundamental domain yields the desired number of tiling configura-
tions of An that are quarter-turn symmetric. (c) The tiling of the fundamental domain
is in bijection with configurations of non-intersecting Schröder paths with fixed ends
on the shaded dominos, with symmetric positions (here 1,3,7 and 2,4,8) on the hori-
zontal and vertical axes.
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The present setting can be viewed as an Aztec-like generalization of that derived in [Lal03,
Kra06] to reformulate Andrews’ DPP [And80]. There, the DPP were shown to be in bijection
with the rhombus tiling configurations of a quasi-regular hexagon (of shape (n,n + 2,n,n +
2,n,n +2)) with a central triangular hole of size 2, invariant under rotations of angle 2π/3.

4.2. Counting the tilings via Schröder paths. To perform the desired enumeration, let us de-
lineate a fundamental domain w.r.t. the rotational symmetry of the tiling configurations as
shown in Fig. 16 (b). We draw axes centered at the center of the cross, and concentrate on
the first quadrant. For any tiling configuration, we shade the dominos that touch the vertical
half-axis by a corner and belong to the first quadrant. As shown in Fig. 16, these delineate a
zig-zag boundary, with a “defect" protruding to the left for each shaded domino. We then draw
a copy of this zig-zag boundary, obtained by rotation of −π/2: these delimit the fundamental
domain of the tiling. Note that the fundamental domain is entirely determined by the set of
shaded dominos. To characterize the tiling configurations of such a fundamental domain, we
use the standard mapping to non intersecting Schröder paths (Fig. 16 (c)) obtained by first bi-
coloring the underlying (tilted) square lattice so that say the center of the cross is black, and
by applying the following dictionary:

(4.1)

The Schröder paths are drawn on another Z2 lattice, with coordinates shifted by 1/2 on both
axes. When oriented from their starting point on the (new) horizontal axis to their endpoints
on the (new) vertical axis, these paths have left, up and diagonal steps (−1,0), (0,1), (−1,1)
respectively. The endpoints of the paths belong to the shaded dominos and occupy positions
(0,1 + ik ) for some integers i1, . . . , i` ∈ [1,n − 1] since the first position (i = 0) is forbidden
by the cross-shaped hole. The corresponding starting points occupy positions (ik ,0) for the
same set {i1, . . . , i`}. Moreover, from the above construction, the endpoints of the paths are
on the NW border of the leftmost (white) half of the shaded dominos, and therefore the last
step of all the paths can only be either left or diagonal, but cannot be up : we shall call these
restricted Schröder paths. Finally, the total number of tiling configurations of An with quarter-
turn symmetry is obtained by summing over all possible positions and orientations of the
shaded dominos, i.e. over all possible positions i1, . . . , i` of the endpoints, of the number of
configurations of non-intersecting restricted Schröder paths with these particular endpoints
and their associated symmetric starting points.

Schröder paths are readily enumerated via the generating function

S(r, s) := ∑
i , j≥0

r i s j Si , j = 1

1− r − s − r s
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where Si , j is the number of Schröder paths from point (i ,0) to point (0, j ). We may think of r , s
as generators of left and up steps respectively, and r s as the generator of a diagonal step: in any
term of the expansion of the generating function of the form r `su(r s)d = r i s j for respectively
`,u,d left, up and diagonal steps, we indeed have i = `+d and j = u +d . Restricted Schröder
paths require that the last step cannot be up. If we now denote by S̃i , j the number of restricted
Schröder paths from (i ,0) to (0, j ), then the desired entries S̃i , j+1 of the Gessel-Viennot matrix
are generated by:∑

i , j≥0
S̃i , j+1r i s j = 1

s

(
r s S(r, s)+ r (S(r, s)−S(r,0))

)= 2r

(1− r )(1− r − s − r s)

where we have decomposed the paths according to their last step, respectively with weight r s
(if diagonal) or r (if left) and preceded respectively by an arbitrary Schröder path, generated
by S(r, s), or by an arbitrary Schröder path with a height difference of at least one, generated
by (S(r, s)−S(r,0)). The global 1/s is simply due to the fact that we attach a weight s j in our
definition instead of the natural s j+1 associated with a height difference j +1. Note that , for
i = 0, S̃0, j+1 = 0 as there is no restricted Schröder path with only vertical steps, while, for j = 0,
S̃i ,1 = 2i .

The partition function of the tiling model is given by the following:

Theorem 4.1. The number T4(An) of quarter-turn symmetric tilings of the domain An is given
by the n ×n determinant:

T4(An) = det(In +Mn)

where (In)i , j = δi , j and (Mn)i , j = S̃i , j+1 for i , j = 0,1, ...,n −1.

Proof. Recall the Lindström Gessel-Viennot (LGV) determinant formula [Lin73, GV85]: the
number of non-intersecting restricted Schröder paths with fixed starting points (ik ,0) and
endpoints (0,1+ ik ), k = 1,2, ...,` is given by the sub-determinant |Mn |i1,...,i`

i1,...,i`
of the matrix Mn

obtained by keeping rows and columns with labels i1, ..., i` (corresponding respectively to the
starting and ending points). The theorem follows from the standard Cauchy-Binet identity:

det(In +Mn) =
n∑
`=0

∑
0≤i1<i2···<i`≤n−1

|Mn |i1,...,i`
i1,...,i`

,

which realizes the desired sum over all possible choices of symmetric starting and endpoints.
Note that the sum includes paths with i1 = 0, which do not contribute as (Mn)0, j = S̃0, j+1 =
0. �

Using the generating function for the infinite matrix I+M :

(4.2) T4(r, s) = ∑
i , j≥0

(I+M)i , j r i s j = 1

1− r s
+ 2r

(1− r )(1− r − s − r s)
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we easily generate the numbers T4(An) from

(4.3) T4(An) = det
0≤i ,i≤n−1

((
1

1− r s
+ 2r

(1− r )(1− r − s − r s)

)∣∣∣∣
r i s j

)
(here f (r, s)|r i s j denotes the coefficient of r i s j in a double series expansion of f (r, s) in r and
s). Remarkably, these numbers match precisely the sequence An of (1.1).

4.3. Refined enumeration. In this section, we consider refined quarter-turn symmetric tiling
configurations ofAn . The origin of the refinement is best explained in the formulation as non-
intersecting Schröder paths of Fig. 16 (c). Comparing these configurations to those attached
to DPP in [Kra06], we are led to consider the following two statistics for restricted Schröder
paths. For each such path p from (i ,0) → (0, j ), where 0 ≤ i ≤ n −1 and 1 ≤ j ≤ n, we define
numbers `1(p) and `2(p) as:

• if j < n, `1(p) = `2(p) = 0.
• if j = n, `1(p) is the x coordinate of the last point with y coordinate ≤ n −1.
• if j = n, `2(p) is the x coordinate of the first point with y coordinate equal to n.

This allows to define the refined numbers T (m)
4,k (An), m = 1,2 of non-intersecting restricted

Schröder path configurations P with5 `m(P) :=∑
p∈P`m(p) = k, for some k = 0,1, ...,n −1. We

refer to such models as type 1 or 2 according to the value of m. In turn, these correspond to a
refinement of the quarter-turn symmetric tiling configurations of An :

Type 1: `1(P) = k iff the top row of the fundamental domain corresponds to the following tiling
pattern (with k or k −1 up-right dominos):

k k

Type 2: `2(P) = k iff there are exactly k up-right dominos in the top row of the fundamental
domain.

k

The generating polynomial for the type m = 1,2 model:

T (m)
4 (An ;τ) :=

n−1∑
k=0

τk T (m)
4,k (An)

5Note that at most one path contributes to this sum, namely the topmost one if it hits the height n.
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is interpreted as the partition functions for non-intersecting restricted Schröder path config-
urations with some extra weight:

Type 1: τ per horizontal step taken at vertical position y = n and τ for a possible diagonal step
from y = n −1 to y = n.

Type 2: τ per horizontal step taken at vertical position y = n.

Theorem 4.2. The partition functions T (m)
4 (An ;τ) for type m refined quarter-turn symmetric

domino tilings of the domain An are given by:

T (1)
4 (An ;τ) = det

0≤i , j≤n−1

 (
1

1−r s + 2r
(1−r )(1−r−s−r s)

)∣∣∣
r i s j

j ≤ n −2(
1

1−r s + 2τr
(1−τr )(1−r−s−r s)

)∣∣∣
r i s j

j = n −1


= det

0≤i , j≤n−1

((
1

1− r s
+ 2r

(1− r )(1− r − s − r s)
+ sn−1 r

{
2τ

1−τr
− 2

1− r

}
(1+ r )n−1

(1− r )n

)∣∣∣∣
r i s j

)
.

T (2)
4 (An ;τ) = det

0≤i , j≤n−1

 (
1

1−r s + 2r
(1−r )(1−r−s−r s)

)∣∣∣
r i s j

j ≤ n −2(
1

1−r s + (1+τ)r
(1−τr )(1−r−s−r s)

)∣∣∣
r i s j

j = n −1


= det

0≤i , j≤n−1

((
1

1− r s
+ 2r

(1− r )(1− r − s − r s)
+ sn−1 r

{
1+τ

1−τr
− 2

1− r

}
(1+ r )n−1

(1− r )n

)∣∣∣∣
r i s j

)
.

To prove the theorem, we may evaluate T (m)
4 (An ;τ) by use of the LGV formula, by noticing

that only the paths ending at (x, y) = (0, j +1) with j = n −1 receive a modified weight. More
precisely, the partition function for a restricted Schröder path from (i ,0) to (0,n) in types m =
1,2 correspond to the coefficient of s j = sn−1 in the generating functions:

Type1 :
1

s

{(
τr

1−τr
s + 1

1−τr
τr s

)
S(r, s)

}
= 2τr

1−τr

1

1− r − s − r s

Type2 :
1

s

{(
r s + τr

1−τr
(s + r s)

)
S(r, s)

}
= (1+τ)r

1−τr

1

1− r − s − r s

In type 1, we have performed a decomposition of the path according to its last visit at height
n −1: it is either followed by an up step (generated by s) and then by an arbitrary succession
of k horizontal steps, with k ≥ 1 since the up step cannot take place at x = 0 for a restricted
Schröder path (generated by τr /(1−τr )) or it is followed by a diagonal step from y = n −1 to
y = n (generated by τr s) and then by an arbitrary succession of k ≥ 0 horizontal steps at y = n
(generated by 1/(1−τr )), all of which are preceded by a standard Schröder path, generated by
S(r, s). As before, the 1/s global prefactor comes from our choice of extracting the coefficient
of s j = sn−1 instead of the natural one of s j+1.

In type 2, this is again obtained by decomposing the path according its last step(s): it is
either a single diagonal step (generated by r s) or an arbitrary succession of k ≥ 1 left steps
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(generated by τr /(1−τr )) preceded by either an up or a diagonal step (generated by s + r s)
and the preceding part of the path is a generic Schröder path, generated by S(r, s).

The total partition functions S̃(m)
i ,n (τ) for a restricted Schröder path from (i ,0) to (0,n) in type

m = 1,2 read:

S̃(1)
i ,n(τ) = 2τr

1−τr

1

1− r − s − r s

∣∣∣∣
r i sn−1

= 2τr

1−τ s

(1+ r )n−1

(1− r )n

∣∣∣∣
r i

S̃(2)
i ,n(τ) = (1+τ)r

1−τr

1

1− r − s − r s

∣∣∣∣
r i sn−1

= (1+τ)r

1−τr

(1+ r )n−1

(1− r )n

∣∣∣∣
r i

.

Note that the partition functions for all the other paths (ending at vertical coordinate y ≤ n−1)
are the same as before, namely equal to S̃i , j for paths from (i ,0) to (0, j ). Applying again the

LGV formula, we see that the partition function T (m)
4 (An ;τ) is the determinant of a matrix

with an analogous form In +M (m)
n (τ), where the n ×n matrix M (m)

n (τ) differs from Mn only in
its last column, in which the entries S̃i ,n are replaced by the new partition functions S̃(m)

i ,n (τ).
We deduce the following:

T (m)
4 (An ;τ) = det

(
In +M (m)

n (τ)
)

, M (m)
n (τ)i , j =

{
S̃i , j+1 for j ∈ [0,n −2]

S̃(m)
i ,n (τ) for j = n −1

which is nothing but Theorem 4.2 in its first form.
To put this result in the second and more compact form of Theorem 4.2, let us compute the

generating function T (m)
4 (r, s;τ) =∑

i , j≥0 r i s j (I+M (m)(τ))i , j ) for the new infinite matrix whose

n ×n truncations’ determinant yields the polynomial T (m)
4 (An ;τ). We have

Lemma 4.3.

T (1)
4 (r, s;τ) = 1

1− r s
+ 2r

(1− r )(1− r − s − r s)
+ sn−1 r

2(τ−1)

1−τr

(1+ r )n−1

(1− r )n+1

T (2)
4 (r, s;τ) = 1

1− r s
+ 2r

(1− r )(1− r − s − r s)
+ sn−1 r

τ−1

1−τr

(1+ r )n

(1− r )n+1

Proof. To get the new generating function from T4(r, s) in (4.2), we must subtract the contri-
bution of the last column, i.e. sn−1 times the coefficient of sn−1 in 2r /((1− r )(1− r − s − r s))
and add the new generating function sn−1 ∑

i≥0 S̃(m)
i ,n (τ)r i . Note that any term of order ≥ n in r

or s is irrelevant and may therefore be chosen arbitrarily, as it does not affect the truncation to
size n. The net result is the generating function:

T (1)
4 (r, s;τ) = 1

1− r s
+ 2r

(1− r )(1− r − s − r s)
+ sn−1 r

{
2τ

1−τr
− 2

1− r

}
(1+ r )n−1

(1− r )n

T (2)
4 (r, s;τ) = 1

1− r s
+ 2r

(1− r )(1− r − s − r s)
+ sn−1 r

{
1+τ

1−τr
− 2

1− r

}
(1+ r )n−1

(1− r )n

and the Lemma follows. �
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Theorem 4.2 allows for a very efficient calculation of the partition functions T (m)
4 (An ;τ).

The first few terms read as follows.
For type 1, the polynomials T (1)

4 (An ;τ) for n = 1, . . . ,7 read:

1

1+2τ

3+14τ+6τ2

23+198τ+166τ2 +46τ3

433+6322τ+7874τ2 +4210τ3 +866τ4

19705+468866τ+777258τ2 +606026τ3 +240578τ4 +39410τ5

2151843+81652574τ+169682406τ2 +172604734τ3 +99699558τ4 +31601534τ5 +4303686τ6

For type 2, the polynomials T (2)
4 (An ;τ) for n = 1, . . . ,7 read:

1

2+τ
10+10τ+3τ2

122+182τ+106τ2 +23τ3

3594+7098τ+6042τ2 +2538τ3 +433τ4

254138+623062τ+691642τ2 +423302τ3 +139994τ4 +19705τ5

42978130+125667490τ+171143570τ2 +136152146τ3 +65650546τ4 +17952610τ5 +2151843τ6

We note the identities for n ≥ 1

T (1)
4 (An ;0) = T4(An−1) , T (1)

4 (An ;τ)|τn−1 = 2T4(An−1) , T (2)
4 (An ;τ)|τn−1 = T4(An−1) .

All these identities have an easy explanation in terms of paths, which we leave as an exercise
for the reader.

5. PROOF OF THE EQUIVALENCE BETWEEN 20V-DWBC1,2 AND HOLEY SQUARE TILINGS

5.1. From the Izergin-Korepin to the Gessel-Viennot determinant. The aim of this Section
is to prove the identity:

Theorem 5.1. The number of configurations for the 20V model with DWBC1 or DWBC2 on
an n ×n grid is equal to that of the quarter-turn symmetric domino tilings of the domain An ,
namely:

(5.1) Z 20V (n) = T4(An) .

The proof goes as follows. From Theorem 3.1, we may get Z 20V (n) from Z 6V[
1,
p

2,1
](n) whose

expression may itself be obtained from the general Izergin-Korepin determinant expression
(3.9). Here however, we need to take as spectral parameters the specific values given by (3.8)
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and, for such homogeneous values, the expression (3.9) cannot be used as such as both the
determinant in the expression and the denominator of its prefactor vanish identically, result-
ing in an indeterminate limit. Some manipulations on the Izergin-Korepin determinant are
therefore required before letting zi and w j tend to their homogeneous limiting values z and
w . Remarkably, the result of these manipulations is a new expression for Z 6V[

1,
p

2,1
](n) which

resembles the Gessel-Viennot determinant encountered in Theorem 4.1 for the expression of
T4(An). The identity (5.1) is then proved by simple rearrangements of the determinant.

In the limit zi → z and w j → w for the weights (3.7), the expression (3.9) may be rewritten
as:

Z 6V =(−1)
n(n−1)

2
(
(q2 −q−2)

p
z w

)n (
(z −w)(q−2z −q2w)

)n2 q2n

(1−q4)n w n

× det
1≤i , j≤n

((
1

(z + r )− (w + s)
− 1

(z + r )−q4(w + s)

)∣∣∣∣
r i−1s j−1

)
.

(5.2)

The passage from (3.9) to (5.2) is explained in [BDFZJ12] and we reproduce the various steps
of the computation in Appendix A.

In the particular case where q , z and w take the values (3.8), this leads immediately to

Z 6V[
1,
p

2,1
](n) = (−1)

n(n−1)
2

p
2

n2(
1+ip

2

)n det
1≤i , j≤n

((
1

1+ r − s
− 1

1+ i+ r − i s

)∣∣∣∣
r i−1s j−1

)

=
(
i
p

2
)n(n−1)(1+i
2

)n det
1≤i , j≤n

((
1

1+ r − s
− 1

1+ i+ r − i s

)∣∣∣∣
r i−1s j−1

)
= det

1≤i , j≤n

((
1− i

1+ i
p

2(r − s)
− 1− i

1+ i+ i
p

2(r − i s)

)∣∣∣∣
r i−1s j−1

)
expressing Z 6V[

1,
p

2,1
](n) as the determinant of the finite truncation of an infinite matrix with the

generating function f (r, s) explicited above. To go from the second to the third line, we used
the identity f (αr,βs)|r i−1s j−1 = αi−1β j−1 f (r, s)|r i−1sl−1 with α = β = i

p
2 and

∏n
i , j=0α

i−1β j−1 =
(αβ)

n(n−1)
2 to insert the numerator of the prefactor inside the determinant. As for the denom-

inator, we also transferred it inside the determinant via the trivial identity 1/((1+ i)/2) = 1− i.
Performing the transformation

(5.3) r → 1+ ip
2

r

1− ir
, s → 1− ip

2

s

1+ i s

in the above infinite matrix generating function leaves the determinant unchanged. Indeed,
this amounts to first multiply r by α = 1+ip

2
and s by β = 1−ip

2
changing the determinant by an

overall multiplicative factor
(

1+ip
2
× 1−ip

2

) n(n−1)
2 = 1 and to then to change r → r /(1− ir ) and s →
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s/(1+ i s). Using

f

(
r

1−γr
, s

)∣∣∣∣
r k sl

= f (r, s)|r k sl +
∑

m<k
γk−m

(
k −1

k −m

)
f (r, s)|r m sl

the change r → r /(1− ir ) amounts to add to each row of the determinant a linear combina-
tion of the previous rows while the change s → s/(1+ i s) amounts to add to each column a
linear combination of the previous ones. These operations leave the determinant unchanged.
Applying the above substitution (5.3), we get the alternative expression

Z 6V[
1,
p

2,1
](n) = det

1≤i , j≤n

(
(1− ir )(1+ i s)

(
1− i

1− r − s − r s
+ i

1− r s

)∣∣∣∣
r i−1s j−1

)
= det

1≤i , j≤n

((
1− i

1− r − s − r s
+ i

1− r s

)∣∣∣∣
r i−1s j−1

)
.

Here again the prefactor (1− ir )(1+ i s) was removed without changing the determinant as
the matrices with and without this prefactor are obtained from one another by subtracting
from each row (for the r -dependent factor) or respectively adding to each column (for the
s-dependent factor) i times the preceding one.

Using the identity

(5.4) (1+ i r )(1− s)

(
1− i

1− r − s − r s
+ i

1− r s

)
= (1− r )(1− i s)

(
1

1− r s
+ 2r

(1− r )(1− r − s − r s)

)
,

we may play once more the same trick and get the alternative expression

Z 6V[
1,
p

2,1
](n) = det

1≤i , j≤n

(
(1+ i r )(1− s)

(
1− i

1− r − s − r s
+ i

1− r s

)∣∣∣∣
r i−1s j−1

)
= det

1≤i , j≤n

(
(1− r )(1− i s)

(
1

1− r s
+ 2r

(1− r )(1− r − s − r s)

)∣∣∣∣
r i−1s j−1

)
= det

1≤i , j≤n

((
1

1− r s
+ 2r

(1− r )(1− r − s − r s)

)∣∣∣∣
r i−1s j−1

)
.

This latter expression is nothing but that (4.3) for T4(An) up to a trivial shift by 1 of the indices
i and j . This proves the theorem.

5.2. Refined equivalence. We now wish to refine the above result and get the interpretation
of Ẑ 20VBC 1 (τ) and Ẑ 20VBC 2 (τ) in the quarter-turn symmetric tiling language. We have the fol-
lowing:

Theorem 5.2. The refined partition functions for the 20V-DWBC1,2 model on an n ×n grid are
equal to the refined partition functions for type 1 and 2 quarter-turn symmetric domino tilings
of the domain An , namely

Ẑ 20VBC 1 (τ) = T (1)
4 (An ;τ) , Ẑ 20VBC 2 (τ) = T (2)

4 (An ;τ) .
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The remainder of this section is devoted to the proof of this theorem. From equation, (3.2),
we may relate Ẑ 20VBC 1 (τ) and Ẑ 20VBC 2 (τ) to their analogue Ẑ 6V[

1,
p

2,1
](σ) (3.1) for the 6V model,

with σ = 1+τ
2 . As explained in Section 3.2, this latter partition function may be obtained by

letting zi and w j tend to their special values z and w of (3.8) except for the spectral parameter
wn attached to the last column which tends instead to the value w u for some parameter u.
We therefore have to evaluate the expression (3.9) of the Izergin-Korepin determinant in this
limit. This can be done along the same lines as in the previous section: in the limit zi → z,
i = 1, . . . ,n, w j → w , j = 1, . . . ,n −1 and wn → w u, the expression (3.9) may be rewritten as:

Z 6V =(−1)
n(n−1)

2
(
(q2 −q−2)

p
z w

)n−1 (
(z −w)(q−2z −q2w)

)n(n−1) q2(n−1)

(1−q4)n−1w n−1

× (q2 −q−2)
p

z w u
(
(z −w u)(q−2z −q2w u)

)n q2

(1−q4)wu

1

(w u −w)n−1

× det
1≤i , j≤n

(
1

(z+r )−(w+s) − 1
(z+r )−q4(w+s)

)∣∣∣
r i−1s j−1

j ≤ n −1(
1

(z+r )−w u − 1
(z+r )−q4 w u

)∣∣∣
r i−1

j = n

 .

(5.5)

A derivation of this expression in given in Appendix B. For the specific values (3.8), this yields

Z 6V[
1,
p

2,1
]
;
[

(u+i)(1−i)
2 ,

p
2 1+u

2 ,
p

u
](n) =(−1)

n(n−1)
2

(p
2
)n2(

1+ip
2

)n
1p
u

(
1+u

2

(u + i)(1− i)

2

)n (
1+ i

1−u

)n−1

× det
1≤i , j≤n

( 1
1+r−s − 1

1+i+r−is

)∣∣
r i−1s j−1 j ≤ n −1(

1
1−iu
1−i +r

− 1
1+u
1−i +r

)∣∣∣∣
r i−1

j = n

 .

= 1p
u

(i
p

2)n−1
(

1+u

2

(u + i)(1− i)

2

)n (
1+ i

1−u

)n−1

× det
1≤i , j≤n


(

1−i
1+i

p
2(r−s)

− 1−i
1+i+i

p
2(r−is)

)∣∣∣
r i−1s j−1

j ≤ n −1(
1−i

1−iu
1−i +i

p
2r

− 1−i
1+u
1−i +i

p
2r

)∣∣∣∣
r i−1

j = n

 .

Here the notation Z 6V[
1,
p

2,1
]
;
[

(u+i)(1−i)
2 ,

p
2 1+u

2 ,
p

u
](n) indicates that the weights in the last column

are different from those in the other columns, with the indicated u-dependent values. Again
we perform the substitution (5.3). Note that, as opposed to what we had before, the change
in s does not affect the last column j = n. The effect of the substitution on the determinant is
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compensated by multiplying simultaneously by an overall factor
(

1−ip
2

)n−1
. This leads to

Z 6V[
1,
p

2,1
]
;
[

(u+i)(1−i)
2 ,

p
2 1+u

2 ,
p

u
](n) = 1p

u
(i
p

2)n−1
(

1+u

2

(u + i)(1− i)

2

)n (
1+ i

1−u

)n−1 (
1− ip

2

)n−1

× det
1≤i , j≤n

(
(1− ir )(1+ i s)

( 1−i
1−r−s−r s + i

1−r s

)∣∣
r i−1s j−1 j ≤ n −1

(1− ir )
(

−2i
1−iu+(i−u)r − −2i

1+u+i(1−u)r

)∣∣∣
r i−1

j = n

)

= 1p
u

(
(1+u)(u + i)(1+ i)

2(1−u)

)n

det
1≤i , j≤n

(
(1− ir )(1+ i s)

( 1−i
1−r−s−r s + i

1−r s

)∣∣
r i−1s j−1 j ≤ n −1

(1− ir )
(

u−1
1−iu+(i−u)r − u−1

1+u+i(1−u)r

)∣∣∣
r i−1

j = n

)

= 1p
u

(
(1+u)(u + i)(1+ i)

2(1−u)

)n

det
1≤i , j≤n

( ( 1−i
1−r−s−r s + i

1−r s

)∣∣
r i−1s j−1 j ≤ n −1(

u−1
1−iu+(i−u)r − u−1

1+u+i(1−u)r

)∣∣∣
r i−1

j = n

)

where we again removed the factors (1− ir ) and (1+ i s) without changing the determinant.
We now recall from (3.5) the expression

Z 6V[
1,
p

2,1
]
;
[

(u+i)(1−i)
2 ,

p
2 1+u

2 ,
p

u
](n) =

n∑
`=1

Z 6V[
1,
p

2,1
]
;`

(
1+u

2

)`−1 p
u

(
(u + i)(1− i)

2

)n−`

=p
u

(
(u + i)(1− i)

2

)n−1

Ẑ 6V[
1,
p

2,1
](σ)

where σ= 1+u
(i+u)(1−i) , or equivalently, u = 1−(1+i)σ

(1−i)σ−1 . Comparing the two expressions above leads
to

Ẑ 6V[
1,
p

2,1
](σ) = 1

u

(
(1+u)(u + i)(1+ i)

2(1−u)

)(
i

1+u

1−u

)n−1

× det
1≤i , j≤n

( ( 1−i
1−r−s−r s + i

1−r s

)∣∣
r i−1s j−1 j ≤ n −1(

u−1
1−iu+(i−u)r − u−1

1+u+i(1−u)r

)∣∣∣
r i−1

j = n

)

= σ−1

σ(1− i)+ i

( σ

σ−1

)n
det

1≤i , j≤n

( ( 1−i
1−r−s−r s + i

1−r s

)∣∣
r i−1s j−1 j ≤ n −1(

1−i
1+(1−2σ)r + i

σ+(1−σ)r

)∣∣∣
r i−1

j = n

)
.

Setting σ= 1+τ
2 and using (3.2), we deduce alternatively

Ẑ 20VBC 2 (τ) = (1+ i)(τ−1)

2(τ+ i)

(
τ+1

τ−1

)n

det
1≤i , j≤n

(( 1−i
1−r−s−r s + i

1−r s

)∣∣
r i−1s j−1 j ≤ n −1(

1−i
1−τr + 2i

(τ+1)−(τ−1)r

)∣∣∣
r i−1

j = n

)

= 1+ i

τ+ i

(
τ+1

τ−1

)n−1

det(Qn +Pn)
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where

(Pn)i , j =


( i
1−r s

)∣∣
r i−1s j−1 = iδi , j j ≤ n −1(

i
1− τ−1

τ+1 r

)∣∣∣∣
r i−1

= i
(
τ−1
τ+1

)i−1
j = n

(Qn)i , j =


( 1−i
1−r−s−r s

)∣∣
r i−1s j−1 j ≤ n −1(

1−i
2 (τ+1)
1−τr

)∣∣∣∣
r i−1

j = n
.

Now the matrix Pn differs from the matrix i In only in its last column and its determinant is
therefore easily obtained as

det(Pn) = in−1(Pn)n,n = in
(
τ−1

τ+1

)n−1

and we deduce

Ẑ 20VBC 2 (τ) = 1+ i

τ+ i
det(i In + i QnP−1

n ) .

Using

i(P−1
n )i , j =


δi , j j ≤ n −1

−(
τ+1
τ−1

)n−i
i ≤ n −1, j = n(

τ+1
τ−1

)n−1
i = n, j = n

,

we get i (QnP−1
n )i , j = (Qn)i , j for j < n, while

i (QnP−1
n )i ,n =

(
1−i

2 (τ+1)

1−τr

)∣∣∣∣∣
r i−1

(
τ+1

τ−1

)n−1

−
n−1∑
k=1

(
1− i

1− r − s − r s

)∣∣∣∣
r i−1sk−1

(
τ+1

τ−1

)n−k

=
(
τ+1

τ−1

)n−1
(

1−i
2 (τ+1)

1−τr
− 1− i

1− r − τ−1
τ+1 − r τ−1

τ+1

)
︸ ︷︷ ︸

=0

∣∣∣∣
r i−1

+
∞∑

k=n

(
τ+1

τ−1

)n−k (
1− i

1− r − s − r s

)∣∣∣∣
r i−1sk−1

= (1− i)

( ∞∑
k=n

(
τ+1

τ−1

)n−k (1+ r )k−1

(1− r )k

)∣∣∣∣∣
r i−1

= 1− i

2

(
1+ r

1− r

)n−1 (
1+τ

1−τr

)∣∣∣∣
r i−1

.

We end up with the expression

Ẑ 20VBC 2 (τ) = 1+ i

τ+ i
det

1≤i , j≤n

((
i

1− r s
+ 1− i

1− r − s − r s
+ sn−1

(
1+ r

1− r

)n−1 {
1− i

2

1+τ
1−τr

− 1− i

1− r

})∣∣∣∣
r i−1s j−1

)

where the last term corrects the wrong value 1−i
1−r−s−r s

∣∣
r i−1sn−1 =

(1+r
1−r

)n−1 1−i
1−r

∣∣
r i−1 coming from

the second term to the correct value above. As before, we may multiply the function inside
the determinant by (1+i r )(1−s)

(1−r )(1+i s) without changing the value of the determinant. Using again the
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identity (5.4), we obtain

Ẑ 20VBC 2 (τ) = 1+ i

τ+ i
det

1≤i , j≤n

((
1

1− r s
+ 2r

(1− r )(1− r − s − r s)

+sn−1
(

1+ r

1− r

)n−1 (1+ i r )(1− �s)

(1− r )(1+ i�s)

(
1− i

2

1+τ
1−τr

− 1− i

1− r

))∣∣∣∣
r i−1s j−1

)
= 1+ i

τ+ i
det

1≤i , j≤n

(
Ki , j

)
Ki , j :=

(
1

1− r s
+ 2r

(1− r )(1− r − s − r s)
+ sn−1 (1+ r )n−1

(1− r )n

1+ ir

1+ i

{
1+τ

1−τr
− 2

1− r

})∣∣∣∣
r i−1s j−1

(5.6)

where the crossed out �s play no role and were thus removed. In this form, the expression is
now very close to that of Theorem 4.2 for T4,2(An ;τ), namely (with a trivial shift by 1 of the
indices)

T4,2(An ;τ) = det
1≤i , j≤n

(
Li , j

)
Li , j :=

(
1

1− r s
+ 2r

(1− r )(1− r − s − r s)
+ sn−1 (1+ r )n−1

(1− r )n
r

{
(1+τ)

1−τr
− 2

1− r

})∣∣∣∣
r i−1s j−1

.
(5.7)

The identification of the two formulas follows from the following simple remark:

Lemma 5.3. We have the identities

(5.8)

Ki , j = Li , j j < n

Ki ,n = τ+ i

1+ i
Li ,n + τ−1

1+ i

n−1∑
j=1

Li , j j = n

Proof. The first statement for j < n is by definition. For j = n, we use

Li , j =


(
r j−1 + (1+r ) j−1

(1−r ) j
2r

1−r

)∣∣∣
r i−1

j ≤ n −1(
r n−1 + (1+r )n−1

(1−r )n
(1+τ)r
1−τr

)∣∣∣
r i−1

j = n
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so that

τ+ i

1+ i
Li ,n + τ−1

1+ i

n−1∑
j=1

Li , j =
(
τ+ i

1+ i
r n−1 + τ−1

1+ i

1− r n−1

1− r

+τ+ i
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(1+ r )n−1

(1− r )n

(1+τ)r

1−τr
− τ−1
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1− (1+r
1−r

)n−1

1− r
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=
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1+ i
− τ−1

1+ i

1

1−�r
)
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)
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(1− r )n
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r i−1

=
(
r n−1 +

(
τ+ i

1+ i

(1+τ)r

1−τr
+ τ−1

1+ i

)
(1+ r )n−1

(1− r )n

)∣∣∣∣
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=
(
r n−1 +

(
1+ ir

1+ i

(
1+τ

1+τr
− 2

1− r

)
+ 2r

1− r

)
(1+ r )n−1

(1− r )n

)∣∣∣∣
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= Ki ,n .

Here again, we removed the crossed out�r as it plays no role for i ≤ n and we used the easily
checked identity

τ+ i

1+ i

(1+τ)r

1−τr
+ τ−1

1+ i
= 1+ ir

1+ i

(
1+τ

1+τr
− 2

1− r

)
+ 2r

1− r
.

The lemma follows. �

With the identities (5.8), the expression (5.6) is transformed into (5.7) by a simple expan-
sion of the determinant with respect to the last column. This completes the proof that the
expression (5.6) for Ẑ 20VBC 2 (τ) matches that (5.7) for T (2)

4 (An ;τ). This amounts precisely to the
second statement of Theorem 5.2.

To compute Ẑ 20VBC 1 (τ), we first note that the expression (5.7) for Ẑ 20VBC 2 (τ) can be substi-
tuted in (3.2) to get

Ẑ 6V[
1,
p

2,1
](σ) = det

1≤i , j≤n

 (
1

1−r s + 2r
(1−r )(1−r−s−r s)

)∣∣∣
r i−1s j−1

j ≤ n −1(
1

1−r s + 2σr
(1−(2σ−1)r )(1−r−s−r s)

)∣∣∣
r i−1s j−1

j = n
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FIGURE 17. Left: DWBC3 boundary conditions for an n ×n grid for n = 5. All outer
horizontal edges along the West boundary, as well as all vertical edges along the South
boundary are occupied by paths. All other outer edges are empty. Right: This gives rise
to configurations of n = 5 non-intersecting osculating Schröder paths, such as that de-
picted.

for σ= 1+τ
2 . The partition function Ẑ 20VBC 1 (τ) is then obtained via (3.3), which yields

Ẑ 20VBC 1 (τ) = 2τ

1+τ det
1≤i , j≤n

 (
1

1−r s + 2r
(1−r )(1−r−s−r s)

)∣∣∣
r i−1s j−1

j ≤ n −1(
1

1−r s + (1+τ)r
(1−τr )(1−r−s−r s)

)∣∣∣
r i−1s j−1

j = n


+ 1−τ

1+τ det
1≤i , j≤n

((
1

1−r s + 2r
(1−r )(1−r−s−r s)

)∣∣∣
r i−1s j−1

j ≤ n −1( 1
1−r s

)∣∣
r i−1s j−1 j = n

)

= det
1≤i , j≤n

 (
1

1−r s + 2r
(1−r )(1−r−s−r s)

)∣∣∣
r i−1s j−1

j ≤ n −1(
2τ

1+τ
(

1
1−r s + (1+τ)r

(1−τr )(1−r−s−r s)

)
+ 1−τ

1+τ
1

1−r s

)∣∣∣
r i−1s j−1

j = n


= det

1≤i , j≤n

 (
1

1−r s + 2r
(1−r )(1−r−s−r s)

)∣∣∣
r i−1s j−1

j ≤ n −1(
1

1−r s + 2τr
(1−τr )(1−r−s−r s)

)∣∣∣
r i−1s j−1

j = n

 .

We recognize the expression of Theorem 4.2 for T (1)
4 (An ;τ) (up to a trivial shift in the indices)

so that the first statement of Theorem 5.2 follows.

6. OTHER BOUNDARY CONDITIONS

In this section, we explore other possible DWBC-like boundary conditions. One of them,
which we call DWBC3, leads to a striking conjecture.
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6.1. The 20V model with DWBC3. We consider the following variant of the DWBC1,2 of Sec-
tion 2 for the 20V model. We still consider a square grid of size n ×n in the square lattice with
the second diagonal edge on each face. The boundary conditions on the external edge orien-
tations are now as follows: (i) all horizontal external edges point towards the square domain
(ii) all vertical external edges point away from the square domain (iii) all diagonal external
edges points towards the NW.

In the osculating Schröder path formulation, we have paths entering the grid on each hori-
zontal external edge on the West boundary, and exiting the grid on each vertical external edge
along the South boundary (see Fig. 17 for an illustration).

The 20V-DWBC3 configurations are easily counted by use of transfer matrices, giving rise
to the sequence Bn of (1.2). Remarkably, these numbers appear in the context of yet another
enumeration problem of domino tilings, which we describe now.

6.2. Domino tilings of a triangle and the DWBC3 conjecture.

6.2.1. Domino tilings of a square. Let us consider the number of tilings of a (2n)× (2n) square
domain Sn of the square lattice by means of rectangular dominos of size 2×1 and 1×2. This is
part of the archetypical dimer problems solved by Kasteleyn and Temperley and Fisher [Kas63,
TF61]. If T (Sn) denotes this number, we have:

T (Sn) =
n∏

i=1

n∏
j=1

{
4cos2

(
i

2n +1

)
+4cos2

(
j

2n +1

)}
.

It was later observed that:

(6.1) T (Sn) = 2n b2
n

with

bn = ∏
1≤i< j≤n

{
4cos2

(
i

2n +1

)
+4cos2

(
j

2n +1

)}
= 1, 3, 29, 901, ...

where we recognize the first terms of the sequence Bn (1.2) above. The asymptotics of the
numbers bn for large n read:

lim
n→∞

1

n2
Log(bn) = 2

π
G = .583121808... ,

where G is the Catalan constant, G = 1− 1
32 + 1

52 − 1
72 +·· · .

6.2.2. Domino tilings of a triangle. A combinatorial proof of the integrality of bn due to Patcher
[Pat97] shows in fact that the sequence bn enumerates domino tilings of a “triangle" Tn (half
of the square Sn), with the following shape of an inverted staircase with a first step of size 1,
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and all other steps of size 2:

2

2n

2n−1

2

1

In our notations, we write:

bn = T (Tn) .

From a practical point of view, it is interesting to recover the first terms of the sequence bn =
T (Tn) from standard combinatorial techniques easily amenable to generalizations. As before,
the enumeration of domino tilings of Tn is easily performed by means of non-intersecting
Schröder paths, now with steps (1,1), (1,−1) and (2,0) as shown below:

(a) (b) (c)

2n−1

Here we have first bi-colored the underlying square lattice, considered a tiling configuration
(a), and used the dictionary (4.1) mapping each domino to a path step. We have displayed two
equivalent path formulations (b) and (c) of the same domain (upon reflection and rotation by
90◦). In both cases, the paths are non-intersecting Schröder paths with fixed ends as shown,
and constrained to remain within a strip of height 2n−1 (we have added a trivial path of length
0 in the case (b) for simplicity).

The path configurations are best enumerated by means of the LGV formula. Let S(L)
a,b(M)

denote the partition function of a single Schröder path (with steps (1,1), (1,−1) and (2,0)),
starting at point (0, a), ending at point (M ,b) and constrained to remain in the strip 0 ≤ y ≤ L.
Then the partition function for domino tilings of Tn is:

T (Tn) = det
0≤i , j≤n−1

(
S(2n−1)

2i ,2 j (2 j )
)
= det

0≤i , j≤n−1

(
S(2n−1)

2i ,2 j+1(2 j +1)
)
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n−k−1

n−1

k

FIGURE 18. Left: Extension of the DWB3 boundary on a (n +k)×n rectangular grid
in osculating Schröder path representation: due to non-intersection constraints the
effective domain is a pentagon of shape (n − 1)×k × (n −k − 1)× (n +k − 1)× (n − 1).
Right: A sample path configuration.

corresponding respectively to situations (b) and (c).
The single path partition function S(L)

a,b(M) may easily be generated from the following re-
cursion relation:

S(L)
a,b(M) =

{
0 if a < 0 or a > L or b < 0 or b > L,

S(L)
a,b(M −2)+S(L)

a−1,b(M −1)+S(L)
a+1,b(M −1) otherwise,

together with the initial conditions S(L)
a,b(−1) = 0 and S(L)

a,b(0) = δa,b when a,b ∈ [0,L] and 0
otherwise. This allows to recover the first terms of the sequence bn .

6.2.3. The DWBC3 conjecture. In view of the matching of the first values of Bn with the se-
quence bn , we are led to the following:

Conjecture 6.1. We conjecture that the number of configurations of the 20V model with DWBC3
boundary conditions on an n×n square grid is the same as the number of domino tilings of the
triangle Tn .

We have checked this conjecture numerically up to size n = 6.

6.3. Pentagonal extensions of the DWBC3 conjecture.
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6.3.1. The 20V-DWBC3 model on a pentagon. We now consider a variant of the model 20V-
DWBC3 on a “pentagon" Pn,k of the original triangular lattice. Starting from a rectangular
grid of shape (n +k)×n, we impose that the n top external horizontal edges along the West
boundary be occupied by paths, while the k bottom ones be empty (vacancies), and impose
the same condition as for DWBC3 on vertical external edges along the South boundary, while
all other external edges are unoccupied (see Fig. 18 for an illustration with n = 6 and k = 3).
Due to the non-intersection constraint which freezes some portions of the paths, the effective
domain reduces to a pentagon of shape6 (n−1)×k×(n−k−1)×(n+k−1)×(n−1) (see Fig. 18).
This holds for k < n−1. For k ≥ n−1, the effective domain degenerates into a tetragon of shape
(n −1)× (n −1)× (2n −2)× (n −1) independent of k, which can be viewed as half of a regular
hexagon on the original triangular lattice.

The number pn,k of osculating Scröder path configurations on Pn,k is easily computed by
transfer matrix techniques. The first few are listed below for n = 1,2, ...,6

pn,0 = 1, 3, 29, 901, 89893, 28793575 ...

pn,1 = 1, 4, 56, 2640, 411840, 210613312 ...

pn,2 = 1, 4, 60, 3268, 628420, 417062340 ...

pn,3 = 1, 4, 60, 3328, 675584, 495222784 ...

pn,4 = 1, 4, 60, 3328, 678912, 507356160 ...

pn,5 = 1, 4, 60, 3328, 678912, 508035072 ...(6.2)

As expected, we note a saturation property of pn,k which becomes independent of k for
k ≥ n −1.

6.3.2. Tilings of extended triangles. We start from the triangular domainTn of Sect. 6.2.2 above,
and consider the following extensions Tn,k , k = 0,1, ...,n. Focussing on the non-intersecting
Schröder path description of the tiling configurations given by the example (c) above, Tn,k

corresponds to raising by k vertical steps the top border of the domain accessible to the paths,
while keeping identical starting and endpoints. In practice, for k ≤ n − 1, the new effective
domain Tn,k accessible to the Schröder paths takes the following shape (represented here for

6Note the distinction between the notion of grid and that of shape: the size of a shape is measured in actual
length of its sides, which is one less than the measure on a grid.
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n = 4) which can be viewed as Aztec-like extensions of Tn :

T4,0 T4,1 T4,2 T4,3
As a result, the number of configurations augments, until it reaches a threshold at k = n −1,
since, for k ≥ n −1, raising the top border further no longer affects the number of configura-
tions as the paths never reach this height.

The counting of tiling configurations is readily performed by use of the LGV formula for the
corresponding Schröder paths:

T (Tn,k ) = det
0≤i , j≤n−1

(
S(2n−1+k)

2i ,2 j+1 (2 j +1)
)

where we have simply raised the top boundary by k. As a result, we find perfect agreement
between the numbers pn,k and T (Tn,k ).

6.3.3. The extended DWBC3 conjecture. The remarkable coincidence between the numbers in
Sections 6.3.1 and 6.3.2 leads to the following:

Conjecture 6.2. We conjecture that the number of configurations of the 20V model with ex-
tended DWBC3 boundary conditions on a pentagon Pn,k is equal to the number of domino
tilings of the extended triangle Tn,k for all n,k.

The conjecture has been checked numerically for n up to 6 and arbitrary k.

6.4. More Domain Wall Boundary Conditions with no conjecture. We have considered some
other variants of the DWBC boundary conditions, but found no conjecture for those. First we
studied the 20V with the DWBC4 illustrated in Fig. 19 for the osculating Schröder path formu-
lation, in which all horizontal and vertical external edges of a square n×n grid are occupied by
paths, all the other external edges being unoccupied7. The transfer matrix calculation leads to

7We use here the denomination DWBC4 for simplicity although the boundary conditions do not infer the
creation of domain walls in general, as exemplified by the trivial configuration where all horizontal (resp. vertical,
diagonal) arrows point East (resp. South, Northwest).
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FIGURE 19. Left: 20V-DWBC4 on an n×n square grid: all horizontal and vertical exter-
nal edges are occupied by paths, while diagonals are empty. Right: A sample osculating
Schröder path configuration.

ba

c

b

c

a

FIGURE 20. The hexagonal extension of 20V-DWBC4 obtained on a rectangular (a +
b+1)×(b+c+1) grid by imposing b vacancies on the bottom West and top East bound-
aries.

the following sequence:

(6.3) 1, 3, 59, 7813, 6953685, 41634316343...

for which we have found no other interpretation.
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b,c a=0 1 2 3 4 5 6
0,1 1 3 8 21 55 144 377
0,2 1 8 59 415 2874 19810 136358
1,1 3 11 41 153 571 2131 7953
0,3 1 21 415 7813 143336 2598735 46881130
1,2 8 85 959 10934 124869 1426389 16294360
2,1 5 23 103 456 2009 8833 38803
0,4 1 55 2874 143336 6953685 331859360 15697347566
1,3 21 604 19018 615405 20055060 654666505 21378877706
2,2 20 333 5331 83821 1305844 20250090 313317426
3,1 7 39 201 1000 4888 23673 114087
0,5 1 144 19810 2598735 331859360 41634316343 5164420164680
1,4 55 4194 355234 31391724 2816672309 254000932538 22940968768675
2,3 76 4151 213173 10696445 530068706 26081095911 1278122145554
3,2 36 881 18859 379449 7391755 141473217 2681264915
4,1 9 59 343 1880 9976 51944 267385

TABLE 1. The first numbers Na,b,c for a ∈ [0,6], b ≥ 0, c > 0 and b + c ≤ 5.

An easy generalization consists in considering arbitrary rectangular grids of size (a + b +
1)× (b + c + 1), and imposing that all vertical external edges be occupied while only the top
a + 1 horizontal ones on the West boundary, and bottom a + 1 horizontal ones on the East
boundary be occupied (see Fig. 20). Equivalently the bottom b horizontal external edges on
the West boundary and the top b ones on the East boundary are empty. This leads to numbers
Na,b,c of configurations.

The case b = 0 corresponds to rectangular grids of arbitrary size (a +1)× (c +1), for which
the boundary condition DWBC4 still makes sense. In particular, N (n −1,0,n −1) reproduces
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b−1

a

1

b

b−1

b−1

b

b

0
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2a+b+1

b−1

3 1

b−1
2a+2

2a+2

3

2

2c+1

b−1

b−1

b−1

FIGURE 21. Top: the number of 20V-DWBC4 configurations on the hexagon (a,b,c =
1) (left) is conjecturally identified with the number of domino tilings of a domain (cen-
ter), in bijection with configurations of a single Schröder path (right) from (0,1) to
(2a + b + 1,b), constrained to stay on a strip 0 ≤ y ≤ b + 1. Bottom: the number of
20V-DWBC4 configurations on the hexagon (a = 0,b,c) (left) is conjecturally identified
with the number of domino tilings of a domain (center), in bijection with configura-
tions of a single Schröder path (right) from (0,0) to (2c +b,b), constrained to stay on a
strip 0 ≤ y ≤ b.

the above sequence (6.3). Note also that Na,b,0 = 1, as there is a unique, fully osculating, con-
figuration in that case, as illustrated for (a,b,c) = (2,3,0) below:

We have listed some of the non-trivial numbers Na,b,c in Table 6.4. So far we have identified
conjecturally only the numbers Na,b,1 and N0,b,c as also counting the domino tilings of plane



46 PHILIPPE DI FRANCESCO AND EMMANUEL GUITTER

domains depicted in Fig. 21. The latter are easily enumerated by the configurations of a single
Schröder path with fixed ends, and constrained to remain within a strip, as shown on the right.
More precisely, we have, with the notation of Section 6.2.2:

Conjecture 6.3.

Na,b,1 = S(b+1)
1,b (2a +b +1), N0,b,c = S(b)

0,b(2c +b).

7. ALTERNATING PHASE MATRICES

We may reformulate the 20V models with DWBC1,2,3 in terms of Alternating Phase Matrices
(APM), which generalize the Alternating Sign Matrices (ASM), with entries among 0 and the
sixth roots of unity, and with specific alternating conditions.

7.1. From 20V configurations to APM. In the case of the 6V model with DWBC, one possible
construction of ASM is by viewing the six possible vertex configurations as “transmitters" or
“reflectors" of the orientation of the arrows when going say from left to right and from top to
bottom. A vertex either reflects or transmits both directions as a consequence of the ice rule.
Starting from a 6V-DWBC configuration, we map vertices to entries of the ASM built according
to the following rules:

(1) If the vertex is a transmitter, the entry of the ASM is 0;
(2) If the vertex is a reflector, the entry is +1 if the horizontal arrows point inwards, and −1

otherwise.

In the case of the 20V model, each vertex is now viewed as a triple of reflectors or transmit-
ters along the horizontal, vertical and diagonal directions, say going from NW to SE. To each
vertex of a 20V-DWBC1,2 or 3 configuration, we may assign a triple (h, v,d) of elements of
{0,1,−1} where h, v and d indicate the transmitter of reflector state of the horizontal, vertical
and diagonal directions respectively, with the following rules:

(1) If the vertex is a transmitter along a direction, the corresponding entry of the triple is 0
(2) If the vertex is a reflector along a direction, the corresponding entry is +1 if the arrows

point inwards, and −1 otherwise.

For each triple at a vertex, we have the condition h +d + v = 0 as a consequence of the ice
rule, which imposes that either the vertex is a transmitter in all three directions (and then
h = d = v = 0), or it is a transmitter in only one direction and a reflector in the other two,
and in this latter case, one reflected pair points inwards and the other outwards, so that the
corresponding entries of the triple have zero sum. This gives rise to seven possible triples: the
triple (0,0,0) encountered for 8 of the 20 vertices and six non-zero possible triples, according
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to the dictionary below in terms of osculating Schröder paths:

(1,−1,0) (−1,1,0) (1,0,−1) (−1,0,1) (0,−1,1) (0,1,−1)(7.1)

1 −1 −ω ω −ω2 ω2(7.2)

We have also indicated an alternative bijective coding using the sixth roots of unity with ω =
e2iπ/3, the weight of a triple (h, v,d) being bijectively mapped onto the complex number−ωh+
ω2v (which includes the coding (0,0,0) 7→ 0). This allows to assign to each 20V configuration
of size n with DWBC1,2 or 3 an n ×n matrix with elements either 0 or in the set of sixth roots
of unity: we shall call such matrices Alternating Phase Matrices (APM) of type 1,2 or 3 respec-
tively. Note that all the ASMs are realized as APMs (with only ±1 non-zero entries), in all three
types. To see why, start from the osculating path formulation of ASM on the square grid, and
then superimpose diagonal entirely empty or entirely occupied lines, according to the diago-
nal external edge states pertaining to the chosen DWBC. This generates APMs with entries 0, 1
and −1 only (corresponding to the first two columns in the figure above) equal to those of the
corresponding ASMs.

Alternatively, we may understand the sixth root of unity weights as a weighting of the turns
taken by individual paths, with the rule that the total weight at a vertex is the sum of the turning
weights of all the paths visiting it. More precisely, the expression −ωh+ω2v for vertex weights
may be understood as the sum over all two-step paths p = (pi n , pout ) visiting the vertex of
turning weights equal to the variation turn(p) := η(pout )−η(pi n) of an edge variable η with
the following dictionary:

0

0

ωω

−ω2

−ω2{
{
out

in

where we have indicated the value of η for each in/out edge. With this dictionary, a path which
does not turn (transmitter direction) receives the turning weight 0 while we have the follow-
ing assignment of turning weight for respectively horizontal, diagonal and vertical incoming
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paths (we have indicated the direction of travel of each path by a straight arrow):

1 −ω −ω2 ω −1 ω2(7.3)

It is a straightforward exercise to check that all the weights of (7.2) are indeed the sums of turn-
ing weights of all their two-step paths (this is indeed guaranteed by the mapping (h, v,d) 7→
−ωh +ω2v). For instance, the fifth weight from left on the bottom line is 1+ω=−ω2, namely
equal to the sum of the first and fourth weights on (7.3). Moreover, a useful consequence of
the definition is that the turning weights of a given path p = (p0, p1, . . . , pk ) add up along the
path into a telescopic sum equal to

(7.4) turn(p) :=
k∑
`=1

turn((p`−1, p`)) = η(pk )−η(p0) = turn((p0, pk ))

depending only on the orientations of its first and last edges.

7.2. APM of type 1, 2 and 3: definitions and properties. The matrix triple entries (h, v,d)
coming from 20V configurations are further constrained by reflection/transmission proper-
ties along the horizontal, vertical and diagonal directions. In all three cases of DWBC1,2,3 all
the external horizontal arrows point towards the grid and all the external vertical arrows point
away from it. If we follow any horizontal line from left to right, the first arrow on the West side
points to the right, and must be reflected at least once as it points left when it exits on the East
side. It must in fact be reflected an odd number of times. The corresponding entries h j of the
triples associated to the vertices j = 1,2, ...,n visited from left to right must therefore alternate
between 1,−1,1, ..,1 whenever they are non-zero. The same reasoning for the vertical direc-
tions leads, from top to bottom, to an alternation of the entries vi in each column between
−1,1,−1, ...,−1 whenever non-zero.

Finally a last alternance condition holds along the diagonal directions, but is different for
DWBC1,2 and 3. For DWBC3, as all external diagonal edges are empty, the entries di along
each diagonal visited from top to bottom, must alternate between −1,1,−1, ...,1 when they
are non-zero: note that there is indeed always an even, possibly zero number of reflectors as
the arrows at both ends point towards Northwest. For DWBC1, recall that the external diago-
nal edges are occupied in the lower triangular part and empty in the strictly upper triangular
part of the n ×n grid. As a consequence, the entries di (labeled by, say the row index i in in-
creasing order) along each diagonal in the strictly upper triangular part obey the same rule as
in DWBC3, namely alternate between −1,1,−1, ...,1 when they are non-zero, but the entries
di along each diagonal in the lower triangular part obey the opposite rule, namely alternate
between 1,−1,1, ...,−1 when they are non-zero. Finally, for DWBC2 the entries di along each
diagonal in the upper triangular part alternate between −1,1,−1, ...,1 when they are non-zero,
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and the entries di along each diagonal in the strictly lower triangular part obey the opposite
rule, namely alternate between 1,−1,1, ...,−1 when they are non-zero.

These rules determine entirely the sets of APM of type 1,2,3 whose definition is summarized
below.

Definition 7.1. We define the sets of n ×n Alternating Phase Matrices of types 1,2,3 as n ×n
arrays of triples of the form (hi , j , vi , j ,di , j ) for 1 ≤ i , j ≤ n, where hi , j , vi , j ,di , j ∈ {0,1,−1} satisfy
hi , j + vi , j +di , j = 0 and are moreover subject to the following conditions for all types:

(1) There is at least one non-zero variable hi , j in each row i = 1,2, ...,n, and at least one
non-zero variable vi , j in each column j = 1,2, ...,n,

(2) Along each row i = 1,2, ...,n, the non-zero variables hi , j must alternate between 1,−1,1,
...,1 when j ranges from 1 to n,

(3) Along each column j = 1,2, ...,n, the non-zero variables vi , j must alternate between
−1,1,−1, ...,−1 when i ranges from 1 to n,

and to three different conditions (4.1), (4.2), (4.3) corresponding to each type 1,2,3:

(4.1) Along each diagonal8 ` ∈ [1−n,n −1], the non-zero variables di ,i+` must alternate be-
tween −1,1,−1, ...,1 if ` > 0 and 1,−1,1, ...,−1 if ` ≤ 0 when i ranges from Max(1,1−`)
to Min(n,n −`).

(4.2) Along each diagonal ` ∈ [1−n,n −1], the non-zero variables di ,i+` must alternate be-
tween −1,1,−1, ...,1 if ` ≥ 0 and 1,−1,1, ...,−1 if ` < 0 when i ranges from Max(1,1−`)
to Min(n,n −`).

(4.3) Along each diagonal ` ∈ [1−n,n −1], the non-zero variables di ,i+` must alternate be-
tween −1,1,−1, ...,1 when i ranges from Max(1,1−`) to Min(n,n −`).

APM entries are expressible ubiquitously in terms of either the above defining triples, or
equivalently zero or sixth roots of unity according to the dictionaries (7.1-7.2).

Proposition 7.2. The n×n APM of types 1,2,3 are in bijection with respectively the 20V-DWBC1,2,3
on an n ×n grid.

8Here we label the diagonal from 1−n to n − 1 from top to bottom, as opposed to the spectral parameter
labelling tk , k = 1,2, . . . ,2n −1 from bottom to top. The correspondence is k = n −`.



50 PHILIPPE DI FRANCESCO AND EMMANUEL GUITTER

Example 7.3. As a illustration the 5×5 APM of types 1,2 and 3 corresponding to the configura-
tions depicted respectively in Figs. 1, 2 and 17 read:

7→


0 0 −ω 0 0
0 0 1 −ω2 0

−ω2 −ω2 0 0 1
0 0 −ω 0 0
0 0 −ω 0 0



7→


0 0 −ω 0 0
0 0 −ω 0 0
1 0 0 −ω2 −ω2

0 −ω2 1 0 0
0 0 −ω 0 0



7→


0 1 0 0 0
1 0 0 0 0
−ω 0 0 0 0
ω2 0 0 −ω 0
1 ω −ω2 1 −ω2



We note that the first and second APMs of respective types 1 and 2 are exchanged under a rota-
tion by 180◦, which matches the fact that the corresponding 20V configurations are also inter-
changed under the same transformation.

We conclude with a simple property satisfied by all APMs introduced so far.

Proposition 7.4. APMs A = (ai , j )1≤i , j≤n of any type 1, 2 or 3, when expressed in terms of sixth
roots of unity, have the following property:

n∑
i , j=1

ai , j = n .

Proof. We use the interpretation of weights in terms of turning weights for the paths (7.3).
For each path p in the osculating Schröder path configuration, recall the quantity turn(p)
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(7.4) defined as the sum over its turning weights. Then it is clear that the desired quantity is∑n
i , j=1 ai , j = ∑

p turn(p), where the sum extends over all the paths in the configuration. Next,
we note that irrespectively of the type of DWBC, all paths have the following property:

(1) each path starting with a horizontal external edge on the West boundary ends with a
vertical edge on the South boundary (call these HV paths). From (7.4), these paths have
a turning weight turn(p) =−ω2 −ω= 1.

(2) each path starting with a diagonal external edge on the West boundary ends with a
diagonal edge on the South boundary. From (7.4), these paths have a turning weight
turn(p) = 0−0 = 0.

The Proposition follows from the fact that there are always exactly n HV paths in all configu-
rations. �

7.3. Other APMs. Using the same dictionaries as in the previous sections, we now define APM
of type 4 corresponding to 20V-DWBC4 of Section 6.4.

Definition 7.5. We define APM of type 4 as n ×n arrays of triples of the form (hi , j , vi , j ,di , j )
for 1 ≤ i , j ≤ n, where hi , j , vi , j ,di , j ∈ {0,1,−1} and hi , j + vi , j +di , j = 0, moreover subject to the
following conditions:

(1) Along each row i = 1,2, ...,n, the non-zero variables hi , j must alternate between 1,−1,1,
...,−1 when j ranges from 1 to n,

(2) Along each column j = 1,2, ...,n, the non-zero variables vi , j must alternate between
1,−1,1, ...,−1 when i ranges from 1 to n,

(3) Along each diagonal ` ∈ [1−n,n−1], the non-zero variables di , j must alternate between
−1,1,−1, ...,1 when i ranges from Max(1,1−`) to Min(n,n −`).

Proposition 7.6. The n ×n APM of type 4 are in bijection with the configurations of the 20V-
DWBC4 model on an n ×n grid.

In particular, the zero matrix is an APM of type 4, which corresponds to all vertices being
transmitters. The APM of type 4 are indeed very different from those of types 1,2,3: we note
in particular that ASM do not form a subset of APM of type 4, as the DWBC4 is incompatible
with the DWBC of the underlying square lattice leading to ASM9. Moreover, Proposition 7.4 no
longer holds, and is replaced by

Proposition 7.7. For Any APM A = (ai , j )1≤i , j≤n of type 4, when expressed in terms of sixth roots
of unity, we have the following property:

n∑
i , j=1

ai , j = 0

9This echoes the previous remark that DWBC4 are not really domain wall inducing.
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Proof. We use the same argument as in the proof of Proposition 7.4. All n paths entering from
the top must exit on the right. Each of them has a turning weight ω− (−ω2) =−1. All n paths
entering from the left must exit on the bottom. Each of them has turning weight −ω2−ω=+1.
The total turning weight is therefore n −n = 0. �

We also have the following refined sum rules:

Proposition 7.8. For Any APM A = (ai , j )1≤i , j≤n of type 4, when expressed in terms of sixth roots
of unity, we have the following properties:

n∑
j=1

ai , j ∈ω2Z,
n∑

i=1
ai , j ∈ωZ,

Min(n,n−`)∑
i=Max(1,1−`)

ai ,i+` ∈Z .

Proof. We use the fomulation of the matrix entries ai , j as the sum of turning weights of all
paths visiting the vertex i , j . Focussing on a given row i of the matrix, the horizontal occupied
edges form a union of segments of edges belonging each to a different path: [a0, a1], [a2, a3],...,
[a2k−2, a2k−1] with k > 1, a0 = 0 ≤ a1 ≤ ·· · ≤ a2k−2 ≤ a2k−1 = n + 1. Inside each segment all
vertices are transmitters, with turning weights 0. All the junctures a1, a2, ..., a2k−2 are turning
points. Inspecting the possibilities of local configurations of paths through these points, there
are two possibilities of exiting the row at each a j for odd j < 2k −1:

1 −ω

and two possibilities to enter the row at each a j for even j > 0:

−1 ω

Let θ j denote the corresponding turning weight, with θ j ∈ {1,−ω} for odd j and θ j ∈ {−1,ω} for
even j . Summing over all turning weights along the row i gives

∑n
j=1 ai , j = ∑k−1

j=1 (θ2 j−1 +θ2 j ):
this includes double and also triple osculations, as the latter must have a transmitter diagonal
which does not affect the turning weight. The quantity θ2 j−1 +θ2 j may take only the values:
1− 1 = 0, 1+ω = −ω2, −ω− 1 = ω2 and −ω+ω = 0, all in ω2Z, and the first assertion of the
Proposition follows. The second and third ones follow from a similar argument. �
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Example 7.9. As a illustration, the 6×6 APM of type 4 corresponding to the configuration on
the left in Fig. 19 reads:

7→



−ω ω2 ω2 ω2 −1 0
0 1 −ω2 0 ω 0
0 −ω −1 −ω 0 −1
0 0 −ω2 0 1 ω

ω2 ω2 ω2 −ω 0 ω

1 −ω2 −ω2 −ω2 ω −ω2



The sum rules of Props.7.7 and 7.8 are easily checked. We find row sums: 4ω2, −2ω2, 2ω2, −2ω2,
3ω2, −5ω2, column sums: −2ω, −2ω, ω, −2ω, 2ω, 3ω, and diagonal sums: 1, 0, 0, 0, 1, 1, 1, −1,
−2, −1, 0, each adding up to 0.

8. DISCUSSION/CONCLUSION

In this paper we have considered the two-dimensional ice model of statistical physics on
the triangular lattice, the 20V model, from a combinatorial point of view. In particular, we
have defined analogs of the known DWBC for the 6V model, and investigated their possible
combinatorial content, using as much as possible the underlying integrable structure of the
models.

8.1. DWBC1,2: summary and perspectives. The first class of boundary conditions DWBC1,2
have displayed a remarkably rich combinatorial content. We have shown in particular that the
configurations of the models are equinumerous to the domino tilings of a quasi-square Aztec-
like domain with a central cross-shaped hole and with quarter-turn symmetry. We also pre-
sented a refined version, in the same spirit as the Mills-Robins-Rumsey conjecture [MRR86]
for DPP, fully proved in [BDFZJ12]. Note that this coincidence of (refined) partition functions is
still lacking a direct bijective interpretation. However, such a canonical bijection is not known
even for the ASM-DPP correspondence.

The 20V model presents interesting new features compared to the 6V model. Its osculating
path version involves Schröder paths with three different kinds of steps (horizontal, vertical,
diagonal). Note that the same paths, but with a stronger non-intersecting condition are in-
volved in the description of domino tilings of the holey square. It is easy to keep track say of
the diagonal steps when dealing with a single path (with a weight γ per diagonal step), as well
as when dealing with families of such non-intersecting paths (see Ref. [DFG19] for the prob-
lem of tiling Aztec rectangles with defects). The corresponding decoration is easy to imple-
ment in the holey square tiling problem (where γ is simply a weight for one kind of domino).
Unfortunately, it is easily checked that the partition functions of the 20V-DWBC1,2 and that
of domino tilings of the holey square no longer match for γ 6= 1. Besides, it turns out that
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weights incorporating a factor γ per diagonal step of path in the 20V model are non-longer
integrable in general, namely cannot be obtained by special choices of spectral parameters.
On the other hand, it would be interesting to find a weighting of the 20V model equivalent to
the γ-deformation of the tiling.

Another easily implementable natural weight in the particular context of the quarter-turn
symmetric domino tilings of the holey Aztec square is a weight θ per path in the formulation
as non-intersecting paths on a cone of Section 4. The suitably modified partition function
reads det(In +θMn) in the notations of Theorem 4.1: when evaluating the determinant via the
Cauchy-Binet formula, we indeed pick a factor θ per row of the chosen submatrix of Mn . It
would also be interesting to find a weighting of the 20V model that corresponds to this.

Finally, like in the DPP case [BDFZJ13], further refinements could in principle be derived,
by use of the Desnanot-Jacobi relation. We hope to return to these questions in future work.

8.2. The DWBC3 conjecture. Proving the DWBC3 conjecture 6.1 is the next challenge. Let us
mention that the partition function Z 20V BC 3 (n) of the 20V-DWBC3 model on an n×n grid, due
to the integrable nature of its weights, can be related to a partition function of the 6V model
on a 2n ×2n grid of square lattice, by unraveling the diagonal lines in a way similar to that of
Section 3.1.

More precisely, we start from the general DWBC3 partition function, with arbitrary Kagome
spectral parameters zi , w j , i , j = 1,2, ...,n and homogeneous tk = t , k = 1,2, ...,2n−1. First, we
note that the (n−1) bottom diagonal lines are “imprisoned" due to the alternating orientations
of external arrows on the West and South boundaries, and the corresponding lines cannot be
expelled like in the case of Section 3.1. The top n on the other hand could in principle be
disposed of in the same way as before. However, it proves more interesting to keep them and
to deform the lines in the manner illustrated in Fig. 22. The idea is to place the former nodes of
the sublattices 2 and 3 of the Kagome on square (sub-)lattices, still denoted by 2,3, and to form
artificial new nodes at the kissing between pairs of deformed diagonal lines, and positioned
on a square sublattice denoted by 4 (see Fig. 22 (b)). At these nodes, the kissing condition is
guaranteed by choosing vertex weights (a4,b4,c4) = (1,0,1), where the vanishing of the weight
b4 ensures the transmission of the arrow orientation from top to right and from left to bottom
for these artificially created vertices. By careful inspection of the vertex weights whenever
some tk = t is involved, we find that the weights for sublattices 2 and 3 may be expressed
(up to a global multiplicative factor q for sublattice 2 and q−1 for sublattice 3) with the same
definition as that used for the sublattice 1 of the Kagome lattice (or equivalently given by (3.7))
provided we change t → q2t in the definition of horizontal spectral parameters and t → q−2t
in the definition of the vertical ones (see Fig. 22 (c)). Remarkably, with these modified spectral
parameters and this very same unified definition, the 6V weights on the sublattice 4 would be

(8.1)
(

A(q2t , q−2t ),B(q2t , q−2t ),C (q2t , q−2t )
)= (q2 −q−2)t × (1,0,1) ,
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FIGURE 22. Starting from the 20V-DWBC3 model on an n ×n grid in its equivalent
Kagome lattice formulation (a), we deform the diagonal lines so as to form an interme-
diate square grid of size 2n ×2n (b) with four sublattices corresponding to the 3 origi-
nal sublattices 1,2,3 of the Kagome lattice indicated respectively with black squares (1),
empty circles (2), filled circles (3) plus an extra sublattice 4 of kissing points (circled),
including the top right kissing point with an added trivial corner oriented line. Thanks
to the equivalence to 6V weights indicated in (c), the model is finally reexpressed as a
staggered 6V model with appropriate spectral parameters (d).

which reproduce precisely the desired weights (a4,b4,c4) up to the proportionality factor µ=
(q2 − q−2)t . Otherwise stated, the weights on the four sublattices correspond (up to global
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factors 1, q , q−1 and µ−1 for sublattices 1,2,3,4 respectively) to 6V weights for a consistent set
of spectral parameters on the horizontal and vertical lines of a 2n ×2n grid.

The other spectral parameters zi and w j have remained unchanged in the process. Taking
them to the homoegeous 20V values zi = q6t and w j = q−6t , we obtain a new 6V model now
on a 2n ×2n grid, but with staggered boundary conditions and weights:

(a1,b1,c1) = (A(q6t , q−6t ),B(q6t , q−6t ),C (q6t , q−6t )) =µ (1,
p

2,1)

(a2,b2,c2) = q (A(q6t , q−2t ),B(q6t , q−2t ),C (q6t , q−2t )) = q3µ (
p

2,1,1)

(a3,b3,c3) = q−1 (A(q2t , q−6t ),B(q2t , q−6t ),C (q2t , q−6t )) = q−3µ (
p

2,1,1)

(a4,b4,c4) = (1,0,1) ,

respectively on the sublattices 1,2,3 (as in (2.7)) and 4. Recalling the choice of spectral param-
eter t (2.8), leading to µ3 = 1/2, to ensure that the original 20V weights are all 1, the net result
is a re-expression of the total number of configurations of the 20V-DWBC3 as:

Z 20V BC 3 (n) =µn2
(q3µ)n2

(q−3µ)n2
Z

6Vstaggered

W S (2n) = 1

2n2 Z
6Vstaggered

W S (2n) ,

where Z
6Vstaggered

W S (2n) denotes the partition function of the staggered 6V model on a 2n × 2n

grid, with weights (a,b,c) respectively equal to (1,
p

2,1), (
p

2,1,1), (
p

2,1,1) and (1,0,1) on the
sublattices 1,2,3,4, and with alternating external arrow orientations on the West and South
boundaries (indicated by the index W S), entering arrows on the East and outgoing arrows on
the North (as in Fig. 22(d)).

In fact, the same transformation could be performed on the 20V model on an n ×n grid
with arbitrary boundary conditions. In particular, this allows to re-express the partition func-
tion for the 20V-DWBC4 model as a staggered 6V model with the same definition of weights
as above, but with alternating external arrow orientations on all (West, South, East, North)
boundaries:

Z 20V BC 4 (n) = 1

2n2 Z
6Vstaggered

W SE N (2n) .

The same transformation for the DWBC1 20V model leads to an alternative re-expression as:

Z 20V BC 1 (n) = 1

2n2 Z 6Vstaggered (2n) ,

where the staggered 6V model has domain wall boundary conditions, i.e. all horizontal exter-
nal arrows pointing towards the domain, and all vertical external arrows pointing away from
the domain.

There are no known general determinantal formulas for the partition functions of the stag-
gered 6V model. However, the latter can be solved by use of algebraic Bethe Ansatz, so there
is some hope of transforming the relevant partition functions into some simpler objects. We
also leave this investigation to some future work.
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8.3. Symmetry classes. Among the many questions that remain, an interesting direction which
is similar to that in the case of 6V/ASM/Rhombus Tilings correspondences is the introduction
of symmetry classes, obtained by restricting to configurations with some specified symmetry.

Our problem allows for less possible symmetries than the original 6V one, as we have broken
the natural symmetries of the square domain in our choices of DWBC. Nevertheless, we have
identified two interesting symmetry classes for the DWBC1,2 models, one for DWBC3 and two
for DWBC4.

In osculating Schröder path language, the first symmetry, common to all DWBC1,2,3 and 4,
is simply the symmetry under reflection w.r.t. the first diagonal, which clearly respects all four
choices of boundary conditions. In the APM language (with 0 and sixth root of unity entries),
this symmetry amounts, for the APM A, to the condition:

A∗
n+1− j ,n+1−i = Ai , j (i , j = 1,2, ...,n) ,

where the complex conjugation interchangesω andω2. We denote the APMs having this sym-
metry by Symmetric Alternating Phase Matrices (SAPM), which come in four types.

The second symmetry is more subtle and applies only to DWBC1 and 2. It is the com-
position of a reflection w.r.t. the second diagonal and the complementation which inter-
changes occupied and empty edges, while the central diagonal line remains entirely occupied
(DWBC1) or entirely empty (DWBC2). Note that in the cases of DWBC3 and 4 this transforma-
tion would be incompatible with the boundary conditions. In the APM language, this amounts
to the condition:

A∗
j ,i = Ai , j (i , j = 1,2, ...,n) ,

namely that the corresponding APMs be Hermitian. We denote the APMs having this symme-
try by Transpose Conjugate Alternating Phase Matrices (TCAPM).

The last symmetry occurs only for DWBC4: it is the rotation of the grid by 180◦. In the APM
language, this amounts to the condition:

An+1−i ,n+1− j =−Ai , j (i , j = 1,2, ...,n) .

We denote the APM having this symmetry by Half-Turn (symmetric) Alternating Phase Matri-
ces (HTAPM).

Using transfer matrix techniques, we found the following sequences for the various sym-
metry classes of APM:

Type 1,2 : SAPM : 1, 3, 13, 85, 861

TCAPM : 1, 2, 6, 28, 204

Type 3 : SAPM : 1, 3, 15, 135, 2223

Type 4 : SAPM : 1, 3, 27, 639

HTAPM : 1, 1, 7, 53
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We remark that the first 5 TCAPMs of type 1,2 are enumerated by the q = 2 q-Bell numbers
Bn(q) defined recursively by B0(q) = 1 and Bn+1(q) = ∑n

k=0

(n
k

)
q Bk (q) where

(n
k

)
q = ∏k

i=1(1−
qn+1−i )/(1−q i ) is the q-binomial coefficient. It is tempting to make a conjecture, but clearly
some extra numerical effort is needed here.

8.4. Arctic phenomenon. To conclude, we expect, at least for the case of 20V with DWBC1,2,
the existence of an “arctic phenomenon" similar to that observed for ASMs [CP10, CPS19,
CS16] as well as the more general 6V-DWBC [CNP11, CPZJ10]. This was our original moti-
vation for considering the 20V model with DWBC, and will be the subject of future work.

APPENDIX A. THE PASSAGE FROM EQ. (3.9) TO EQ. (5.2) IN THE HOMOGENEOUS CASE

We wish to get an expression for (3.9) when zi → z and w j → w for all i and j . Following
[BDFZJ12], we start with the following identity, valid for any power series f (z, w):

(A.1)
1∏

1≤i< j≤n
(z j − zi )(w j −wi )

det
1≤i , j≤n

(
f (zi , w j )

)= det
1≤i , j≤n

(
f [z1, . . . , zi ][w1, . . . , w j ]

)

where

(A.2) f [z1, . . . , zi ][w1, . . . , w j ] :=
i∑

k=1

j∑
l=1

f (zk , wl )
i∏

k′=1
k′ 6=k

(zk − zk ′)
j∏

l ′=1
l ′ 6=l

(wl −wl ′)

.

Indeed, introducing the lower triangular matrix

(A.3) L[z1, . . . , zn]i , j =


i∏

k=1
k 6= j

1
z j−zk

if i ≥ j

0 if i < j

and the matrix H with elements Hi , j = f (zi , w j ), the left hand side of (A.1) is nothing but the
product det(L[z1, . . . , zn])det(L[w1, . . . , wn]t )det(H) while the right hand side is nothing but
det(L[z1, . . . , zn]) ·H ·L[w1, . . . , wn]t ) so that the identity follows immediately.
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We may now evaluate

f [z1, . . . , zi ][w1, . . . , w j ] =
(

1

2iπ

)2 ∮
d t

∮
d t ′

1
i∏

k=1
(t − zk )

1
j∏

l=1
(t ′− zl )

f (t , t ′)

=
∞∑

m,m′=0

fm,m′

∮
d t

∮
d t ′

1
i∏

k=1
(t − zk )

1
j∏

l=1
(t ′− zl )

t m t ′m
′

=
∞∑

m,m′=0

fm,m′ Res∞
t m

i∏
k=1

(t − zk )

Res∞
t m′

j∏
l=1

(t −wl )

where we introduced the coefficient fm,m′ of the series expansion f (z, w) =
∞∑

m,m′=0
fm,m′zm w m′

and where the contours in the integrals were deformed so as to pick the residue at infinity.
Clearly this residue is non-zero only if m ≥ i −1 (respectively m′ ≥ j −1) with the result

Res∞
t m

i∏
k=1

(t − zk )

= ∑
p1,p2,...,pi ≥0
i∑

k=1
pk=m+1−i

i∏
k=1

zpk
k = hm+1−i (z1, . . . , zi )

in terms of the complete symmetric polynomial hm . This yields

f [z1, . . . , zi ][w1, . . . , w j ] = ∑
m≥i−1

m′≥ j−1

fm,m′hm+1−i (z1, . . . , zi )hm′+1− j (w1, . . . , w j )

and in particular

f [z, . . . , z︸ ︷︷ ︸
i

][w, . . . , w︸ ︷︷ ︸
j

] = ∑
m≥i−1

m′≥ j−1

fm,m′hm+1−i (z, . . . , z︸ ︷︷ ︸
i

)hm′+1− j (w, . . . , w︸ ︷︷ ︸
j

)

= ∑
m≥i−1

m′≥ j−1

fm,m′

(
m

i −1

)
zm+1−i

(
m′

j −1

)
w m′+1− j

= f (z + r, w + s)|r i−1s j−1 .

This leads to the desired limit

1∏
1≤i< j≤n

(z j − zi )(w j −wi )
det

1≤i , j≤n

(
f (zi , w j )

) →
zk→z

wl →w

det
1≤i , j≤n

(
f (z + r, w + s)|r i−1s j−1

)
.
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Using

1

a(i , j )b(i , j )
= 1

zi −w j

1

q−2zi −q2w j
= q2

(1−q4)w j

(
1

zi −w j
− 1

zi −q4w j

)
,

we deduce

n∏
i=1

c(i , i )
n∏

i , j=1

(
a(i , j )b(i , j )

)
∏

1≤i< j≤n
(zi − z j )(w j −wi )

det
1≤i , j≤n

(
1

a(i , j )b(i , j )

)

=

n∏
i=1

c(i , i )
n∏

i , j=1

(
a(i , j )b(i , j )

) n∏
j=1

(
q2

(1−q4)w j

)
∏

1≤i< j≤n
(zi − z j )(w j −wi )

det
1≤i , j≤n

(
1

zi −w j
− 1

zi −q4w j

)

→
zk→z

wl →w

(−1)
n(n−1)

2

n∏
i=1

(
(q2 −q−2)

p
z w

) n∏
i , j=1

(
(z −w)(q−2z −q2w)

) n∏
j=1

q2

(1−q4)w

× det
1≤i , j≤n

((
1

(z + r )− (w + s)
− 1

(z + r )−q4(w + s)

)∣∣∣∣
r i−1s j−1

)
.

This is nothing but (5.2).

APPENDIX B. A PROOF OF EQ. (5.5)

We now wish to get an expression for (3.9) when zi → z, i = 1, . . . ,n, w j → w , j = 1, . . .n −1
and wn → w u. Following again [BDFZJ12], we have the following general identity:
(B.1)

1∏
1≤i< j≤n

(z j − zi )
∏

1≤i< j≤n−1
(w j −wi )

det
1≤i , j≤n

(
f (zi , w j )

)= det
1≤i , j≤n

(
f [z1, . . . , zi ][w1, . . . , w j ] j ≤ n −1

f [z1, . . . , zi ][wn] j = n

)

where f [z1, . . . , zi ][w1, . . . , w j ] is as in (A.2). This identity is obtained as in Appendix A by multi-
plying the matrix H with elements Hi , j = f (zi , w j ) to the left by the matrix L[z1, . . . , zn] of (A.3)
and to the right by the transpose of the matrix L(n)[w1, . . . , wn−1] with elements

L(n)[w1, . . . , wn−1]i , j =


i∏

k=1
k 6= j

1
w j−wk

if n −1 ≥ i ≥ j

δn, j if i = n
0 if i < j

,
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then taking the determinant. We have in particular in the desired limit

1∏
1≤i< j≤n

(z j − zi )
∏

1≤i< j≤n−1
(w j −wi )

det
1≤i , j≤n

(
f (zi , w j )

)

→
zk→z , wl<n→w

wn→w u

det
1≤i , j≤n

(
f (z + r, w + s)|r i−1s j−1 j ≤ n −1

f (z + r, w u)|r i−1 j = n

)
We now deduce

n∏
i=1

c(i , i )
n∏

i , j=1

(
a(i , j )b(i , j )

)
∏

1≤i< j≤n
(zi − z j )(w j −wi )

det
1≤i , j≤n

(
1

a(i , j )b(i , j )

)

=
n−1∏
i=1

c(i , i )
n∏

i=1

n−1∏
j=1

(
a(i , j )b(i , j )

)n−1∏
j=1

(
q2

(1−q4)w j

)

× c(n,n)
n∏

i=1
(a(i ,n)b(i ,n))

(
q2

(1−q4)wn

)
1

n−1∏
i=1

(wn −wi )

× 1∏
1≤i< j≤n

(zi − z j )
∏

1≤i< j≤n−1
(w j −wi )

det
1≤i , j≤n

(
1

zi −w j
− 1

zi −q4w j

)

→
zk→z , wl<n→w

wn→w u

(−1)
n(n−1)

2

n−1∏
i=1

(
(q2 −q−2)

p
z w

) n∏
i=1

n−1∏
j=1

(
(z −w)(q−2z −q2w)

)n−1∏
j=1

q2

(1−q4)w

× (q2 −q−2)
p

z w u
n∏

i=1

(
(z −w u)(q−2z −q2w u)

) q2

(1−q4)w u

1
n−1∏
i=1

(w u −w)

× det
1≤i , j≤n

(
1

(z+r )−(w+s) − 1
(z+r )−q4(w+s)

)∣∣∣
r i−1s j−1

j ≤ n −1(
1

(z+r )−w u − 1
(z+r )−q4w u

)∣∣∣
r i−1

j = n

 .

This is nothing but (5.5).
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