, Low- and Intermediate-Level Radioactive Wastes, Geologic Disposal of Low- and Intermediate-Level Radioactive Waste, pp.21-42, 2017.

, IAEA: Application of ion exchange processes for treatment of radioactive waste and management of spent ion exchangers, Technical Report Series, vol.408, 2002.

J. Schmidt and W. Vogelsberger, Aqueous long-term solubility of titania nanoparticles and titanium (IV) hydrolysis in a sodium chloride system studied by adsorptive stripping voltammetry, J. Solution Chem, vol.38, p.1282, 2009.

G. Zhijun, N. Lijun, and T. Zuyi, Sorption of Th (IV) ions onto TiO2: Effects of contact time, ionic strength, thorium concentration and phosphate, J. Radioanal. Nucl. Chem, vol.266, p.338, 2005.

L. Zhang, N. Liu, L. Yang, and Q. Lin, Sorption behavior of nano-TiO2 for the removal of selenium ions from aqueous solution, J. Hazard. Mater, vol.170, p.1203, 2009.

S. Kasap, H. Tel, and S. Piskin, Isotherm, thermodynamic and kinetic studies of Sr 2+ adsorption on spherical TiO2/PAN composites, J. Radioanal. Nucl. Chem, vol.289, p.544, 2011.

K. R. Kim, K. J. Lee, and J. H. Bae, Characteristics of cobalt adsorption on prepared TiO2 and Fe-Ti-O adsorbents in high temperature water, Sep. Sci. Technol, vol.30, p.979, 1995.

K. J. Klabunde and R. S. Mulukutla, Chemical and catalytic aspects of nanocrystals, Nanoscale Materials in Chemistry, vol.223, p.259, 2001.

Y. Gao, R. Wahi, A. T. Kan, J. C. Falkner, V. L. Colvin et al., Adsorption of cadmium on anatase nanoparticles effect of crystal size and pH, Langmuir, vol.20, p.9593, 2004.

G. Gülsen and H. Tel, Preparation of TiO2 SiO2 mixed gel spheres for strontium adsorption, J. Hazard. Mater, vol.120, p.142, 2005.

L. Ma and S. X. Tu, Removal of arsenic from aqueous solution by two types of nano TiO2 crystals, Environmental Chemistry Letters, vol.9, issue.4, pp.465-472, 2011.

D. Sanli, S. E. Bozbag, and C. Erkey, Synthesis of nanostructured materials using supercritical CO2: Part I. Physical transformations, J. Mater. Sci, vol.47, p.3025, 2012.

S. E. Bozbag, D. Sanli, and C. Erkey, Synthesis of nanostructured materials using supercritical CO2: Part II. Chemical transformations, J. Mater. Sci, vol.47, p.3492, 2012.

A. Hertz, M. Drobek, J. C. Ruiz, F. Charton, S. Sarrade et al., A detailed insight into the preparation of nanocrystalline TiO2 powders in supercritical carbon dioxide, J. Mater. Sci, vol.52, p.12652, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01674734

M. K. Lane and J. Zimmerman, Controlling metal oxide nanoparticle size and shape with supercritical fluid synthesis, Green Chem, vol.21, p.3781, 2019.

G. Oskam, A. Nellore, R. L. Penn, and P. C. Searson, The growth kinetics of TiO2 nanoparticles from titanium (IV) alkoxide at high water/titanium ratio, J. Phys. Chem. B, vol.107, pp.1734-1738, 2003.

E. Han, K. Vijayarangamuthu, K. Youn, J. , Y. Park et al., Degussa P25 TiO2 modified with H2O2 under microwave treatment to enhance photocatalytic properties, Catalysis Today, vol.303, pp.305-312, 2018.

Z. Rui, S. Wu, C. Peng, and H. Ji, Comparison of TiO2 Degussa P25 with anatase and rutile crystalline phases for methane combustion, Chemical Engineering Journal, vol.243, pp.254-264, 2014.

C. Morterra, An infrared spectroscopic study of anatase properties. Part 6. Surface hydration and strong Lewis acidity of pure and sulphate-doped preparations, J. Chem

, Soc. Faraday Trans. 1, vol.84, pp.1617-1637, 1988.