Q. Cao, H. S. Kim, N. Pimparkar, J. P. Kulkarni, C. Wang et al., Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates, Nature, vol.454, pp.495-500, 2008.

J. Ulanski and B. Luszczynska, Solution-Processable Components for Organic Electronic Devices, 2019.

C. K. Lee, J. G. Seo, H. J. Kim, S. J. Hong, G. Song et al., Versatile and Tunable Electrical Properties of Doped Nonoxidized Graphene Using Alkali Metal Chlorides, ACS Appl. Mater. Interfaces, vol.11, pp.42520-42527, 2019.

S. R. Hammond, J. Meyer, N. E. Widjonarko, P. F. Ndione, A. K. Sigdel et al., Low-temperature, solution-processed molybdenum oxide hole-collection layer for organic photovoltaics, J. Mater. Chem, vol.22, pp.3249-3254, 2012.

M. Hösel, D. Angmo, and F. C. Krebs, Handbook of Organic Materials for Optical and (Opto)Electronic Devices: Properties and Applications; Series in Electronic and Optical Materials, pp.473-507, 2013.

L. Zhan, S. Li, T. Lau, Y. Cui, X. Lu et al., Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model, Energy Environ. Sci, vol.2020, pp.635-645

P. K. Basu, S. Kumbhar, K. P. Sreejith, T. S. Yadav, A. Kottantharayil et al., Active area cell efficiency (19%) monocrystalline silicon solar cell fabrication using low-cost processing with small footprint laboratory tools, Bull. Mater. Sci, vol.42, p.33, 2019.

L. Lucera, F. Machui, P. Kubis, H. D. Schmidt, J. Adams et al., Highly efficient, large area, roll coated flexible and rigid OPV modules with geometric fill factors up to 98.5% processed with commercially available materials, Energy Environ. Sci, vol.9, pp.89-94, 2016.

P. J. Taroni, I. Hoces, N. Stingelin, M. Heeney, and E. Bilotti, Thermoelectric Materials: A Brief Historical Survey from Metal Junctions and Inorganic Semiconductors to Organic Polymers, IJC: Org. Electron, vol.54, pp.534-552, 2014.

Q. Zhu, B. Paci, A. Generosi, S. Renaudineau, P. Gouzerh et al., Conductivity via Thermally Induced Gap State in a Polyoxometalate Thin Layer, J. Phys. Chem. C, vol.123, 1922.

M. T. Pope and A. Müller, Polyoxometalate Chemistry: An Old Field with New Dimensions in Several Disciplines, Angew. Chem. Int. Ed. Engl, vol.30, pp.34-48, 1991.

M. Sadakane and E. Steckhan, Electrochemical Properties of Polyoxometalates as Electrocatalysts, Chem. Rev, vol.98, pp.219-238, 1998.

E. Papaconstantinou, Photochemistry of Polyoxometallates of Molybdenum and Tungsten and/or Vanadium, Chem. Soc. Rev, vol.18, pp.1-31, 1989.

P. Gómez-romero, Polyoxometalates as photoelectrochemical models for quantum-sized colloidal semiconducting oxides. Solid State Ion, vol.101, pp.243-248, 1997.

C. Busche, L. Vilà-nadal, J. Yan, H. N. Miras, D. Long et al., Design and Fabrication of Memory Devices Based on Nanoscale Polyoxometalate Clusters, Nature, vol.515, pp.545-549, 2014.

M. Vasilopoulou, E. Polydorou, A. M. Douvas, L. C. Palilis, S. Kennou et al., Annealing-Free Highly Crystalline Solution-Processed Molecular Metal Oxides for Efficient Single-Junction and Tandem Polymer Solar Cells, Energy Environ. Sci, vol.8, pp.2448-2463, 2015.

J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, and M. K. Danquah, Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations, Beilstein J. Nanotechnol, vol.9, pp.1050-1074, 2018.

W. Chen, M. P. Nikiforov, and S. B. Darling, Morphology characterization in organic and hybrid solar cells, Energy Environ. Sci, vol.5, pp.8045-8074, 2012.

B. Paci, A. Generosi, V. Rossi-albertini, P. Perfetti, and R. De-bettignies, The Role of C60 Barrier Layer in Improving the Performances of Efficient Polymer-Based Photovoltaic Devices: An AFM/EDXR Time-Resolved Study, J. Phys. Chem. C, vol.113, 2009.

B. Paci, A. Generosi, V. Rossi-albertini, P. Perfetti, R. De-bettignies et al., Photo-degradation and stabilization effects in operating organic photovoltaic devices by joint photo-current and morphological monitoring, Solar Energy Mater. Solar Cells, vol.92, pp.799-804, 2008.

A. Guerrero and G. Garcia-belmonte, Recent Advances to Understand Morphology Stability of Organic Photovoltaics, Nano-Micro Lett, vol.9, issue.10, 2017.

A. Mcevoy and L. Castaner, Solar Cells: Materials, Manufacture and Operation, 2012.

R. Felici, On the use of energy dispersive X-ray reflection to study the electronic density profile at surfaces and interfaces, Rigaku J, vol.12, pp.11-17, 1995.

J. Daillant, X-ray and Neutron Reflectivity Principles and Applications, 1999.

B. K. Tanner, Grazing incidence X-ray reflectivity and scattering. In Handbook of Advanced Non-Destructive Evaluation, 2018.

S. M. Chebil, G. Vignaud, Y. Grohens, O. Konovalov, M. K. Sanyal et al., Situ X-ray Reflectivity Study of Polystyrene Ultrathin Films Swollen in Carbon Dioxide, Macromolecules, vol.45, pp.6611-6617, 2012.

K. Orita, T. Morimura, T. Horiuchi, and K. Matsushige, In situ energy-dispersive X-ray reflectivity measurements of structural changes in thin films for organic electroluminescent devices, Synth. Met, vol.91, pp.155-158, 1997.

V. Rossi-albertini, B. Paci, and A. Generosi, Energy dispersive X-ray reflectometry as a unique laboratory tool for investigating morphological properties of layered systems and devices, J. Phys. D Appl. Phys, vol.39, pp.461-486, 2006.

A. Generosi, V. Rossi-albertini, G. Rossi, A. M. Paoletti, and R. Caminiti, Energy dispersive X-ray reflectometry of the NO 2 interaction with ruthenium phthalocyanine films, J. Phys. Chem. B, vol.107, pp.575-579, 2003.

A. Generosi, B. Paci, V. Rossi-albertini, P. Perfetti, R. De-bettignies et al., In situ energy dispersive X-ray reflectometry measurements on organic solar cells upon working, Appl. Phys. Lett, vol.87, pp.194110-194112, 2005.

B. Paci, A. Generosi, V. Rossi-albertini, G. D. Spyropoulos, E. Stratakis et al., Enhancement of photo/thermal stability of organic bulk heterojunction photovoltaic devices via gold nanoparticles doping of the active layer, Nanoscale, vol.4, pp.7452-7459, 2012.

B. Paci, A. Generosi, V. Rossi-albertini, P. Perfetti, R. De-bettignies et al., Time resolved morphological study of organic thin film solar cells based on calcium/aluminum cathode material, Chem. Phys. Lett, vol.461, pp.77-81, 2008.

E. Chason and T. M. Mayer, Thin film and surface characterization by specular X-ray reflectivity, Crit. Rev. Solid State Mater. Sci, vol.22, pp.1-67, 1997.

E. Bontempi, L. E. Depero, and P. Bergese, A simple solution to systematic errors in density determination by X-ray reflectivity: The XRR-density evaluation (XRR-DE), Appl. Surf. Sci, vol.253, pp.28-32, 2006.

A. Neuhold, H. Brandner, S. J. Ausserlechner, S. Lorbek, M. Neuschitzer et al., X-ray based tools for the investigation of buried interfaces in organic electronic devices, Org. Electron, vol.14, pp.479-487, 2013.

K. Sakurai, Exploring surfaces and buried interfaces of functional materials by advanced X-ray and neutron techniques, J. Phys. Condens. Matter, vol.22, 2010.

G. Kakavelakis, I. Paradisanos, B. Paci, A. Generosi, M. Papachatzakis et al., Large area-ambient stable Perovskite Solar Cells using MoS2 as hole transport interlayer, Adv. Energy Mater, vol.8, p.170228, 2018.

B. Paci, A. Generosi, R. Generosi, D. Bailo, and V. Rossi-albertini, Joint time-resolved AFM/EDXR techniques for thin films morphological in situ studies, Chem. Phys. Lett, vol.483, pp.159-163, 2009.

L. G. Parratt, Surface Studies of Solids by Total Reflection of X-rays, Phys. Rev, vol.95, pp.359-369, 1954.

P. Ballirano and R. Caminiti, Rietveld refinement on laboratory energy dispersive X-ray diffraction (EDXD) data, J. Appl. Crystallogr, vol.34, pp.757-762, 2001.

Y. Fujii, Analysis of surface roughness correlation function by X-ray reflectivity, Surf. Interface Anal, vol.48, pp.1136-1138, 2016.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI