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Abstract: Organic solar cells, characterized by a symmetrical regular layered structure, are very
promising systems for developing green, low cost, and flexible solar energy conversion devices.
Despite the efficiencies being appealing (over 17%), the technological transfer is still limited by the low
durability. Several processes, in bulk and at interface, are responsible. The quick downgrading of the
performance is due to a combination of physical and chemical degradations. These phenomena induce
instability and a drop of performance in working conditions. Close monitoring of these processes is
mandatory to understand the degradation pathways upon device operation. Here, an unconventional
approach based on Energy Dispersive X-ray Reflectivity (ED-XRR) performed in-situ is used to address
the role of Wells–Dawson polyoxometalate (K6-P2W18O62, hereafter K6-P2W18) as hole transporting
layer in organic photovoltaics. The results demonstrate that K6-P2W18 thin films, showing ideal bulk
and interface properties and superior optical/morphological stability upon prolonged illumination,
are attractive candidates for the interface of durable OPV devices.

Keywords: time resolved EDXR; in-situ X-ray characterization; polyoxymetalate functional materials;
thin films structure and morphology; organic photovoltaics

1. Introduction

In recent decades, photovoltaic technologies have developed as an alternative to silicon, providing
competitive performances. Among them, an important recent aspect deals with integrating organic,
greener, and recyclable components. Organic photovoltaics (OPVs) are, indeed, promising alternatives
for solar-cell energy generation, owing to their solution processability [1,2], tuneable electronic
properties [3], low manufacturing temperature [4], low cost, and abundance of their constituent
elements [5]. Efficiency has reached over 17% [6,7], comparable to the efficiency values obtained by
most commercial silicon solar cells [8], making them quite appealing for commercialization [9,10].
However, shadows remain; especially concerning electronic exchange and degradation at interfaces.

In the search for novel OPV materials, it was recently demonstrated that a K6-P2W18 layer, despite
its N-type semiconductor characteristic, allows an efficient hole transport from the active layer to the
ITO electrode [11].
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Indeed, K6-P2W18 is part of the polyoxometalates (POMs) compounds, belonging to a wide class
of transition metal molecular oxides which are emerging as serious candidates for charge transport
layers. Well-known for their remarkable, reversible and multiple, redox properties [12,13], they are
also interesting models for quantum-sized semiconducting oxides [14,15], and they are increasingly
used as components in molecular electronic devices such as non-volatile memories [16] or organic
solar cells [11,17]. Among them, Wells–Dawson- and Keggin-type polyoxotungstates are particularly
promising, owing to their richer redox properties. The recent development of film fabrication techniques
now enables them to be used as independent interfacial layers in OSCs, either as electron or hole
transport layers (ETLs/HTLs, respectively).

Here, we explore the effect of prolonged illumination on the morphology of a novel system using
a thin layer of a Wells–Dawson polyoxometalate (K6-P2W18) as the hole transporting layer (HTL),
inserted between the P3HT-donor:PCBM-acceptor bulk heterojunction (BHJ) and the Glass/Indium tin
oxide (ITO) electrode. Poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester
were used as the active layer in the solar cell process; a well-known P/N junction frequently used as
a model.

This study represents an essential step toward device optimization, since the performance of OPV
cells based on BHJs is closely related to the morphological characteristics of the various components at
the nanoscale, and many recent investigations focusing on this aspect have addressed this issue [18–21].
Suitable morphology of the layers is required to achieve adequate donor/acceptor separation and
transport to the electrodes [22]. For this reason, device materials’ morphology evolution under working
conditions can be a major degradation pathway, and close monitoring of these processes is mandatory
to understand the physical and chemical processes occurring during device operation [23].

With these constrains in mind, time-resolved in-situ Energy Dispersive (ED) X-ray reflectometry
(XRR) is proposed to approach our investigation. Indeed, XRR is a powerful method for investigating
monolithic and multi-layered film structures, and is highly sensitive to the electron density gradients
of the investigated systems [24,25], allowing us to determine the mass density, the thickness,
and the roughness of thin layers/multilayers [26], as well as being particularly well suited for in-situ
studies [25–28], being a minimally interacting remote probe. However, its application to the study
of dynamic processes is severely limited by the time resolution of the measurement as traditionally
performed—in the angular dispersive mode (AD) [20]—while the advantages of the ED technique find
their best output in in-situ time resolved experiments [29–35].

ED-XRR has proved extremely useful to observe and study aging mechanisms and address
strategies towards inhibiting them in photovoltaic devices of different kinds, and has strongly
contributed to unravelling the physical–chemical mechanisms occurring inside devices at buried
interfaces [36,37].

This approach is hereby applied to explore the effect of prolonged illumination upon a novel system
using a thin layer of a Wells–Dawson polyoxometalate (K6-P2W18) as a transport layer, and inserting
this material as hole transporting layer (HTL) between a P3HT:PCBM blend (active material) and
glass/indium tin oxide.

2. Materials and Methods

2.1. Materials

Glass substrates coated with indium tin oxide (ITO) (75 Ω.cm−1) were purchased from Solems
(Palaiseau France) and used as a transparent conductive oxide (TCO). The TCO was etched with
chlorhydric acid in the presence of Zn0 and transferred directly into a glovebox for spin coating to
ensure clean deposition. In the meantime, a solution at a different concentration of K6-P2W18 in dried
dimethyl sulfoxide and sonicate was prepared for 30 min prior the deposition.
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Poly(3-hexylthiophene) (P3HT), [6,6]-phenyl-C61-butyric acid methyl ester (PCBM, purity 99.5%)
dimethyl sulfoxide (DMSO, purity 99.9%) and 1,2-dichlorobenzene (ODCB, purity 99%), were all
purchased from Sigma-Aldrich.

2.2. Layers Preparation

The K6-P2W16O62 and P3HT:PCBM blends were deposited by spin-coating on top of the commercial
ITO. Different concentrations in weights of K6-P2W18 powder were used to prepare thin and thick
films, of 10 mg/mL (2.2 × 10−3 mol/L) and 100 mg/mL (2.2 × 10−2 mol/L), respectively. To deposit thin
films, a two-step spin-coating procedure was followed: a first deposition at 500 rpm for 10 s and a
second at 2600 rpm for 50 s. To obtain thick films, the 100 mg/mL solution was spin-coated in three
steps: step 1 at 500 rpm for 30 s, step 2 at 900 rpm for 20 s, and step 3 at 2600 rpm for 10 s. Subsequently,
the films were annealed at 140 ◦C for 10 min in a nitrogen glovebox.

Subsequently, a 100~150 nm the active layer bulk heterojunction (BHJ) consisting of P3HT:PCBM
(15 mg/mL for P3HT, 12 mg/mL for PCBM, blended in ODCB) was deposited onto the HTL and
subsequently annealed under nitrogen in a glovebox at 100 ◦C for 15 min.

The layers were then introduced onto a thermal evaporator with 0.8 nm of lithium Fluoride (LiF)
at 0.2 nm/s and more than 80 nm of aluminium at 0.8 nm/s deposited by Joule effect.

Devices were then transferred (via a channel to control atmosphere) to a probe station to be
measured and characterized.

2.3. Methods

The ED-XRR technique was applied to monitor the morphological (thickness and interface
roughness) and electron density parameters [29] on the materials of interest in their pristine state and
during prolonged illumination. A tungsten anode X-ray tube was used as source, emitting radiation
ranging up to E = 50 keV. The generator was set at 30 mA, and detection was accomplished using an
ORTEC solid state Ge- single crystal detector. These experimental conditions allowed for no material
damage to occur [38].

In the ED configuration, no monochromator is required, and the whole emitted “white” radiation
is focused, in reflection mode, onto the samples, located in the optical centre of the instrument on
top of a set of step-motors and a rotating cradle. In this configuration, static measurements can be
performed and in-situ time-resolved measurements are possible. In fact, the detector plays a double
role. It not only counts the incoming photons, but is also able to reveal their energy, thus allowing
us to collect a whole X-ray reflectivity pattern simultaneously in the scattering parameter range of
interest without any mechanical movement of the spectrometer arms, thus ensuring the same scattering
volume is probed.

Complementary Atomic Force Microscopy (AFM) images were collected in tapping mode on
an air-operating in-house-designed apparatus, mounting a scanner ranging a maximum area of
30 µm × 30 µm [39]. Silicon probes were used (frequency (υ) = 300 kHz, spring constant = 40 Nm−1

for tapping, and υ= 75 kHz, k = 0.2 N.m−1 for contact mode). Images were collected in one direction
only, and 500 points per line were acquired.

UV-Vis spectroscopy spectra were collected in reflection mode by means of a double
beam spectrometer (Jasco V630) with a thin film sample holder. Base line subtraction was
automatically performed.

The photovoltaic devices were characterized in a glovebox under nitrogen using a probe station
connected on a SourceMeter from Tektronix, model 2406; the measurements were recorded on an
optical bench, with a solar simulator providing AMG1.5 solar spectra at the desired power (80 mW/cm2

in this experiment).
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3. Results

3.1. Ex-Situ Measurements

ED-XRR measurements were first performed ex situ in order to accurately deduce the electron
density ρe and the morphological characteristics—thickness d and roughness σ—of each layer
composing the system under investigation. As reported in Figure 1, the reflectivity patterns of
glass/ITO, glass/ITO/HTL, and glass/ITO/HTL/BHJ samples, being representative of a whole set of
investigated films, are reported (dots) together with the best Parratt fit (red lines) [40].
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Figure 1. Reflectivity edges of the various materials, layer by later. Red lines are the Parratt fits
used to deduce electron density, as follows: glass/ITO, ρe = 5.6 × 10−5 Å−2; glass/ITO/ K6-P2W18
ρe = 3.04 × 10−5 Å−2; glass/ITO/ K6-P2W18/P3HT:PCBM, ρe = 1.3 × 10−5 Å−2.

Reciprocal space regions, depending on the different position of the critical reflection edges (qc)
associated with the materials under investigation, and the reflectivity edges of the various materials,
layer by layer, were monitored.

Electron densities were deduced according to the equation relating critical scattering parameter
and critical angle qc � αc/λ with αc ≈

√
2δ = λ

√
reρel/π (λ being the incident wavelength, ρe the

material density and re the classical electron radius [41]): glass/ITO, ρe = 5.6 × 10−5 Å−2; glass/ITO/

K6-P2W18 ρe = 3.04 × 10−5 Å−2; glass/ITO/ K6-P2W18/P3HT:PCBM, ρe = 1.3 × 10−5 Å−2. These values
were found to be in excellent agreement with the expected values calculated on the basis of the nominal
mass densities of the materials and their composition [30]. Morphological parameters were also
deduced and are reported in Table 1 for clarity.

Table 1. Morphological parameters deduced by the Parratt fitting of patterns in Figure 1.

Sample Thickness d(Å) Roughness σ(Å)

Glass/ITO 1160(5) 8(1)
Glass/ITO/HTL 435(5) 5(1)

Glass/ITO/HTL/BHJ 1520(5) 5(1)

3.2. In-Situ Time-Resolved Measurements

K6-P2W18 films of different thicknesses were deposited on top of glass only, and in-situ
time-resolved ED-XRR measurements were performed under illumination (24 h) to ensure the
stability of the material independently of the device architecture. The acquisition time was 20 min,
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in order to optimize the signal to noise ratio while preserving a reasonable time resolution to detect
morphological/electron density degradation occurring as a consequence of light/ temperature induced
while the cell was illuminated with a white light lamp (10 mW/cm2).

The results for two films are reported in Figure 2. The ED-XRR patterns are plotted as a function
of the scattering parameter and illumination time. Experimental conditions were set to detect both
the critical edge (qc)—crucial for electron density determination—and a sufficient number of Kiessig
fringes—essential to determine the morphological parameters (film thickness and roughness) [42]
by means of the Parratt fitting procedure (red line) [34]. As visible to the naked eye, no degradation
occurred upon light exposure, and no variation in the pattern shape (fringes frequency, curve slope or
edge position) was detected, as evidenced by arrows connecting the minima of a Kiessig fringe; thus
ensuring the possibility to precisely observe the real-time evolution of the system. The morphological
parameters remained stable as well as the electron density for both films: (A) d = 120(5) Å and
σ = 7(1) Å; (B) d = 515(5) Å and σ = 4(1) Å.
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Figure 2. In situ time resolved morphological and electron density monitoring glass/HTL samples under
illumination, representative of different thicknesses (d) taken into account: (A) d = 120Å; (B) d = 515Å.
Parratt fit (red line)—used to deduce morphological parameters and electron density—is shown for the
first pattern.

The same experimental procedure was followed after depositing the HTL material on top of a
glass/ITO, with indium tin oxide being a semiconductor with a wide band gap ( eV), having excellent
photo electrolytic properties, and being transparent (80–95%) in the visible range. In the system under
investigation, it represents the transparent electrode—of particular interest to high efficiency OPV
solar cells. As visible in Figure 3, ITO strongly modifies the overall system: the indium tin oxide
reflection edge (qc ITO) affects the ED-XRR patterns—its electron density being much higher than
that of HTL. The In adsorption edge is also visible in the figure near 0.065 Å. The monitoring of the
real time reflectivity evolution was possible in the same experimental conditions as for the glass/HTL
system, and the Parratt fitting (red line) procedure was performed. In Figure 3B, the time evolution of
ρe HTL is reported, with no modification occurring. The film thickness d = 520(5) Å and roughness
σ = 5(1) Å were also stable.
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Figure 3. (A) In-situ time-resolved EDXR patterns of glass/ITO/HTL collected upon prolonged
illumination. As visible, despite the presence of ITO reflectivity and absorption edge, HTL signal
is still detected and fitted by Parratt model (red line). (B) Electron density monitoring showing no
modification. (C) UV-VIS spectra collected prior (red line) and after illumination (black line).

Despite the apparent morphological stability, the UV-Vis absorption measurements (Figure 3C)
performed upon the pristine (red line) and illuminated (black line) system demonstrate a slight aging
in terms of decreased overall absorption intensity. The absorption bands remain in the same positions,
at 513(2) nm, 552(2) nm, and 602(2) nm, respectively.

Since XRR measurements of layered systems enables us to deduce both the surface and buried
interface roughness of the system [29], AFM measurements (10 µm × 10 µm) were performed to further
characterize the surface texture of the sample before and after illumination. The results shown in
Figure 4 are representative of several explored portions of the pristine and aged sample, clearly showing
that no surface modification occurred as consequence of prolonged illumination, thus supporting the
reflectivity data.
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Figure 4. AFM images—representative of several investigated portions—collected upon the
glass/ITO/HTL intermediate sample shown in Figure 3 (d = 520 Å), before and after prolonged
illumination, supporting ED-XRR data, proving no morphological modification occurred as a
consequence of aging.
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The estimated mean surface roughness was σAFM = 5.2(5) nm on the as-deposited sample,
and σAFM = 5.0(5) nm for the illuminated sample; the granular texture was preserved.

Subsequently, the BHJ was deposited on top of the HTL. It is well-known that the hole and electron
extracting interlayers in the organic solar cells play an important role in high-performing devices,
and monitoring their interfacial and superficial morphological/electron density properties is crucial.

Time-resolved ED-XRR patterns were collected in situ for 60 h overall in the previously described
experimental conditions. The time evolution of morphological parameters and electron density was
obtained, giving an insight into the physical process occurring at the HTL/BHJ interface during
illumination. As visible in Figure 5, where the XRR patterns are plotted in linear scale for clarity,
with illumination time, oscillations appear at higher q values (labelled in the figure with a dot), and the
amplitude is strongly enhanced.
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Figure 5. (A) Sequence of Reflectivity Patterns collected upon the complete system as a function of
illumination time and scattering parameter. Strong electron density increase is observed as indicated by
the rise of new Kiessig fringes labelled with a black dot. In Figure (B), the electron density percentage
increase is shown as deduced by the accurate Parratt fitting of each pattern in (A). A sigmoidal trend
(red line) is observed. (C) UV-VIS spectra were collected prior to (red line) and after illumination
(black line).

Theoretical modelling of reflectivity patterns attributes the amplitude variation either to a
roughness variation or to an electronic density increase. However, roughness modification is strictly
entangled to a slope variation of the curves, which is not the present case. The Parratt fitting procedure
was performed on all spectra, and no morphological modification was observed (d = 1460(5) Å,
σ = 5(1) Å). However, as previously reported [11], after illumination, a strong electron density increase
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was observed for the HTL material. The fit of the time-resolved experimental data reported in Figure 5A
allowed the evolution of ρe to be followed, and the results are reported in Figure 5B. A sigmoidal trend
was observed, with 8 h of induction time, and saturation reached after 30 h.

In Figure 5C, UV-Vis absorption spectra of the pristine (red line) and aged (black line) system
show moderate aging due to prolonged illumination. The absorption bands are still clearly detected
and perfectly overlap those previously measured and reported in Figure 3: 512(2) nm, 553(2) nm,
603(2) nm.

3.3. Photovoltaic Characterization Data

Finally, K6-P2W18 was implemented into a full stack of layers to produce a photovoltaic cell.
The results are presented in Figure 6.
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Figure 6. Current density as a function of the applied bias of an {ITO/K6-P2W18(>45 nm)/P3HT-PCM
(120 nm)/LiF(0.7 nm)/Al} solar cell, at 80 mW/cm2. The curve corresponding to the I(V) characterization
performed in the dark is reported as a black line; the I(V) curve under illumination is plotted as a red
dash line. The inset graph is a zoom into the fourth quadrant to highlight the fill factor, measured at 45%.

The graph presented in Figure 6 is characteristic of an I(V) for solar cell under illumination and in
the dark. In the absence of light (black line), the device behaves as a Schottky diode. It is blocking at
a negative bias and passing at a positive bias. Under illumination, the black curve is shifted in the
negative current, demonstrating the photovoltaic effect and the efficiency (at least in terms of electronic
building bands) of the device. The shape of the red dash curve in Figure 6 is the proof that K6-P2W18
is acting as an electronic relay from the P3HT:PCBM blend to the ITO for the holes, and from ITO to
P3HT:PCBM for the electrons. If not, the curve would likely be a straight line passing through zero (in
dark and light analysis) and a bad band adjustment of K6-P2W18, which is not the case.

In this measurement, the efficiency was calculated at almost 3%, with an open circuit voltage of
0.58V and a current density of 8.9 mA/cm2.

The presence of the POM at the anodic side adjacent to ITO allows a photocurrent under
illumination despite the band misalignment [11], thanks to the presence of the gap state below the
Fermi level.

4. Discussion

Degradation effects and aging under ambient conditions/during operation are the main issues
to address for a proper improvement in OPV technologies. In these devices, several degradation
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pathways are present, related to the intrinsic components, to exposure to air/moisture, to heat induced
by illumination and light itself, as well as the architecture instability mostly associated with interface
aging phenomena.

With these constraints in mind, we have performed an accurate in-situ time-resolved investigation
of the morphological and optical stability of a polyoxometalate film by means of ED-XRR, AFM,
and UV-Vis spectroscopy.

We have demonstrated the stability of the K6-P2W18 films, independent of their thickness; UV-Vis
measurements showed that the material presented a slight decrease in the overall absorption after 24 h
of exposure. However, despite the light/material interaction, film thickness, roughness and electron
density were preserved.

Subsequently, the polyoxometalate film was deposited on top of the transparent glass/ITO
electrode, the in-situ time-resolved ED-XRR technique allowed the morphological and electron density
to be accurately monitored. The K6-P2W18 film retained its previously described characteristics.

Finally, the BHJ was deposited on top of the structure and the complete system was illuminated
for 60 h, and promising behaviour for further OPV implementation was observed: the POM film as
well as the BHJ were morphologically stable. No increase in roughness was observed, indicating
interface stability. Interestingly, it was possible to monitor the HTL/BHJ interface electron density
evolution over time during illumination, and an increase of 3.5% was observed.

Therefore, this phenomenon can be directly related to the electronic processes in the OPV structure.
Indeed, under illumination, an exciton is generated in the P semiconductor, and is separated into two
free charges due to the internal field at the P/N junction of the solar cell.

In this article, we have demonstrated that the POM acts as an electronic relay. The appearance of
a photocurrent under illumination implies that charges are driven across the POM layer: electrons
migrate from the ITO to the P3HT-PCBM, and holes are driven from the P3HT-PCBM to the ITO (to
conserve the electrical neutrality).

In samples measured by ED-XRR, the ITO is grounded, whereas the P3HT:PCBM is not connected
so the circuit is not closed. It is not a full device, but only half of it. As a result, the charges provided by
the ITO are trapped, whereas they are collected by the POM material at the POM/P3HT:PCBM interface.

5. Conclusions

In conclusion, the combination of the photovoltaic measurements and ED-XRR observations
indicate two major conclusions regarding the electronic process in which the K6-P2W18 is involved.
First, as an interlayer, K6-P2W18 can drive holes from P3HT:PCBM to ITO; this is counter-intuitive,
because POM are known as N-type semiconductors. The second conclusion comes from the increase
in the density of electrons at the POM/active layer interface. Indeed, this fact proves that electrons
cannot be driven from the P3HT:PCBM layer to ITO. The K6-P2W18 is thus hole sensitive and selective,
despite its N-type behaviour. That also proves the electronic bridging of the solar cell at the anodic
side was well constructed. Moreover, great stability for the polyoxometalate layer was observed upon
illumination, retaining its ability as a hole transporting layer for more than 30 h. UV-Vis spectroscopy
supported this indication—the overall loss of light absorbance capability being very limited after such
a prolonged illumination.

Due to the combination of the homemade set-up (ED-XRR + AFM, + light) and the K6-P2W18O62,
we have demonstrated that the high reproducibility of measurements allows following aging processes
over several hours. These experimental ED-XRR observations of the HTL stability in working conditions
are promising indications for the further implementation of the glass/ITO/ K6-P2W18/PH3T:PCBM
into a complete OPV device.
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