A. Aggarwal, Arctic boundaries of the ice model on three-bundle domains, 2018.

D. Allison and N. Reshetikhin, Numerical study of the 6-vertex model with domain wall boundary conditions, Annales de l'Institut Fourier, vol.55, pp.1847-1869, 2005.

R. J. Baxter, Exactly solved models in statistical mechanics, 1989.

R. E. Behrend, P. D. Francesco, and P. Zinn-justin, On the weighted enumeration of alternating sign matrices and descending plane partitions, J. Combin. Theory Ser. A, vol.119, issue.2, pp.331-363, 2012.

, A doubly-refined enumeration of alternating sign matrices and descending plane partitions, J. Combin. Theory Ser. A, vol.120, issue.2, pp.409-432, 2013.

P. Bleher and K. Liechty, Six-vertex model with partial domain wall boundary conditions: Ferroelectric phase, Journal of Mathematical Physics, vol.56, issue.2, p.23302, 2015.

H. Cohn, N. Elkies, and J. Propp, Local statistics for random domino tilings of the aztec diamond, Duke Math. J, vol.85, issue.1, pp.117-166, 1996.

L. Cugliandolo, G. Gonnella, and A. Pelizzola, Six vertex model with domainwall boundary conditions in the bethe-peierls approximation, Journal of Statistical Mechanics: Theory and Experiment, p.6008, 2014.

F. Colomo and A. G. Pronko, The arctic curve of the domain-wall six-vertex model, Journal of Statistical Physics, vol.138, issue.4, pp.662-700, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00526718

, The limit shape of large alternating sign matrices, SIAM J. Discrete Math, vol.24, issue.4, pp.1558-1571, 2010.

F. Colomo, A. G. Pronko, and P. Zinn-justin, The arctic curve of the domain wall sixvertex model in its antiferroelectric regime, J. Stat. Mech. Theory Exp, vol.03002, issue.3, p.11, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00526718

F. Colomo and A. Sportiello, Arctic curves of the six-vertex model on generic domains: the tangent method, J. Stat. Phys, vol.164, issue.6, pp.1488-1523, 2016.

P. D. , F. , and E. Guitter, Arctic curves for paths with arbitrary starting points: a tangent method approach, J. Phys. A: Math. Theor, vol.51, issue.35, p.355201, 2018.
URL : https://hal.archives-ouvertes.fr/cea-02011867

, The arctic curve for aztec rectangles with defects via the tangent method, Journal of Statistical Physics, vol.176, issue.3, pp.639-678, 2019.

, A tangent method derivation of the arctic curve for q-weighted paths with arbitrary starting points, Journal of Physics A: Mathematical and Theoretical, vol.52, issue.11, p.115205, 2019.

, Twenty-vertex model with domain wall boundaries and domino tilings, 2019.

P. D. Francesco and M. F. Lapa, Arctic curves in path models from the tangent method, J. Phys. A: Math. Theor, vol.51, p.155202, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01692535

P. D. , F. , and R. Soto-garrido, Arctic curves of the octahedron equation, J. Phys. A, vol.47, issue.28, p.34, 2014.
URL : https://hal.archives-ouvertes.fr/cea-01002519

E. Bryan-debin, P. Granet, and . Ruelle, Concavity analysis of the tangent method, 2019.

B. Debin and P. Ruelle, Tangent method for the arctic curve arising from freezing boundaries, 2018.

K. Johansson, The arctic circle boundary and the airy process, Annals of Probability, vol.33, pp.1-30, 2003.

W. Jockusch, J. Propp, and P. Shor, Random domino tilings and the arctic circle theorem, 1998.

B. Stewart and . Kelland, Twenty-vertex model on a triangular lattice, Australian Journal of Physics, vol.27, pp.813-829, 1974.

R. Keesman and J. Lamers, Numerical study of the f model with domain-wall boundaries, Phys. Rev. E, vol.95, p.52117, 2017.

R. Kenyon and A. Okounkov, Planar dimers and harnack curves, Duke Math. J, vol.131, issue.3, pp.499-524, 2006.

, Limit shapes and the complex burgers equation, Acta Math, vol.199, issue.2, pp.263-302, 2007.

R. Kenyon, A. Okounkov, and S. Sheffield, Dimers and amoebae, Ann. Math, vol.163, pp.1019-1056, 2006.

R. Kenyon and R. Pemantle, Double-dimers, the Ising model and the hexahedron recurrence, 25th International Conference on Formal Power Series and Algebraic Combinatorics

, Discrete Math. Theor. Comput. Sci. Proc., AS, Assoc. Discrete Math. Theor. Comput. Sci, pp.109-120, 2013.

C. Krattenthaler, Descending plane partitions and rhombus tilings of a hexagon with a triangular hole, European J. Combin, vol.27, issue.7, pp.1138-1146, 2006.

I. Lyberg, G. A. Vladimir-korepin, J. Ribeiro, and . Viti, Phase separation in the six-vertex model with a variety of boundary conditions, Journal of Mathematical Physics, vol.59, issue.5, p.53301, 2018.

I. Lyberg, V. Korepin, and J. Viti, The density profile of the six vertex model with domain wall boundary conditions, Journal of Statistical Mechanics: Theory and Experiment, vol.2017, issue.5, p.53103, 2017.

F. Olav, M. B. Syljuåsen, and . Zvonarev, Directed-loop monte carlo simulations of vertex models, Phys. Rev. E, vol.70, p.16118, 2004.

I. De, . En, U. Et-physique, and . Louvain,

E. ,

. Department-of-mathematics, U. Illinois, U. S. De-physique, U. Théorique, . Paris-saclay et al.,

. Institut-de-physique, U. Théorique, . Paris-saclay, C. Cea, F. et al.,