B. Kursten, F. Druyts, D. D. Macdonald, N. R. Smart, R. Gens et al., Review of corrosion studies of metallic barrier in geological disposal conditions with respect to Belgian supercontainer concept, Energy Mater, vol.6, pp.91-97, 2011.

B. Kursten and F. Druyts, Methodology to make a robust estimation of the carbon steel overpack lifetime with respect to the Belgian supercontainer design, J. Nucl. Phys. Mater. Sci. Radiat. Appl, vol.379, pp.91-96, 2008.

N. R. Smart, A. P. Rance, P. A. Fennell, and B. Kursten, Effect of sulphur species on anaerobic corrosion of carbon steel in alkaline media, Corr. Eng. Sci. Technol, vol.49, pp.473-479, 2014.

P. Ghods, O. Burkan-isgor, F. Bensebaa, and D. Kingston, Angle-resolved XPS study of carbon steel passivity and chloride-induced depassivation in simulated concrete pore solution, Corr. Sci, vol.58, pp.159-167, 2012.

P. Ghods, O. B. Isgor, G. Mcrae, and T. Miller, The effect of concrete pore solution composition on the quality of passive oxide films on black steel reinforcement, Cem. Concr. Comp, vol.31, pp.2-11, 2009.

M. K. Nieuwoudt, J. D. Comins, and I. Cukrowski, The growth of the passive film on iron in 0.05 M NaOH studied in situ by Raman micro-spectroscopy and electrochemical polarisation. Part I: near-resonance enhancement of the Raman spectra of iron oxide and oxyhydroxide compounds, J. Raman Spectrosc, vol.42, pp.1335-1339, 2011.

M. K. Nieuwoudt, J. D. Comins, and I. Cukrowski, The growth of the passive film on iron in 0.05 M NaOH studied in situ by Raman microspectroscopy and electrochemical polarization. Part II: in situ Raman spectra of the passive film surface during growth by electrochemical polarization, J. Raman Spectrosc, vol.42, pp.1353-1365, 2011.

M. K. Nieuwoudt, J. D. Comins, and I. Cukrowski, Analysis of the composition of the passive film on iron under pitting conditions in 0.05 M NaOH/NaCl using Raman microscopy in situ with anodic polarisation and MCR-ALS, J. Raman Spectrosc, vol.43, pp.928-938, 2012.

L. Chomat, V. Hostis, E. Amblard, and L. Bellot-gurlet, Long term study of passive corrosion of steel rebars in Portland mortar in context of nuclear waste disposal, Corr. Eng. Sci. Technol, vol.49, pp.467-472, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01546554

V. Hostis, E. Amblard, C. Blanc, F. Miserque, C. Paris et al., Corr. Eng. Sci. Technol, vol.46, pp.177-181, 2011.

J. M. Deus, B. Diaz, L. Freire, and X. R. Novoa, The electrochemical behaviour of steel rebars in concrete: an Electrochemical Impedance Spectroscopy study of the effect of temperature, Electrochim. Acta, vol.131, pp.106-115, 2014.

C. Andrade, M. Keddam, X. R. Nóvoa, M. C. Pérez, C. M. Rangel et al., Electrochemical behaviour of steel rebars in concrete: influence of environmental factors and cement chemistry, Electrochim. Acta, vol.46, pp.3905-3912, 2001.

C. Andrade, P. Merino, X. R. Nóvoa, M. C. Pérez, and L. Soler, Passivation of reinforcing steel in concrete, Mater. Sci. Forum, pp.891-898, 1995.

B. Huet, V. Hostis, F. Miserque, and H. Idrissi, Electrochemical behavior of mild steel in concrete: influence of pH and carbonate content of concrete pore solution, Electrochim. Acta, vol.51, pp.172-180, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00436834

R. M. Ghantous, S. Poyet, V. Hostis, N. Tran, and R. François, Effect of crack openings on carbonation-induced corrosion, Cem. Concr. Res, vol.95, pp.257-269, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01847524

W. López and J. A. González, Influence of the degree of pore saturation on the resistivity of concrete and the corrosion rate of steel reinforcement, Cem. Concr. Res, vol.23, pp.368-376, 1993.

N. Senior, R. Newman, S. Wang, and N. Diomidis, Understanding and quantifying the anoxic corrosion of carbon steel in a Swiss L/ILW repository environment, Corr. Eng. Sci. Technol, vol.52, pp.78-83, 2017.

X. He, T. Ahn, and J. Gwo, Carbon steel corrosion in simulated anoxic concrete pore water for nuclear waste disposal application, Corrosion, vol.73, pp.1381-1393, 2017.

B. Li, Y. Huan, and . Zhang, Passivation and corrosion behavior of P355 carbon steel in simulated concrete pore solution at pH 12.5 to 14, Int. J. Electrochem. Sci, pp.10402-10420, 2017.

P. Lu, S. Sharifi-asl, B. Kursten, and D. D. Macdonald, The irreversibility of the passive state of carbon steel in the alkaline concrete pore solution under simulated anoxic conditions, J. Electrochem. Soc, vol.162, pp.572-581, 2015.

P. Ghods, O. B. Isgor, J. R. Brown, F. Bensebaa, and D. Kingston, XPS depth profiling study on the passive oxide film of carbon steel in saturated calcium hydroxide solution and the effect of chloride on the film properties, Appl. Surf. Sci, vol.257, pp.4669-4677, 2011.

G. Blanco, A. Bautista, and H. Takenouti, EIS study of passivation of austenitic and duplex stainless steels reinforcements in simulated pore solutions, Cem. Concr. Comp, vol.28, pp.212-219, 2006.

C. Monticelli, A. Frignani, and G. Trabanelli, A study on corrosion inhibitors for concrete application, Cem. Concr. Res, vol.30, pp.635-642, 2000.

H. Luo, H. Su, C. Dong, K. Xiao, and X. Li, Electrochemical and passivation behavior investigation of ferritic stainless steel in simulated concrete pore media, Data Brief, vol.5, pp.171-178, 2015.

M. Saremi and E. Mahallati, A study on chloride-induced depassivation of mild steel in simulated concrete pore solution, Cem. Concr. Res, vol.32, pp.1915-1921, 2002.

X. Sun, X. Zuo, G. Yin, K. Jiang, and Y. Tang, Electrochemical and microscopic investigation on passive behavior of ductile iron in simulated cement-mortar pore solution, Construct. Build. Mater, vol.150, pp.703-713, 2017.

S. Chakri, P. David, I. Frateur, A. Galtayries, P. Marcus et al., Effet de la composition chimique de la solution interstitielle de bétons jeunes sur la passivation d'un acier doux, Matériaux Tech, vol.103, p.209, 2015.

J. M. Gras, La corrosion generalisée des aciers au carbone dans l'eau à haute temperature, EDF, 1995.

F. H. Sweeton and C. F. Baes, The solubility of magnetite and hydrolysis of ferrous ion in aqueous solutions at elevated temperatures, J. Chem. Thermodyn, vol.2, pp.479-500, 1970.

C. Y. Chao, L. F. Lin, and D. D. Macdonald, A Point Defect Model for Anodic Passive Films I. Film Growth Kinetics, J. Electrochem. Soc, vol.128, pp.1187-1194, 1981.

L. F. Lin, C. Y. Chao, and D. D. Macdonald, A point defect model for anodic passive films. 2. Chemical breackdown and pit initiation, J. Electrochem. Soc, vol.128, pp.1194-1198, 1981.

M. Bojinov, G. Fabricius, T. Laitinen, K. Mäkelä, T. Saario et al., Coupling between ionic defect structure and electronic conduction in passive films on iron, chromium and iron-chromium alloys, Electrochim. Acta, vol.45, pp.2029-2048, 2000.

C. Bataillon, F. Bouchon, C. Chainais-hillairet, C. Desgranges, E. Hoarau et al., Corrosion modelling of iron based alloy in nuclear waste repository, Electrochim. Acta, vol.55, pp.4451-4467, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00556950

M. L. Schlegel, C. Bataillon, K. Benhamida, C. Blanc, D. Menut et al., Metal corrosion and argillite transformation at the water-saturated, high-temperature iron-clay interface: a microscopic-scale study, Appl. Geochem, vol.23, pp.2619-2633, 2008.

D. Neff, S. Reguer, L. Bellot-gurlet, P. Dillmann, and R. Bertholon, Structural characterization of corrosion products on archaeological iron: an integrated analytical approach to establish corrosion forms, J. Raman Spectrosc, vol.35, pp.739-745, 2004.

P. J. Heaney, E. P. Vicenzi, L. A. Gianuzzi, and K. J. Livi, Focused ion beam milling: a method of site-specific sample extraction for microanalysis of Earth and planetary materials, Am. Miner, vol.86, pp.1094-1099, 2001.

K. V. Kaznatcheev, C. Karunakaran, U. D. Lanke, S. G. Urquhart, M. Obst et al., Soft X-ray spectromicroscopy beamline at the CLS: commissioning results, Nucl. Instrum. Methods Phys. Res. A, vol.582, pp.96-99, 2007.

Y. Leon, P. Dillmann, D. Neff, M. L. Schlegel, E. Foy et al., Interfacial layers at a nanometre scale on iron corroded in carbonated anoxic environments, RSC Adv, vol.7, pp.20101-20115, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01510267

Y. Leon, M. Saheb, E. Drouet, D. Neff, E. Foy et al., Interfacial layer on archaeological mild steel corroded in carbonated anoxic environments studied with coupled micro and nano probes, Corros. Sci, vol.88, pp.23-35, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01157704

A. Michelin, E. Drouet, E. Foy, J. J. Dynes, D. Neff et al., Investigation at the nanometre scale on the corrosion mechanisms of archaeological ferrous artefacts by STXM, J. Anal. Atom. Spectrom, vol.28, pp.59-66, 2013.

J. Stöhr and . Spectroscopy, , 1992.

J. J. Dynes, T. Tyliszczak, T. Araki, J. R. Lawrence, G. D. Swerhone et al., Speciation and quantitative mapping of metal species in microbial biofilms using scanning transmission X-ray microscopy, Environ. Sci. Technol, vol.40, pp.1556-1565, 2006.

A. Michelin, E. Drouet, E. Foy, J. J. Dynes, D. Neff et al., Investigation at the nanometre scale on the corrosion mechanisms of archaeological ferrous artefacts by STXM, J. Anal. At. Spectrom, vol.28, pp.59-66, 2013.

R. Zhang, S. Zheng, S. Ma, and Y. Zhang, Recovery of alumina and alkali in Bayer red mud by the formation of andradite-grossular hydrogarnet in hydrothermal process, J. Hazard. Mater, vol.189, pp.827-835, 2011.

B. Z. Dilnesa, B. Lothenbach, G. Renaudin, A. Wichser, and D. Kulik, Synthesis and characterization of hydrogarnet Ca 3 (Al x Fe 1?x ) 2 (SiO 4 ) y (OH) 4(3?y), Cem. Concr. Res, vol.59, pp.96-111, 2014.

C. Cohen-addad, Étude du Composé Ca 3 Fe 2 (SiO 4 ) 1.15 (OH) 7.4 par Absorption Infrarouge et Diffraction des Rayons X et des Neutrons, Acta Cryst. A, vol.26, pp.68-70, 1970.

A. Carnot, I. Frateur, S. Zanna, B. Tribollet, I. Dubois-brugger et al., Corrosion mechanisms of steel concrete moulds in contact with a demoulding agent studied by EIS and XPS, Corr. Sci, vol.45, pp.2513-2524, 2003.

R. P. Gupta and S. K. Sen, Calculation of multiplet structure of core p-vacancy levels, Phys. Rev. B, vol.10, p.71, 1974.

R. P. Gupta and S. K. Sen, Calculation of multiplet structure of core p-vacancy levels, Phys. Rev. B, vol.II, p.15, 1975.

A. P. Grosvenor, B. A. Kobe, M. C. Biesinger, and N. S. Mcintyre, Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds, Surf. Interface Anal, vol.36, pp.1564-1574, 2004.

R. Angelo, M. Roy, T. Pauporté, S. Delaunay, D. You et al., Study of the effect of polyacrylic acid dispersant on magnetite deposits in steam generators conditions, Mater. Chem. Phys, vol.226, pp.118-128, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02357508

H. Seyama and M. Soma, Fe 2p spectra of silicate minerals, J. Electron Spectr. Rel. Phen, vol.42, pp.97-101, 1987.

R. D. Desautels, M. P. Rowe, M. Jones, A. Whallen, and J. Van-lierop, Spontaneously formed interfacial metal silicates and their effect on the magnetism of superparamagnetic FeCo/SiO2 Core/Shell nanoparticles, Langmuir, vol.31, pp.2879-2884, 2015.

O. N. Shebanova and P. Lazor, Raman spectroscopic study of magnetite (FeFe 2 O 4 ): a new assignment for the vibrational spectrum, J. Solid State Chem, vol.174, pp.424-430, 2003.

J. E. Castel and G. M. Mann, The mechanism of formation of porous oxide film, Corr. Sci, vol.6, pp.253-262, 1966.

A. M. Hofmeister and A. Chopelas, Vibrational spectroscopy of end-member silicate garnets, Phys. Chem. Miner, vol.17, pp.503-526, 1991.

B. Ghosh, T. Morishita, J. Ray, A. Tamura, T. Mizukami et al., A new occurrence of titanian (hydro)andradite from the Nagaland ophiolite, India: implications for element mobility in hydrothermal environments, Chem. Geol, vol.457, pp.47-60, 2017.

A. M. Hofmeister and A. Chopelas, Vibrational spectroscopy of end-member silicate garnets, Phys. Chem. Miner, vol.17, pp.503-526, 1991.

B. A. Kolesov and C. A. Geiger, Raman scattering in silicate garnets: an investigation of their resonance intensities, J. Raman Spectrosc, vol.28, pp.659-662, 1997.

D. Bersani, S. Andò, P. Vignola, G. Moltifiori, I. Marino et al., Micro-Raman spectroscopy as a routine tool for garnet analysis, Spectrochim. Acta A, vol.73, pp.484-491, 2009.

B. Z. Dilnesa, Fe-Containing Hydrates and Their Fate During Cement Hydration: Thermodynamic Data and Experimental Study, 2011.

D. C. Smith, A review of the non-destructive identification of diverse geomaterials in the cultural heritage using different configurations of Raman spectroscopy, Special Publications, vol.257, pp.9-32, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00146235

A. Friedrich, B. Winkler, W. Morgenroth, A. Perlov, and V. Milman, Pressure-induced spin collapse of octahedrally coordinated Mn 3+ in the tetragonal hydrogarnet henritermierite Ca 3 Mn 2, Phys. Rev. B, vol.92, 2015.

A. Wang, J. J. Freeman, and B. L. Jolliff, Understanding the Raman spectral features of phyllosilicates, J. Raman Spectrosc, vol.46, pp.829-845, 2015.

M. Dulski, K. M. Marzec, J. Kusz, I. Galuskina, K. Majzner et al., Different route of hydroxide incorporation and thermal stability of new type of water clathrate: X-ray single crystal and Raman investigation, Sci. Rep, vol.7, p.9046, 2017.

S. Ne?i?, M. Nordsveen, R. Nyborg, and A. Stangeland, A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films -Part 2: a numerical experiment, Corrosion, vol.59, pp.489-497, 2003.

N. R. Smart, A. P. Rance, P. A. Fennell, and B. Kursten, The anaerobic corrosion of carbon steel in alkaline media -phase 2 results, Eur. Phys. J. Conf, vol.56, p.6003, 2013.

N. R. Smart, A. P. Rance, D. J. Nixon, P. A. Fennell, B. Reddy et al., Summary of studies on the anaerobic corrosion of carbon steel in alkaline media in support of the Belgian supercontainer concept, Corr. Eng. Sci. Technol, vol.52, pp.217-226, 2017.

G. Schikorr, Über Eisen(II)-hydroxyd und ein ferromagnetisches Eisen(III)-hydroxyd, Zeit. Anorg. Allg. Chem, vol.212, pp.33-39, 1933.

D. D. Macdonald and M. Urquidi-macdonald, Theory of steady-state passive films, J. Electrochem. Soc, vol.137, pp.2395-2402, 1990.

D. D. Macdonald, The Point Defect Model for the Passive State, 1992.

J. Chivot, Thermodynamique des produits de corrosion. Fonctions thermodynamiques, diagrammes de solubilité, diagrammes E-pH des systèmes Fe-H 2 O, 2004.

C. Rios, C. Williams, and M. Fullen, Hydrothermal synthesis of hydrogarnet and tobermorite at 175°C from kaolinite and metakaolinite in the CaO-Al 2 O 3 -SiO 2 -H 2 O system: a comparative study, Appl. Clay Sci, vol.43, pp.228-237, 2009.

P. Adhikari, C. C. Dharmawardhana, and W. Ching, Structure and properties of hydrogrossular mineral series, J. Am. Ceram. Soc, vol.100, pp.4317-4330, 2017.

K. Kyritsis, N. Meller, and C. Hall, Chemistry and morphology of hydrogarnets formed in cement-based CASH hydroceramics cured at 200°to 350°C, J. Am. Ceram. Soc, vol.92, pp.1105-1111, 2009.

E. Passaglia and R. Rinaldi, Katoite, a new member of the Ca 3 Al 2 (SiO 4 ) 3 -Ca 3 Al 2 (OH) 12 series and a new nomenclature for the hydrogrossular group of minerals, Bull. Minéral, vol.107, pp.605-618, 1984.

M. L. Schlegel, C. Bataillon, F. Brucker, C. Blanc, D. Prêt et al., Corrosion of metal iron in contact with anoxic clay at 90°C: characterization of the corrosion products after two years of interaction, Appl. Geochem, vol.51, pp.1-14, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01157703

W. Chitty, P. Dillmann, V. Hostis, and C. Lombard, Long-term corrosion resistance of metallic reinforcements in concrete-a study of corrosion mechanisms based on archaeological artefacts, Corr. Sci, vol.47, pp.1555-1581, 2005.

M. L. Schlegel, C. Bataillon, C. Blanc, D. Prêt, and E. Foy, Anodic activation of iron corrosion in clay media under water-saturated conditions at 90 C: characterization of the corrosion interface, Environ. Sci. Technol, vol.44, pp.1503-1508, 2010.