R. A. Blythe and M. R. Evans, Nonequilibrium steady states of matrix-product form: a solver's guide, J. Phys. A: Math. Theor, vol.40, p.333, 2007.

R. A. Blythe, M. R. Evans, F. Colaiori, and F. H. Essler, Exact solution of a partially asymmetric exclusion model using a deformed oscillator algebra, J. Phys. A: Math. Gen, vol.33, p.2313, 2000.

T. Bodineau and B. Derrida, Current fluctuations in nonequilibrium diffusive systems: An additivity principle, Phys. Rev. Lett, vol.92, p.180601, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00103472

T. Bodineau and B. Derrida, Distribution of currents in non-equilibrium diffusive systems and phase transitions, Phys. Rev. E, vol.72, p.66110, 2005.

T. Bodineau and B. Derrida, Current large deviations for asymmetric exclusion processes with open boundaries, J. Stat. Phys, vol.123, p.277, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00085457

C. Boutillier, P. François, K. Mallick, and S. Mallick, A matrix Ansatz for the diffusion of an impurity in the asymmetric exclusion process, J. Phys. A: Math. Gen, vol.35, p.9703, 2002.

J. De-gier and F. H. Essler, Bethe Ansatz solution of the Asymmetric Exclusion Process with Open Boundaries, Phys. Rev. Lett, vol.95, p.240601, 2005.

J. De-gier and F. H. Essler, , 2011.

B. Derrida, An exactly soluble non-equilibrium system: the asymmetric simple exclusion process, Phys. Rep, vol.301, p.65, 1998.

B. Derrida, Non-equilibrium steady states: fluctuations and large deviations of the density and of the current, J. Stat. Mech.: Theor. Exp, p.7023, 2007.

B. Derrida, , 2011.

B. Derrida and C. Appert, Universal Large-Deviation Function of the Kardar-Parisi-Zhang Equation in One Dimension, J. Stat. Phys, vol.94, p.1, 1999.

B. Derrida, E. Domany, and D. Mukamel, An exact solution of a one-dimensional asymmetric exclusion model with open boundaries, J. Stat. Phys, vol.69, p.667, 1992.

B. Derrida, B. Douçot, and P. Roche, Current fluctuations in the one-dimensional symmetric exclusion process with open boundaries, J. Stat. Phys, vol.115, p.717, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00000763

B. Derrida and M. R. Evans, Bethe Ansatz solution for a defect particle in the asymmetric exclusion process, J. Phys. A: Math. Gen, vol.32, p.4833, 1999.

B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, Exact solution of a 1D asymmetric exclusion model using a matrix formulation, J. Phys. A: Math. Gen, vol.26, p.1493, 1993.

B. Derrida, M. R. Evans, and K. Mallick, Exact Diffusion Constant of a One-Dimensional Asymmetric Exclusion Model with Open Boundaries, J. Stat. Phys, vol.79, p.833, 1994.

B. Derrida and J. L. Lebowitz, Exact large deviation function in the asymmetric exclusion process, Phys. Rev. Lett, vol.80, p.209, 1998.

M. R. Evans, , 1994.

M. R. Evans, P. A. Ferrari, and K. Mallick, Matrix Representation of the Stationary Measure for the Multispecies TASEP, J. Stat. Phys, vol.135, p.217, 2009.

P. L. Ferrari, From Interacting particle systems to random matrices, 2010.

P. Flajolet and R. Sedgewick, , 2009.

C. Flindt, T. Novotný, and A. Jauho, Current noise in vibrating quantum array, Phys. Rev. B, vol.70, p.205334, 2004.

O. Golinelli and K. Mallick, The asymmetric exclusion process: an integrable model for non-equilibrium statistical mechanics, J. Phys. A: Math. Gen, vol.39, p.10647, 2006.

M. Gorissen and C. Vanderzande, Finite size scaling of current fluctuations in the totally asymmetric exclusion process, 2010.

S. A. Janowsky and J. L. Lebowitz, Finite-size effects and shock fluctuations in the asymmetric simple-exclusion process, Phys. Rev. A, vol.45, p.618, 1992.

T. Karzig and F. Von-oppen, Signatures of critical full counting statistics in a quantum-dot chain, Phys. Rev. B, vol.81, p.45317, 2010.

J. Krug, Boundary-induced phase transitions in driven diffusive systems, Phys. Rev. Lett, vol.67, p.1882, 1991.

K. Mallick, Shocks in the asymmetry exclusion model with an impurity, J. Phys. A: Math. Gen, vol.29, p.5375, 1996.

K. Mallick, S. Mallick, and N. Rajewsky, Exact solution of an exclusion process with three classes of particles and vacancies, J. Phys. A: Math. Gen, vol.32, p.8399, 1999.

T. Mitsudo and S. Takesue, The numerical estimation of the current large deviation function in the asymmetric exclusion process with open boundary conditions, 2010.

P. L. Krapivsky, S. Redner, and E. Ben-naim, A Kinetic View of Statistical Physics, 2010.

A. Proeme, R. A. Blythe, and M. R. Evans, Dynamical Transition in the Open-boundary Totally Asymmetric Exclusion Process, 2010.

S. Prolhac, Tree structures for the current fluctuations in the exclusion process, J. Phys. A: Math. Theor, vol.43, p.105002, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00796160

S. Prolhac, M. R. Evans, and K. Mallick, The matrix product solution of the multispecies partially asymmetric exclusion process, J. Phys. A: Math. Theor, vol.42, p.165004, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00796157

N. Rajewsky, T. Sasamoto, and E. R. Speer, Spatial particle condensation for an exclusion process on a ring, Physica A, vol.279, p.123, 2000.

T. Sasamoto, One-dimensional partially asymmetric simple exclusion process with open boundaries: orthogonal polynomial approach, J. Phys. A: Math. Gen, vol.32, p.7109, 1999.

T. Sasamoto, Density profile of the one-dimensional partially asymmetric simple exclusion process with open boundaries, J. Phys. Soc. Japan, vol.69, p.1055, 2000.

T. Sasamoto, Fluctuations of the one-dimensional asymmetric exclusion process using random matrix techniques, J. Stat. Mech.: Theor. Exp, p.7007, 2007.

B. Schmittmann and R. K. Zia, Statistical mechanics of driven diffusive systems, Phase Transitions and Critical Phenomena, vol.17, 1995.

G. M. Schütz, Exactly Solvable Models for Many-Body Systems Far from Equilibrium in, Phase Transitions and Critical Phenomena, vol.19, 2001.

G. M. Schütz and E. Domany, Phase Transitions in an exactly soluble one-dimensional exclusion process, J. Stat. Phys, vol.72, p.277, 1993.

H. Spohn, Large scale dynamics of interacting particles, 1991.

H. Touchette, The large deviation approach to statistical mechanics, Phys. Rep, vol.478, issue.1, 2009.

, D1(?, ?) differ from ZL and ZL?1 by the normalisation constant ? 2 = (? + ? ? 1)/(??) that appears in [16] and that ensures that ?|? = 1. In our work, this constant ? 2 has been absorbed in the parameter B. If we had made the equivalent choice to use the function ? 2 F (z) instead of F (z)