J. Howard, Mechanics of Motor Proteins and the Cytoskeleton, 2001.

I. Fujiwara, D. Vavylonis, and T. D. Pollard, Polymerization kinetics of ADP-and ADP-Pi-actin determined by fluorescence microscopy, Proc. Natl. Acad. Sci, vol.104, pp.8827-8832, 2007.

R. Phillips, J. Kondev, and J. Theriot, Physical Biology of the Cell. Garland Science, 2008.

U. Pieper and A. Wegner, The end of a polymerizing actin filament contains numerous ATP-Subunit segments that are disconnected by ADP-subunits resulting from ATP Hydrolysis, Biochem, vol.35, pp.4396-4402, 1996.

X. Li, J. Kierfeld, and R. Lipowsky, Actin polymerization and depolymerization coupled to cooperative hydrolysis, Phys. Rev. Lett, vol.103, p.48102, 2009.

A. Dimitrov, M. Quesnoit, S. Moutel, I. Cantaloube, C. Pous et al., Detection of GTP-tubulin conformation in vivo reveals a role for GTP remnants in microtubule rescues, Science, vol.322, pp.1353-1356, 2008.

D. Vavylonis, Q. Yang, and B. O'shaughnessy, Actin polymerization kinetics, cap structure, and fluctuations, Proc. Natl. Acad. Sci. USA, vol.102, pp.8543-8548, 2005.

M. Bindschadler, E. Osborn, C. Dewey, and J. Mcgrath, A mechanistic model of the actin cycle, Biophys. J, vol.86, pp.2720-2739, 2004.

F. J. Brooks and A. E. Carlsson, Actin polymerization overshoots and ATP hydrolysis as assayed by pyrene fluorescence, Biophys. J, vol.95, pp.1050-1062, 2008.

H. Y. Kueh, W. M. Brieher, and T. J. Mitchison, Dynamic stabilization of actin filaments, Proc. Natl. Acad. Sci. USA, vol.105, pp.16531-16536, 2008.

P. Ranjith, D. Lacoste, K. Mallick, and J. Joanny, Nonequilibrium self-assembly of a filament coupled to ATP/GTP hydrolysis, Biophys. J, vol.96, pp.2146-2159, 2009.

E. B. Stukalin and A. B. Kolomeisky, ATP hydrolysis stimulates large length fluctuations in single actin filaments, Biophys. J, vol.90, pp.2673-2685, 2006.

M. Dogterom and S. Leibler, Physical aspects of the growth and regulation of microtubule structures, Phys. Rev. Lett, vol.70, pp.1347-1350, 1993.

H. Flyvbjerg, T. E. Holy, and S. Leibler, Microtubule dynamics: caps, catastrophes, and coupled hydrolysis, Phys. Rev. E, vol.54, pp.5538-5560, 1996.

C. Zong, T. Lu, T. Shen, and P. G. Wolynes, Nonequilibrium self-assembly of linear fibers: microscopic treatment of growth, decay, catastrophe and rescue, Phys. Biol, vol.3, pp.83-92, 2006.

T. Antal, P. L. Krapivsky, S. Redner, M. Mailman, and B. Chakraborty, Dynamics of an idealized model of microtubule growth and catastrophe, Phys. Rev. E, vol.76, p.41907, 2007.

T. Antal, P. L. Krapivsky, and S. Redner, Dynamics of microtubule instabilities, J. Stat. Mech. L05004, 2007.

M. F. Sumedha, B. Hagan, and . Chakraborty, Role of GTP remnants in microtubule dynamics. arXiv 0908, vol.1199, pp.1-4, 2009.

M. F. Carlier and D. Pantaloni, Direct evidence for ADP-Pi-Factin as the major intermediate in ATP-actin polymerization. Rate of dissociation of Pi from actin filaments, Biochem, vol.25, pp.7789-92, 1986.

J. Fass, C. Pak, J. Bamburg, and A. Mogilner, Stochastic simulation of actin dynamics reveals the role of annealing and fragmentation, J. Theor. Biol, vol.252, pp.173-183, 2008.

T. Hill, Free Energy Transduction and Biochemical Cycle Kinetics, 1989.

M. Carlier, D. Pantaloni, and E. D. ,

. Korn, The effects of M g 2+ at the high-affinity and low-affinity sites on the polymerization of actin and associated ATP hydrolysis, J. Biol. Chem, vol.261, pp.10785-1079, 1986.

R. Melki, S. Fievez, and M. F. Carlier, Continuous monitoring of Pi release following nucleotide hydrolysis in actin or tubulin assembly using 2-amino-6-mercapto-7-methylpurine ribonucleoside and purine-nucleoside phosphorylase as an enzyme-linked assay, Biochem, vol.35, p.1203812045, 1996.

D. Pantaloni, T. L. Hill, M. F. Carlier, and E. D. Korn, A model for actin polymerization and the kinetic effects of ATP hydrolysis, Proc. Natl. Acad. Sci. USA, vol.82, pp.7207-7211, 1985.

A. B. Kolomeisky and M. E. Fisher, Force-velocity relation for growing microtubules, Biophys. J, vol.80, pp.149-154, 2001.

T. Keiser, A. Schiller, and A. Wegner, Nonlinear increase of elongation rate of actin filaments with actin monomer concentration, Biochem, vol.25, pp.4899-4906, 1986.

I. Fujiwara, S. Takahashi, H. Tadakuma, T. Funatsu, and S. Ishiwata, Microscopic analysis of polymerization dynamics with individual actin filaments, Nat. Cell. Biol, vol.4, pp.666-673, 2002.

J. R. Kuhn and T. D. Pollard, Real-itme measurements of actin filament polymerization by total internal reflection fluorescence microscopy, Biophys. J, vol.88, pp.1387-1402, 2005.

T. D. Pollard, Rate constants for the reactions of ATP-and ADPactin with the ends of actin filaments, J. Cell Biol, vol.103, pp.2747-2754, 1986.

T. D. Pollard, R. D. , and L. Blanchoin, Molecular mechanisms controlling actin filament dynamics in nonmuscle cells, Annu. Rev. Biophys. Biomol. Struct, vol.29, pp.545-576, 2000.

P. M. Chaikin and T. Lubensky, Principles of Condensed Matter Physics, 1995.

A. E. Carlsson, Model of reduction of actin polymerization forces by ATP hydrolysis, Phys. Biol, vol.5, pp.36002-036011, 2008.