Generalized exclusion processes: Transport coefficients
Abstract
A class of generalized exclusion processes with symmetric nearest-neighbor hopping which are parametrized by the maximal occupancy, $k \geq 1$, is investigated. For these processes on hyper-cubic lattices we compute the diffusion coefficient in all spatial dimensions. In the extreme cases of $k = 1$ (symmetric simple exclusion process) and $k = \infty$ (non-interacting symmetric random walks) the diffusion coefficient is constant, while for $2 \leq k < \infty$ it depends on the density and $k$. We also study the evolution of the tagged particle, show that it exhibits a normal diffusive behavior in all dimensions, and probe numerically the coefficient of self-diffusion.
Origin : Files produced by the author(s)
Loading...