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Generalized exclusion processes: Transport coefficients
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A class of generalized exclusion processes with symmetric nearest-neighbor hopping which are
parametrized by the maximal occupancy, k ≥ 1, is investigated. For these processes on hyper-cubic
lattices we compute the diffusion coefficient in all spatial dimensions. In the extreme cases of k = 1
(symmetric simple exclusion process) and k = ∞ (non-interacting symmetric random walks) the
diffusion coefficient is constant, while for 2 ≤ k < ∞ it depends on the density and k. We also
study the evolution of the tagged particle, show that it exhibits a normal diffusive behavior in all
dimensions, and probe numerically the coefficient of self-diffusion.

PACS numbers: 05.70.Ln, 02.50.-r, 05.40.-a

I. INTRODUCTION

Exclusion processes constitute an important class of
lattice gases that plays a prominent role in numerous
subjects including non-equilibrium statistical mechanics,
soft matter, traffic models, biophysics, combinatorics and
probability theory [1–9]. By definition, exclusion pro-
cesses are lattice gases supplemented with stochastic hop-
ping and obeying the constraint that at most one particle
per site is allowed. In simple exclusion models, only hops
to nearest-neighboring sites are allowed. These models
are exactly solvable in low dimensions [4, 10, 11], and
they have become benchmarks to test general theories
for non-equilibrium behaviors [12–17].

Because of its ubiquity and usefulness, numerous more
complicated variants of the basic exclusion process have
been investigated (see [3, 9, 10] and references therein).
One natural generalization is to alleviate the exclusion
constraint by allowing k particles per site (k ≥ 1 is a
fixed integer). More precisely, this process is defined in d
dimensions, say on the hyper-cubic lattice Zd, as follows:
(i) each particle attempts to hop to its 2d neighbors with
the same unit rate to each neighbor (symmetric hopping),
(ii) every hopping attempt is successful when the target
site is occupied by less than k particles, otherwise the
hopping attempt is rejected (Fig. 1). The symmetric ex-
clusion process (SEP) is recovered when k = 1, whereas
for k = ∞ the model reduces to independent random
walks undergoing symmetric nearest-neighbor hopping.
Letting k vary from 1 to ∞ allows us to interpolate be-
tween a strongly interacting to a non-interacting system.
(In quantum systems, restricting the maximum number
of particles in a given quantum state to an integer k,
with 1 < k <∞, leads to the so-called Gentile statistics
[18, 19] interpolating between Fermi-Dirac statistics and
Bose-Einstein statistics. In this paper we consider only
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FIG. 1: GEP with k = 3 in one dimension. Hopping into a site
occupied by three particles is forbidden; other hopping events
occur with the same (unit) rate. Thus the total hopping rate
from every site is equal to the number of particles at the
site times the number of neighboring sites which are not fully
occupied.

classical lattice gases.)
Generalized exclusion processes (GEPs) with maxi-

mal occupation number 1 < k < ∞ have been stud-
ied in [20–22]; see also Refs. [23–33] for other versions
of GEPs. Some of these models can be mapped onto
multi-species exclusion processes [34–36] but with non-
conserving species. Overall, the GEPs are considerably
less understood than the ordinary exclusion process—the
integrability properties of the SEP do not carry over to
the GEPs and a different perspective is required.

The objective of this work is to investigate the GEP
at a coarse-grained level and to calculate the transport
coefficients that underlie the hydrodynamic description.
Section II reviews known properties of the GEP and out-
lines its macroscopic (i.e., hydrodynamic) regime which is
governed by a diffusion equation. We also formulate our
main result, namely a parametric representation of the
diffusion coefficient. In Sec. III, we present the derivation
of the diffusion coefficient. In Sec. IV, stationary density
profiles are computed and compared with simulations. In
Sec. V, we examine the evolution of a tagged particle in
the GEP in various spatial dimensions. We derive the
self-diffusion coefficient using a mean-field approxima-
tion. We also probe the self-diffusion coefficient numer-
ically and show a reasonable qualitative agreement with
mean-field predictions. We summarize our results, and
mention remaining challenges and possible extensions, in
Sec. VI.
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II. HYDRODYNAMIC BEHAVIOR

For the generalized exclusion process with symmetric
hopping, steady states are remarkably simple and are
given by a product measure [2, 5, 6, 27]. In other words,
one only needs to know the probabilities Pj to have j par-
ticles per site and the stationary weight of any configura-
tion factors into the product of these basic probabilities.
The basic probabilities are given by an elementary for-
mula [6, 25, 27]

Pj =
λj

j!

1

Zk(λ)
. (1)

To justify (1) it suffices to use the factorization and ver-
ify that the flow (i, j) =⇒ (i − 1, j + 1), which is given
by iPiPj , is equal to the flow (i − 1, j + 1) =⇒ (i, j),
which is given by (j + 1)Pi−1Pj+1. With the choice (1),
we indeed get iPiPj = (j + 1)Pi−1Pj+1. The ‘partition
function’ Zk(λ), which appears in Eq. (1), is fixed by the
normalization requirement

∑
0≤j≤k Pj = 1. It is equal to

an incomplete exponential function:

Zk(λ) =

k∑
j=0

λj

j!
. (2)

The ‘fugacity’ parameter λ is implicitly determined by
the density ρ:

ρ =

k∑
j=0

jPj = λ
Zk−1(λ)

Zk(λ)
. (3)

Furthermore, GEPs with rather general hopping rates de-
pending on the number of particles on the exit site have
been also studied; see, e.g. [6, 20, 24, 25, 27, 37]. In all
these models the steady-state probabilities are also given
by a product measure. We emphasize that this product
measure structure is akin to that of the zero-range pro-
cess [38, 39] although the two processes are fundamen-
tally different (in the GEP, the jump rate of a particle
does depend on the state of the target site, contrary to
what is assumed in the zero-range process).

In order to study the dynamics of the system, the
knowledge of the steady-state distribution is not suffi-
cient and a full description of the evolution requires the
complete spectrum and eigenstates of the evolution ma-
trix. Yet the large scale “hydrodynamic” behavior is
conceptually simple. The only relevant hydrodynamic
variable is density and it evolves according to a diffusion
equation. In one dimension, for instance, it reads

∂ρ

∂t
=

∂

∂x

[
Dk(ρ)

∂ρ

∂x

]
. (4)

This generic result is valid for lattice gases with sym-
metric hopping [2, 5, 6]. Thus the detailed microscopic
rules underlying the dynamics of the lattice gas play lit-
tle role; namely, they are all encapsulated in a single
density-dependent function, the diffusion coefficient.

The determination of the diffusion coefficient is in prin-
ciple a very difficult problem as we do not assume the
lattice gas to be dilute. For the GEP, the diffusion coeffi-
cient Dk is known in the extreme cases, namely for sym-
metric random walks (k = ∞) and for the SEP (k = 1).
In both these cases the diffusion coefficient is constant;
with our choice of the hopping rates, we have

D1 = D∞ = 1. (5)

For other maximal occupancies (1 < k < ∞), the diffu-
sion coefficient is density-dependent. This already follows
from the asymptotic behaviors

Dk(ρ) =

{
1 ρ→ 0,

k ρ→ k.
(6)

The small-density asymptotic corresponds to the diffu-
sion of a single particle in the empty system, while the
behavior in the ρ → k limit can be understood by con-
sidering a single vacancy in the fully occupied system.

The computation of Dk(ρ) for all k will be presented
in section III. We will show that

Dk = Λk − ρ
dΛk
dρ

, Λk(ρ) = 1− Pk(ρ). (7)

Using (1) and (3) one obtains the parametric representa-
tion of Λk(ρ):

ρ = λΛk(λ) , Λk(λ) =
Zk−1(λ)

Zk(λ)
. (8)

These formulas apply to all 1 ≤ k ≤ ∞ including the
extreme cases. For the SEP we have Λ1 = 1 − ρ, while
for random walks Λ∞ = 1; in both cases we recover (5).
In all other cases (2 ≤ k < ∞), the diffusion coefficients
Dk(ρ) are monotonically increasing convex functions of
the density (as illustrated in Fig. 2 for k = 2, 3, 4, 5).

For lattice gases in higher dimensions, the density gen-
erally satisfies a diffusion equation

∂ρ

∂t
=

d∑
a,b=1

∂

∂xa

[
Dab(ρ)

∂ρ

∂xb

]
(9)

with a d× d diffusion matrix Dab(ρ). An ordinary diffu-
sion process (e.g., a symmetric random walk) is macro-
scopically isotropic, so the diffusion matrix is scalar:
Dab(ρ) = δabD(ρ). Generally the diffusion matrix is sym-
metric, Dab(ρ) = Dba(ρ), and for lattice gases on Zd the
symmetry of the lattice limits the number of independent
matrix elements to two: All diagonal elements are equal
[we denote them by D(ρ)], and all off-diagonal are also

equal [we denote them by D̂(ρ)]. In three dimensions, for
instance, the diffusion matrix is

D(ρ) =

 D(ρ) D̂(ρ) D̂(ρ)

D̂(ρ) D(ρ) D̂(ρ)

D̂(ρ) D̂(ρ) D(ρ)

 . (10)
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FIG. 2: Diffusion coefficient (7) as a function of density for
the GEP with k = 2, 3, 4, 5.

For lattice gases on Zd in which each particle occupies
a single lattice site one expects the diffusion matrix to
be scalar and the diffusion coefficient to be strictly pos-
itive [40]. As far as we know these physically obvious
assertions have not been proved in full generality. In the
next section, we calculate Dk(ρ) for all k. Our derivation
implies that for the GEP the diffusion process is indeed
macroscopically isotropic, and our explicit results show
that the diffusion coefficients satisfy Dk(ρ) > 1 and they
are independent of the spatial dimension.

III. DIFFUSION COEFFICIENT

In this section, we calculate the diffusion coefficient for
the GEP that appears in Eq. (9). As a warm-up, we recall
the well-known case of the SEP. Then we show the crucial
difference between the GEPs with 2 ≤ k < ∞ and the
SEP, namely the presence of the higher-order correlators,
which makes impossible an elementary derivation of the
diffusion coefficient. Fortunately, the understanding of
the equilibrium in the GEP and a perturbative expansion
around the equilibrium gives a method for deriving the
diffusion coefficient for the GEPs with 2 ≤ k < ∞. We
present a detailed derivation of D2(ρ) in one and higher
dimensions. The case of arbitrary k is outlined at the
end of this section.

A configuration of the SEP on a one-dimensional lat-
tice is fully described by binary variables nj(t): If the site
j ∈ Z is empty, nj(t) = 0; if it is occupied, nj(t) = 1. In
an infinitesimal time interval dt, the particle hops from
site j to site j + 1 with probability nj(1− nj+1)dt. This
choice assures that the hopping event happens only when
the site j is occupied and the site j + 1 is empty. Taking
into account all possible hops one finds that the average

density evolves according to

d〈nj〉
dt

= 〈nj−1(1− nj) + nj+1(1− nj)〉

− 〈nj(1− nj−1) + nj(1− nj+1)〉 ,
(11)

which simplifies to the discrete diffusion equation

d〈nj〉
dt

= 〈nj−1〉 − 2〈nj〉+ 〈nj+1〉 . (12)

The remarkable cancellation of the higher-order correla-
tion functions allows one to prove the validity of the hy-
drodynamic limit without further assumptions—no need
to use the absence of correlations in the steady state. By
definition, in the hydrodynamic limit the average density
varies on the scales greatly exceeding the lattice spacing.
Therefore we write 〈nj(t)〉 = ρ(x, t); the notation x = j
emphasizes that we are switching to the continuum de-
scription. We then expand 〈nj±1〉 in Taylor series

〈nj±1〉 = ρ± ρx + 1
2ρxx + · · · (13)

and recast the set of difference-differential equations (12)
into a classical diffusion equation, namely Eq. (4) with
D1 = 1. In higher dimensions, the cancellation still holds;
in two dimensions, for instance,

d〈ni,j〉
dt

= 〈ni,j−1〉+ 〈ni,j+1〉+ 〈ni−1,j〉+ 〈ni+1,j〉

− 4〈ni,j〉 .
(14)

Therefore the hydrodynamic description is again the clas-
sical diffusion equation ρt = ρxx + ρyy.

Consider now the simplest GEP different from the
SEP, namely the GEP with k = 2 on a one-dimensional
lattice. The occupation number nj is either 0, or 1, or 2
when k = 2. The process (nj , nj+1) =⇒ (nj−1, nj+1+1)
proceeds with rate

njF (nj+1), F (n) = 1− n(n− 1)

2
. (15)

Therefore the average density evolves according to

d〈nj〉
dt

= 〈[nj−1 + nj+1]F (nj)〉

− 〈nj [F (nj−1) + F (nj+1)]〉 .
(16)

In contrast with the case of the SEP, higher-order cor-
relation functions do not cancel as it is obvious from an
explicit representation of the right-hand side of (16):

d〈nj〉
dt

= 〈nj−1〉 − 2〈nj〉+ 〈nj+1〉

+ 1
2 〈nj [n

2
j−1 + n2j+1]− [nj−1 + nj+1]n2j 〉 .

(17)

It is often possible to advance for lattice gases of the
gradient type [2, 6]. These are lattice gas models in which
the current Jj,j+1 of particles moving from any site j to
j+ 1 can be written as a discrete gradient. For instance,
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the SEP is the gradient lattice gas since Jj,j+1 = nj −
nj+1. For the GEP with k = 2, the current

Jj,j+1 = nj − nj+1 + 1
2 [nj+1n

2
j − njn2j+1] (18)

is obviously not a discrete gradient. Generally all GEPs
with 2 ≤ k <∞ are non-gradient lattice gases.

We now outline the idea of a perturbative approach
which we shall use to establish the diffusion coefficient in
non-gradient lattice gases, and then return to the GEP.

A. Perturbative Approach

For non-gradient lattice gases it is sometimes possible
to study the hydrodynamic regime in the realm of a per-
turbative approach. The idea is to ignore correlations.
This is true in the equilibrium. In the evolving state, the
presence of local density gradients induces long-ranged
correlations, but in numerous lattice gases these correla-
tions vanish to first order in the density difference. This
has been rigorously established (in all spatial dimensions)
for lattice gases with hard-core exclusion [41], and it is
expected to apply to a much larger class of models. There
can be appreciable correlations in the earlier time regime,
but we are interested in the hydrodynamic limit which,
by definition, describes the evolution close to equilibrium.
The vanishing of correlations in the first order in the den-
sity gradient implies that in the hydrodynamic regime
our perturbative treatment leads to exact predictions for
the diffusion coefficient.

To appreciate the validity of a perturbative approach
it is useful to compare the situation with kinetic the-
ory [2, 7, 42]. Recall that the Boltzmann equation, even
though it is mean-field in nature (as it is based on the
assumption of molecular chaos), is asymptotically exact
in the hydrodynamic regime, so the emerging transport
coefficients are exact. In the context of kinetic theory the
main challenge is technical—even for dilute monoatomic
gases (e.g., for hard spheres gas), it has not been possible
to extract transport coefficients analytically [42]. Lat-
tice gases are much more tractable, so even for dense
lattice gases the computing of the diffusion coefficient
is occasionally feasible. The crucial ingredient is the
understanding of the equilibrium state. We emphasize
that for lattice gases of gradient type (e.g., for the Katz-
Lebowitz-Spohn model with symmetric hopping [1, 43]
and for repulsion processes [44]) when computations us-
ing a Green-Kubo formula become feasible, the results for
the diffusion coefficient agree with predictions derived us-
ing the perturbative approach. Further, for lattice gases
of non-gradient type whenever it was possible to apply
the perturbative approach (see [45, 46]), the predictions
for the diffusion coefficient were again exact as it was ev-
idenced through rigorous analyses, mappings to gradient
type lattice gases, and comparisons with simulations.

B. GEP with k = 2

To implement the perturbative approach for the GEP
with k = 2 on the one-dimensional lattice, we first replace
(16) by

d〈nj〉
dt

= [〈nj−1〉+ 〈nj+1〉]〈F (nj)〉

− 〈nj〉[〈F (nj−1)〉+ 〈F (nj+1)〉].
(19)

In the hydrodynamic limit we write 〈nj(t)〉 = ρ(x, t) and
we use Eq. (13) for 〈nj±1(t)〉 to yield

〈nj−1〉+ 〈nj+1〉 = 2ρ+ ρxx. (20)

Hereinafter, we keep the terms which survive in the hy-
drodynamic limit, e.g., in Eq. (20) we have dropped
1
12ρxxxx and the following terms with higher derivatives.

The average 〈F (n)〉 has a neat form

〈F (n)〉 = 1− P2(ρ), (21)

which is obvious from the definition of the process (the
hopping can occur only when the target site hosts less
than two particles). We shall use the shorthand notation
1− P2(ρ) = Λ2(ρ).

In the hydrodynamic limit 〈F (nj−1)〉+〈F (nj+1)〉 turns
into Λ2[ρ(x−1)]+Λ2[ρ(x+1)], which is expanded to yield

2Λ2(ρ) + Λ′2(ρ) ρxx + Λ′′2(ρ) ρ2x . (22)

Inserting all these expansions into (19) we arrive at

ρt = [Λ2(ρ)− ρΛ′2(ρ)] ρxx − ρΛ′′2(ρ) ρ2x . (23)

This equation can be re-written as the diffusion equation
(4) with diffusion coefficient

D2 = Λ2(ρ)− ρΛ′2(ρ) . (24)

Recall that, for k = 2, we have

ρ =
λ+ λ2

1 + λ+ 1
2λ

2
, Λ2 =

1 + λ

1 + λ+ 1
2λ

2
(25)

from which we find an explicit expression for Λ2(ρ):

Λ2(ρ) =
1− ρ+

√
1 + 2ρ− ρ2
2

. (26)

Inserting this into (24) yields an explicit expression of
the diffusion coefficient

D2(ρ) =
1 + ρ+

√
1 + 2ρ− ρ2

2
√

1 + 2ρ− ρ2
. (27)

We now consider the GEP with k = 2 in arbitrary
dimension. In two dimensions, for instance, the average
density satisfies

d〈ni,j〉
dt

= 〈(ni−1,j + ni+1,j + ni,j−1 + ni,j+1)F (ni,j)〉

−〈ni,j [F (ni−1,j)+F (ni+1,j)+F (ni,j−1)+F (ni,j+1)]〉
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which in the hydrodynamic limit becomes

ρt = ∂x(D2 ρx) + ∂y(D2 ρy) (28)

with D2 given by Eq. (24) as in one dimension. The
same holds in any spatial dimension, namely the GEP is
described by the diffusion equation

ρt = ∇ · (D2∇ρ), (29)

where the diffusion coefficient is given by a universal for-
mula (24) valid in arbitrary dimension. The symmetric
GEP is therefore isotropic on the hydrodynamic scale;
namely, it is described by the scalar diffusion coefficient.

C. GEP with arbitrary k

For the GEP with arbitrary k the analysis is similar
to the one presented above. The process (nj , nj+1) =⇒
(nj − 1, nj+1 + 1) proceeds with rate (15), where we only
need to modify F (n) to

F (n) = 1− n(n− 1) · · · (n− k + 1)

k!
. (30)

It suffices to consider the one-dimensional case as the
results for the diffusion coefficient are independent of the
spatial dimensionality. Equations (16) and (19), with
F (n) given by (30), remain valid. Equations (20)–(24)
also hold if we replace Λ2 by Λk, the probability that
a site is not fully occupied; for instance, Eq. (21) be-
comes 〈F (n)〉 = 1 − Pk(ρ) ≡ Λk(ρ). Thus the diffusion
coefficient is indeed given by the announced expression
(7). For k ≥ 5 an explicit expression for Λk(ρ) is appar-
ently impossible to deduce, but we can use a parametric
expression (8) which follows from (1), (3), and the defi-
nition Λk(ρ) = 1− Pk(ρ).

IV. STATIONARY DENSITY PROFILES

In the previous section we calculated the diffusion co-
efficient for the GEP using a perturbative approach. In
this section, we present a non-direct test of our predic-
tions. Specifically, we shall calculate stationary density
profiles in one and two dimensions and compare these
theoretical predictions with simulation results. We will
show that the diffusion equation with the diffusion co-
efficient given by Eqs. (7) and (8) provides an accurate
description of the system at a macroscopic scale.

A. One-dimensional density profiles

Consider the GEP on the interval (0, L) with boundary
conditions

ρ(0) = ρ0, ρ(L) = ρ1 . (31)

Solving Dk(ρ) dρdx = const , subject to (31), we obtain∫ ρ
ρ0
drDk(r)∫ ρ1

ρ0
drDk(r)

=
x

L
. (32)

Let us focus on a special case when the right boundary
is a sink: ρ1 = 0. To simplify formulas we write ρ0 = n.
When k = 2, the integrals on the left-hand side of (32)
can be explicitly determined to yield an implicit repre-
sentation of the stationary density profile ρ(x):

1 + π
2 + ρ−

√
1 + 2ρ− ρ2 + 2 arcsin

(
ρ−1√

2

)
1 + π

2 + n−
√

1 + 2n− n2 + 2 arcsin
(
n−1√

2

) = 1− x

L
.

In the case of the maximal density on the left boundary,
ρ0 = n = 2, we get

1

2
−
ρ−

√
1 + 2ρ− ρ2 + 2 arcsin

(
ρ−1√

2

)
π + 2

=
x

L
, (33)

see Fig. 3.
In the general case of arbitrary k we use (7) and (8)

and establish the following parametric representation∫ λ
0
dµ [Λk(µ)]2∫ `

0
dµ [Λk(µ)]2

= 1− x

L
, n = `Λk(`) . (34)

The maximal density on the left boundary, ρ0 = n = k,
corresponds to ` = ∞. The density profiles (34) in this
situation,∫ λ

0
dµ [Λk(µ)]2∫∞

0
dµ [Λk(µ)]2

= 1− x

L
, ρ = λΛk(λ) (35)

are plotted in Fig. 3.

B. The GEP in an annulus

For the GEP in the annulus a ≤ R ≤ L, we solve
RDk(ρ) dρdR = const, subject to the boundary conditions
ρ(a) = ρ0 and ρ(L) = ρ1, and get∫ ρ

ρ0
drDk(r)∫ ρ1

ρ0
drDk(r)

=
ln(R/a)

ln(L/a)
. (36)

Let us look more carefully at the case of k = 2 with
boundary densities ρ1 = 0, ρ0 = 2 (the density on the
inner circle is maximal). We use dimensionless variables
α = a/L and ξ = R/L, so that 0 < α ≤ ξ ≤ 1. With
these choices, Eq. (36) becomes

1

2
+
ρ−

√
1 + 2ρ− ρ2 + 2 arcsin

(
ρ−1√

2

)
π + 2

=
ln ξ

lnα
. (37)

This density profile is compared with simulation results
on Fig. 4.
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FIG. 3: Stationary density profiles versus x/L for the GEP
with k = 1, 2, 3, 4, 5 on a segment with L = 103. The solid
lines are theoretical predictions in the case of extremal bound-
ary densities, ρ0 = k and ρ1 = 0. For the SEP (k = 1), the
density profile is linear; for k = 2, the density profile is given
by (33), and generally it is extracted from Eq. (35). Simula-
tion results (shown by •) were obtained by averaging over the
time window 5× 106 ≤ t ≤ 107.
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1

FIG. 4: Stationary density profiles versus R for the GEP
with k = 2 in the annulus with external radius L = 100. Dots
are simulation results which were obtained by averaging over
5×106 ≤ t ≤ 107. Solid lines are theoretical predictions given
by (37) with α = 1/4 in the case of a = 25 and by (38) when
a = 1.

For the GEP in the annulus a ≤ R ≤ L, the usage of
the continuum (diffusion equation) approach is somewhat
questionable near the inner circle if a = O(1). Indeed, we
cannot even talk about a circle on a lattice if its radius
is comparable with the lattice spacing. Nevertheless, let
us use Eq. (36), again with k = 2 and (ρ0, ρ1) = (2, 0),

in the extreme case of a = 1. Equation (36) becomes

1

2
−
ρ−

√
1 + 2ρ− ρ2 + 2 arcsin

(
ρ−1√

2

)
π + 2

=
lnR

lnL
. (38)

Choosing the inner radius equal to lattice spacing is es-
sentially equivalent to the simplest lattice setting with
reservoir connected to the origin and postulating that
whenever a particle leaves the origin, a particle from
reservoir is immediately added, so the density at the ori-
gin remains maximal ρ0 = 2. There is also a sink at the
circle R = L; that is, whenever a particle at a site on
distance < L hops and gets outside this circle, it leaves
the system forever. On distances R � 1 the profile (38)
should become asymptotically exact. Figure 4 shows an
excellent agreement between theory and simulations over
the entire range 1 ≤ R ≤ L.

To emphasize the difference between one and two di-
mensions let us consider the GEP with k = 2 and bound-
ary densities (ρ0, ρ1) = (2, 0) and compare the density
profiles (33) and (38). In one dimension, the intermedi-
ate density ρ∗ = (ρ0 + ρ1)/2, i.e., ρ∗ = 1 in our case, is
reached at

x∗
L

=
1

2
+

√
2− 1

π + 2
= 0.580561 . . . , (39)

while in two dimensions this happens at

lnR∗
lnL

=
1

2
+

√
2− 1

π + 2
, (40)

which is much closer to the source, R∗ ∼ L0.580561.
Second, we compare the total (average) number of par-

ticles. In one dimension we integrate by part to get

N =

∫ L

0

dx ρ(x) =

∫ 2

0

dρ x(ρ). (41)

Using (33) we perform the integration and find

N =
3π + 2

2π + 4
L. (42)

In two dimensions, we similarly find

N =

∫ L

0

dR 2πRρ(R) = π

∫ 2

0

dρR2(ρ) . (43)

The dominant part of the integral in (43) is gathered near
ρ = 0. Expanding the left-hand side of (38) we find

lnR

lnL
= 1− 2

π + 2
ρ− 1

3(π + 2)
ρ3 +

1

2(π + 2)
ρ4 + · · · .

(44)
Equation (43) becomes

N

πL2
'
∫ ∞
0

dρ exp

[
− lnL

4ρ+ 2
3ρ

3 − ρ4

π + 2

]
, (45)
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which gives

N =
π(π + 2)

4

L2

lnL

[
1 +

C2

(lnL)2
+

C3

(lnL)3
+ · · ·

]
(46)

with C2 = −
(
π+2
4

)3
, C3 = 6

(
π+2
4

)4
, etc. Thus the con-

vergence to the leading asymptotic behavior is slow in
two dimensions.

For arbitrary k, let us choose again ρ1 = 0 and ρ0 = k.
the density profile is implicitly given by∫ λ

0
dµ [Λk(µ)]2∫∞

0
dµ [Λk(µ)]2

= 1− lnR

lnL
. (47)

In the small ρ limit, we get

lnR

lnL
= 1− ρ

Ik
+ · · · , Ik =

∫ ∞
0

dµ [Λk(µ)]2 , (48)

and the leading asymptotic behavior of the total average
number of particles is

N ' πIk
2

L2

lnL
(49)

where the coefficients Ik can be evaluated numerically
(e.g. I3 = 4.29139 . . .).

V. SELF-DIFFUSION COEFFICIENT

Even an equilibrium situation (in which the density is
spatially uniform) possesses interesting non-equilibrium
features. One important example is the phenomenon of
self-diffusion. In this section we investigate the evolu-
tion of a tagged particle in the GEP at equilibrium. We
assume that the tagged particle is identical to the host
particles, so it merely carries a tag. Asymptotically, the
tagged particle exhibits a diffusive behavior, so it suffices
to compute the coefficient of self-diffusion. This problem
is easy to pose, but there has been little progress even
for simplest lattice gases. For instance, the coefficient of
self-diffusion is unknown for the SEP in two and higher
dimensions, it is only known [47] that the coefficient of
self-diffusion is a smooth function of the density.

Consider first the one-dimensional case. We tag a par-
ticle which is initially at x(0) = 0 (without loss of gen-
erality) and we look at its position x(t) in the long time
limit. Generically, we expect a diffusive behavior. Thus
the first two averages are 〈x〉 = 0 and 〈x2〉 ∼ t, and it
suffices to determine the self-diffusion coefficient

lim
t→∞

〈x2〉
2t

= Dk(ρ). (50)

The self-diffusion coefficient Dk generally differs from the
diffusion coefficient Dk. We have D∞ = D∞ = 1 for
non-interacting random walks. For k < ∞, the inequal-
ity Dk < Dk is physically apparent, although it may be
difficult to prove.

k=2
k=3
k=4
k=5

t

»t1

5£10
4

5£10
3

5£10
2

10
3

10
4

10
5

hx i2

FIG. 5: Mean-square displacement of the tagged particle vs
time for the GEP in one dimension. The maximal occupancy
varies between k = 2 and k = 5. Simulations were performed
on the ring of length 103.

For the SEP in one dimension, the self-diffusion coef-
ficient vanishes: D1 = 0. Indeed, the ordering between
the particles is conserved and this leads to anomalously
slow sub-diffusive behavior [48–52]: 〈x2〉SEP, d=1 ∼ t1/2.
This is an exceptional feature; the normal diffusion is re-
covered for the SEP in dimensions higher than 1. For
the GEP with k ≥ 2, the phenomenon of self-diffusion
is not pathological even in one dimension, viz. the self-
diffusion coefficient Dk(ρ) is positive. Moreover, Dk(ρ) is
a monotonically decreasing function of ρ in the interval
0 < ρ < k with asymptotic behaviors

Dk(ρ) =

{
1 ρ→ 0,

0 ρ→ k.
(51)

For lattice gases in d > 1 dimensions, the spread of
the tagged particle is generically described by a matrix.
For the GEP on the hyper-cubic lattice, and generally for
lattice gases on Zd where each particle occupies only one
site, one expects the self-diffusion process to be isotropic
on the hydrodynamic scales. This has been proved only
for the SEP, see [53], so it remains conjectural for the
GEPs with 2 ≤ k <∞.

There is one important feature which distinguishes the
self-diffusion coefficient from the diffusion coefficient, viz.
the self-diffusion coefficient certainly depends on the di-
mensionality: Dk(ρ, d). The extreme density behaviors
of the self-diffusion coefficient Dk(ρ, d) with k ≥ 2 are
universal and given by (51) in all dimensions.

We performed simulations to probe the self-diffusion
coefficient on lattices with Ld sites, in d = 1, 2, 3 di-
mensions, with periodic boundaries. The sizes of the
simulated systems are L = 103, 32, 10 for d = 1, 2, 3,
respectively. The number of simulation runs for each set
of parameters (k, d, ρ) is 2 × 105/(Ldρ), and we tagged
all the Ldρ particles in each run. Thus 〈·〉 is the aver-
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0

0.2

0.4
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0

Dk

k=2
k=3
k=4
k=5

MF

51 2 3 4

FIG. 6: Coefficient of self-diffusion vs density for the GEP in
one dimension; the maximal occupancy varies between k = 2
and k = 5. Dots represent simulation results for the GEP
in one dimension. Solid lines are the mean-field predictions,
Eq. (52).

age over effectively 2× 105 tagged particles. We checked
the validity of the diffusive scaling up to t = 5× 104, as
shown in Fig. 5 for ρ = 3k/5 and d = 1. (As long as
t � L2 = 106, finite size effects can be safely ignored.)

We calculated 〈r
2〉

2d·t by using data in the 0 ≤ t ≤ 5 × 104

time window. The results are shown in Figs. 6 and 7.
As a reference point, it is useful to have a mean-field

prediction. To derive the mean-field prediction for the
self-diffusion coefficient of the GEP with an arbitrary
maximal occupancy k we recall that a site is occupied
by k particles with probability Pk, so it can be a destina-
tion site with probability 1− Pk. Therefore for a tagged
particle, the hopping rate to each neighboring site ap-
pears to be 1 − Pk(ρ) ≡ Λk(ρ), which tells us that the
self-diffusion coefficient is

DMF
k = Λk =

Zk−1(λ)

Zk(λ)
=
ρ

λ
. (52)

In particular, DMF
1 = 1− ρ for the SEP, while for k = 2

the mean-field prediction DMF
2 = Λ2(ρ) is given by the

explicit formula (26). For non-interacting random walks
Eq. (52) yields DMF

∞ = 1, and this is the only case when
the prediction is exact. In all other cases (1 ≤ k < ∞),
the prediction of Eq. (52) is not exact.

To appreciate the mean-field nature of the prediction
(52) we first note that for every site, the probability that
any neighboring site contains less than k particles is in-
deed 1 − Pk, and these probabilities are uncorrelated.
So if we pick a particle and mark it with a tag, it ap-
pears that this particle is indeed diffusing with the coef-
ficient equal to 1−Pk. But we must keep the identity of
the tagged particle. This already causes the problem—
immediately after the tagged particle has undergone the
first jump, the site from which it jumped will be surely

0 1 2

0.2

0.4

0.6

0.8

1

0

Dk

d=1, k=2
d=2, k=2
d=3, k=2

d=2, k=1
MF

d=3, k=1

FIG. 7: Coefficient of self-diffusion vs density for the SEP
in two and three dimensions, and for the GEP with k = 2
in dimensions d = 1, 2, 3. Dots represent simulation results.
Solid lines are the mean-field predictions: DMF

1 = 1−ρ for the
SEP, while for the GEP with k = 2 the mean-field prediction
DMF

2 = Λ2(ρ) acquires the explicit form (26).

occupied by less than k particles. In the d→∞ limit this
is irrelevant, but for any finite dimension the derivation
of Eq. (52) involves an uncontrolled approximation. We
thus realize that Eq. (52) only provides a mean-field ap-
proximation. To summarize, the prediction (52) satisfies
the following properties:

1. It agrees with the limiting behaviors (51).

2. It appears to be an upper bound for all d ≥ 1.

3. It becomes exact in the d→∞ limit. This justifies
calling (52) a mean-field prediction.

4. It is also exact for non-interacting random walks
(k =∞).

The validity of the first property easily follows from
Eq. (52), and it is also seen (in the one-dimensional case)
from Fig. 6. The second property seems very plausible,
but has not been proved; it is supported by simulation
results; see Figs. 6 and 7. The validity of the third and
fourth properties is obvious.

Figures 6 and 7 indicate that the disagreement be-
tween the actual behaviors and the mean-field predictions
is most pronounced in one dimension, so the mean-field
estimate (52) provides a good approximation in two and
three dimensions.

Assuming that the mean-field estimate (52) provides
qualitatively correct small and large ρ behaviors also in
finite dimensions, we anticipate that

lim
ρ↓0

1−Dk(ρ, d)

ρk
= Ak(d), lim

ρ↑k

Dk(ρ, d)

k − ρ
= Bk(d) . (53)
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Little is known about these amplitudes. For d =∞,

Ak(∞) =
1

k!
, Bk(∞) = 1 , (54)

because the mean-field prediction becomes exact when
d = ∞. Since the mean-field estimate (52) apparently
provides an upper bound, we expect that Ak(d) > 1

k!
and Bk(d) < 1.

VI. SUMMARY

We investigated generalized exclusion processes with
symmetric nearest-neighbor hopping parametrized by an
integer k, the maximal occupancy. Specifically, we stud-
ied a class of such processes interpolating between the
symmetric exclusion process (k = 1) and non-interacting
random walkers (k =∞). For these lattice gases the hy-
drodynamic behavior is governed by a diffusion equation.
We computed the diffusion coefficient Dk and showed
that for every k, it does not depend on the spatial di-
mension, but it does depend on k. We showed that, apart
from the extreme cases of k = 1 and k =∞, the diffusion
coefficient depends on the density.

We studied numerically the self-diffusion phenomenon
for the GEPs in one, two, and three dimensions. An in-
teresting challenge is to compute the self-diffusion coeffi-
cient for the GEPs with k ≥ 2 in one dimension. In two
and higher dimensions this problem seems intractable,
even for the SEP in two dimensions the coefficient of self-
diffusion is unknown; it has only been established that
D1(ρ, d) is a smooth function of the density [47]. In the
one-dimensional setting, the tagged particle in the case
of the SEP undergoes an anomalously slow sub-diffusive
behavior which is well understood, and even large devia-
tions of the displacement of the tagged particle have been
probed (see e.g. [54, 55] and references therein). There-

fore there is a hope that the self-diffusion phenomenon in
the one-dimensional GEP is also analytically tractable.

In addition to the diffusion coefficient, a second trans-
port coefficient, the mobility (or conductance) σ(ρ), plays
an important role in the macroscopic fluctuation theory
[17]. The knowledge of σ(ρ) is required if one wants to
understand fluctuations around the (deterministic) hy-
drodynamic behaviors, including large deviations. We
leave the determination of the mobility σ(ρ) for future
studies of fluctuations and large deviations in the GEPs.

In this article we considered only the GEP with sym-
metric hopping. One would like to understand the asym-
metric version of the GEP. The problem is that in the
driven case the structure of the steady states is unknown:
it is not a product measure anymore, even on a ring [22].
One possibility is to modify the rules of the GEP to make
the structure of the steady states more accessible. An in-
teresting variant is to employ a drop-push dynamics when
a hopping attempt to a fully occupied neighboring site
is not rejected, but instead the particle proceeds in the
same direction and lands at the closest site which is not
fully occupied [24, 25]; a similar process was suggested,
and studied for k = 1, in the context of self-organized
criticality [45]. For these GEPs with drop-push dynam-
ics the structure of the steady states is known in the
general case of asymmetric hopping [24, 25]. The sym-
metric version of the GEPs with drop-push dynamics also
deserves further analysis, e.g., one would like to compute
the diffusion coefficient for this class of lattice gases.
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