Generalized exclusion processes: Transport coefficients - Archive ouverte HAL Access content directly
Journal Articles Physical Review E : Statistical, Nonlinear, and Soft Matter Physics Year : 2014

Generalized exclusion processes: Transport coefficients

(1) , (2) , (3)
1
2
3

Abstract

A class of generalized exclusion processes with symmetric nearest-neighbor hopping which are parametrized by the maximal occupancy, $k \geq 1$, is investigated. For these processes on hyper-cubic lattices we compute the diffusion coefficient in all spatial dimensions. In the extreme cases of $k = 1$ (symmetric simple exclusion process) and $k = \infty$ (non-interacting symmetric random walks) the diffusion coefficient is constant, while for $2 \leq k < \infty$ it depends on the density and $k$. We also study the evolution of the tagged particle, show that it exhibits a normal diffusive behavior in all dimensions, and probe numerically the coefficient of self-diffusion.
Fichier principal
Vignette du fichier
chik1.pdf (1.87 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

cea-02923661 , version 1 (27-08-2020)

Identifiers

Cite

Chikashi Arita, P. L. Krapivsky, Kirone Mallick. Generalized exclusion processes: Transport coefficients. Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, 2014, 90 (5), pp.052108. ⟨10.1103/PhysRevE.90.052108⟩. ⟨cea-02923661⟩
23 View
32 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More