M. Baldus, A. T. Petkova, J. Herzfeld, and R. G. Griffin, Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems, Mol. Phys, vol.95, pp.1197-1207, 1998.

T. Bauer, C. Dotta, L. Balacescu, J. Gath, A. Hunkeler et al., Line-broadening in low-temperature solid-state NMR spectra of Fibrils, J. Biomol. NMR, vol.67, pp.51-61, 2017.

A. Böckmann, C. Gardiennet, R. Verel, A. Hunkeler, A. Loquet et al., Characterization of different water pools in solid-state NMR protein samples, J. Biomol. NMR, vol.45, pp.319-327, 2009.

B. S. Cox, A cytoplasmic suppressor of super-suppressor in yeast, Heredity, vol.20, pp.505-521, 1965.

A. H. Depace, A. Santoso, P. Hillner, and J. S. Weissman, A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion, Cell, vol.93, pp.81467-81468, 1998.

A. H. Depace and J. S. Weissman, Origins and kinetic consequences of diversity in Sup35 yeast prion fibers, Nat. Struct. Biol, vol.9, pp.389-396, 2002.

C. K. Foo, Y. Ohhashi, M. J. Kelly, M. Tanaka, and J. S. Weissman, Radically different amyloid conformations dictate the seeding specificity of a chimeric Sup35 prion, J. Mol. Biol, vol.408, pp.1-8, 2011.

K. K. Frederick, V. K. Michaelis, M. A. Caporini, L. B. Andreas, G. T. Debelouchina et al., Combining DNP NMR with segmental and specific labeling to study a yeast prion protein strain that is not parallel in-register, Proc. Natl. Acad. Sci. U.S.A, vol.114, pp.3642-3647, 2017.

K. K. Frederick, V. K. Michaelis, B. Corzilius, T. Ong, A. C. Jacavone et al., Sensitivity-enhanced NMR reveals alterations in protein structure by cellular milieus, Cell, vol.163, pp.1-14, 2015.

J. R. Glover, A. S. Kowal, E. C. Schirmer, M. M. Patino, J. J. Liu et al., Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae, Cell, vol.89, pp.80264-80264, 1997.

B. Habenstein, C. Wasmer, L. Bousset, Y. Sourigues, A. Schütz et al., Extensive de novo solid-state NMR assignments of the 33 kDa C-terminal domain of the Ure2 prion, J. Biomol. NMR, vol.51, pp.235-243, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01183172

R. Hervas, M. J. Rau, Y. Park, W. Zhang, A. G. Murzin et al., Cryo-EM structure of a neuronal functional amyloid implicated in memory persistence in Drosophila, Science, vol.367, pp.1230-1234, 2020.

M. Kabani, B. Cosnier, L. Bousset, J. Rousset, R. Melki et al., A mutation within the C-terminal domain of Sup35p that affects [PSI+] prion propagation, Mol. Microbiol, vol.81, pp.640-658, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00598328

M. Kabani, V. Redeker, and R. Melki, A role for the proteasome in the turnover of Sup35p and in, Mol. Microbiol, vol.92, pp.507-528, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01181190

K. M. Keefer, K. C. Stein, and H. L. True, Heterologous prion-forming proteins interact to cross-seed aggregation in Saccharomyces cerevisiae, Sci. Rep, vol.7, pp.5853-5811, 2017.

R. Krishnan and S. L. Lindquist, Structural insights into a yeast prion illuminate nucleation and strain diversity, Nature, vol.435, pp.765-772, 2005.

J. Krzewska and R. Melki, Molecular chaperones and the assembly of the prion Sup35p, an in vitro study, EMBO J, vol.25, pp.822-833, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01183829

J. Krzewska, M. Tanaka, S. G. Burston, and R. Melki, Biochemical and functional analysis of the assembly of full-length Sup35p and its prion-forming domain, J. Biol. Chem, vol.282, pp.1679-1686, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01183808

J. R. Lewandowski, P. C. Van-der-wel, M. Rigney, N. Grigorieff, and R. G. Griffin, Structural complexity of a composite amyloid fibril, J. Am. Chem. Soc, vol.133, pp.14686-14698, 2011.

J. Liu, N. Sondheimer, and S. L. Lindquist, Changes in the middle region of Sup35 profoundly alter the nature of epigenetic inheritance for the yeast prion, 2002.

, Proc. Natl. Acad. Sci. U.S.A, vol.99, pp.16446-16453

N. Luckgei, A. K. Schütz, L. Bousset, B. Habenstein, Y. Sourigues et al., The conformation of the prion domain of Sup35p in isolation and in the full-length protein, Angew. Chem. Int. Ed. Engl, vol.52, pp.12741-12744, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01183045

N. Luckgei, A. K. Schütz, B. Habenstein, L. Bousset, Y. Sourigues et al., Solid-state NMR sequential assignments of the amyloid core of Sup35pNM, Biomol. NMR Assign, vol.8, pp.365-370, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01181118

R. Nelson, M. R. Sawaya, M. Balbirnie, A. Ø. Madsen, C. Riekel et al., Structure of the cross-beta spine of amyloid-like fibrils, Nature, vol.435, pp.773-778, 2005.

Y. Ohhashi, K. Ito, B. H. Toyama, J. S. Weissman, and M. Tanaka, Differences in prion strain conformations result from non-native interactions in a nucleus, Nat. Chem. Biol, vol.6, pp.225-230, 2010.

S. V. Paushkin, V. V. Kushnirov, V. N. Smirnov, and M. D. Ter-avanesyan, Propagation of the yeast prion-like [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor, Embo J, vol.15, pp.3127-3134, 1996.

E. D. Ross, H. K. Edskes, M. J. Terry, and R. B. Wickner, Primary sequence independence for prion formation, Proc. Natl. Acad. Sci. U.S.A, vol.102, 2005.

M. Sawaya, M. Sawaya, S. Sambashivan, S. Sambashivan, R. Nelson et al., Atomic structures of amyloid cross-beta spines reveal varied steric zippers, Nature, vol.447, pp.453-457, 2007.

A. Schuetz, C. Wasmer, B. Habenstein, R. Verel, J. Greenwald et al., Protocols for the sequential solid-state NMR spectroscopic assignment of a uniformly labeled 25 kDa protein: HET-s(1-227), Chembiochem, vol.11, pp.1543-1551, 2010.

A. K. Schütz, B. Habenstein, N. Luckgei, L. Bousset, Y. Sourigues et al., Solid-state NMR sequential assignments of the amyloid core of full-length Sup35p, Biomol. NMR Assign, vol.8, pp.349-356, 2014.

F. Shewmaker, D. Kryndushkin, B. Chen, R. Tycko, and R. B. Wickner, Two prion variants of Sup35p have in-register parallel beta-sheet structures, independent of hydration, Biochemistry, vol.48, pp.5074-5082, 2009.

F. Shewmaker, R. B. Wickner, and R. Tycko, Amyloid of the prion domain of Sup35p has an in-register parallel beta-sheet structure, Proc. Natl. Acad. Sci. U.S.A, vol.103, 2006.

T. Shida, Y. O. Kamatari, T. Yoda, Y. Yamaguchi, M. Feig et al., Short disordered protein segment regulates cross-species transmission of a yeast prion, Nat. Chem. Biol, vol.16, pp.756-765, 2020.

J. Shorter and S. Lindquist, Hsp104 catalyzes formation and elimination of self-replicating Sup35 prion conformers, Science, vol.304, pp.1793-1797, 2004.

J. Shorter and S. Lindquist, Hsp104, Hsp70 and Hsp40 interplay regulates formation, growth and elimination of Sup35 prions, Embo J, vol.27, pp.2712-2724, 2008.

A. B. Siemer, A. A. Arnold, C. Ritter, T. Westfeld, M. Ernst et al., Observation of highly flexible residues in amyloid fibrils of the HET-s prion, JACS, vol.128, pp.13224-13228, 2006.

I. Stansfield, K. M. Jones, V. V. Kushnirov, A. R. Dagkesamanskaya, A. I. Poznyakovski et al., The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae, Embo J, vol.14, pp.4365-4373, 1995.

K. Takegoshi, S. Nakamura, and T. Terao, magnetic resonance of rotating solids, J. Chem. Phys, vol.118, p.2325, 2003.

M. Tanaka, P. Chien, N. Naber, R. Cooke, and J. S. Weissman, Conformational variations in an infectious protein determine prion strain differences, Nature, vol.428, pp.323-328, 2004.

M. Tanaka, P. Chien, K. Yonekura, and J. S. Weissman, Mechanism of cross-species prion transmission: an infectious conformation compatible with two highly divergent yeast prion proteins, Cell, vol.121, pp.49-62, 2005.

M. Tanaka, S. R. Collins, B. H. Toyama, and J. S. Weissman, The physical basis of how prion conformations determine strain phenotypes, Nature, vol.442, pp.585-589, 2006.

M. D. Ter-avanesyan, V. V. Kushnirov, A. R. Dagkesamanskaya, S. A. Didichenko, Y. O. Chernoff et al., Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two nonoverlapping functional regions in the encoded protein, Mol. Microbiol, vol.7, pp.683-692, 1993.

P. M. Tessier and S. Lindquist, Prion recognition elements govern nucleation, strain specificity and species barriers, Nature, vol.447, pp.556-561, 2007.

B. H. Toyama, M. J. Kelly, J. D. Gross, and J. S. Weissman, The structural basis of yeast prion strain variants, Nature, vol.449, pp.233-237, 2007.

K. J. Verges, M. H. Smith, B. H. Toyama, and J. S. Weissman, Strain conformation, primary structure and the propagation of the yeast prion, 2011.

, Nat. Struct. Mol. Biol, vol.18, pp.493-499

K. Wang, R. Melki, and M. Kabani, A prolonged chronological lifespan is an unexpected benefit of the [PSI+] prion in yeast, PLoS One, vol.12, p.184905, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01660434

D. S. Wishart and B. D. Sykes, The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data, J. Biomol. NMR, vol.4, pp.171-180, 1994.

G. Zhouravleva, L. Frolova, X. Le-goff, R. Le-guellec, S. Inge-vechtomov et al., Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3, Embo J, vol.14, pp.4065-4072, 1995.