S. Dekkers, P. Krystek, R. J. Peters, D. P. Lankveld, B. G. Bokkers et al., Presence and risks of nanosilica in food products, Nanotoxicology, vol.5, pp.393-405, 2011.

P. J. De-temmerman, E. Van-doren, E. Verleysen, Y. Van-der-stede, M. A. Francisco et al., Quantitative characterization of agglomerates and aggregates of pyrogenic and precipitated amorphous silica nanomaterials by transmission electron microscopy, J. Nanobiotechnol, vol.10, p.1418, 2012.

J. H. Arts, H. Muijser, E. Duistermaat, K. Junker, and C. F. Kuper, Five-day inhalation toxicity study of three types of synthetic amorphous silicas in Wistar rats and post-exposure evaluations for up to 3 months, Food Chem. Toxicol, vol.45, pp.1856-1867, 2007.

B. Sun, X. Wang, Y. P. Liao, Z. Ji, C. H. Chang et al., Repetitive Dosing of Fumed Silica Leads to Profibrogenic Effects through Unique Structure-Activity Relationships and Biopersistence in the Lung, ACS Nano, vol.10, pp.8054-8066, 2016.

P. C. Van-kesteren, F. Cubadda, H. Bouwmeester, J. C. Van-eijkeren, S. Dekkers et al., Novel insights into the risk assessment of the nanomaterial synthetic amorphous silica, additive E551, in food, Nanotoxicology, vol.9, pp.442-452, 2015.

C. Fruijtier-polloth, The safety of nanostructured synthetic amorphous silica (SAS) as a food additive (E 551), Arch. Toxicol, vol.90, pp.2885-2916, 2016.

S. Murugadoss, D. Lison, L. Godderis, S. Van-den-brule, J. Mast et al., Toxicology of silica nanoparticles: An update, Arch. Toxicol, vol.91, pp.2967-3010, 2017.

M. Yazdimamaghani, P. J. Moos, M. A. Dobrovolskaia, and H. Ghandehari, Genotoxicity of amorphous silica nanoparticles: Status and prospects, Nanomedicine Nanotechnol. Boil. Med, vol.16, pp.106-125, 2019.

C. O. Asweto, H. Hu, S. Liang, L. Wang, M. Liu et al., Gene profiles to characterize the combined toxicity induced by low level co-exposure of silica nanoparticles and benzo[a]pyrene using whole genome microarrays in zebrafish embryos, Ecotoxicol. Environ. Saf, vol.163, pp.47-55, 2018.

C. O. Asweto, J. Wu, H. Hu, L. Feng, X. Yang et al., Combined Effect of Silica Nanoparticles and Benzo[a]pyrene on Cell Cycle Arrest Induction and Apoptosis in Human Umbilical Vein Endothelial Cells, Int. J. Environ. Res. Public Health, vol.14, p.289, 2017.

J. Wu, Y. Shi, C. O. Asweto, L. Feng, X. Yang et al., Co-exposure to amorphous silica nanoparticles and benzo[a]pyrene at low level in human bronchial epithelial BEAS-2B cells, Environ. Sci. Pollut. Res. Int, vol.23, pp.23134-23144, 2016.

J. Wu, J. Zhang, J. Nie, J. Duan, Y. Shi et al., The chronic effect of amorphous silica nanoparticles and benzo[a]pyrene co-exposure at low dose in human bronchial epithelial BEAS-2B cells, Toxicol. Res, vol.8, pp.731-740, 2019.

C. F. Lu, L. Z. Li, W. Zhou, J. Zhao, Y. M. Wang et al., Silica nanoparticles and lead acetate co-exposure triggered synergistic cytotoxicity in A549 cells through potentiation of mitochondria-dependent apoptosis induction, Environ. Toxicol. Pharmacol, vol.52, pp.114-120, 2017.

M. Ahamed, M. J. Akhtar, and H. A. Alhadlaq, Co-Exposure to SiO 2 Nanoparticles and Arsenic Induced Augmentation of Oxidative Stress and Mitochondria-Dependent Apoptosis in Human Cells, Int. J. Environ. Res. Public Health, vol.16, p.3199, 2019.

X. Q. Cao, G. M. Deloid, D. Bitounis, R. De-la-torre-roche, J. C. White et al., Co-exposure to the food additives SiO 2 (E551) or TiO 2 (E171) and the pesticide boscalid increases cytotoxicity and bioavailability of the pesticide in a tri-culture small intestinal epithelium model: Potential health implications, Environ. Sci.-Nano, vol.6, pp.2786-2800, 2019.

L. M. Costantini, R. M. Gilberti, and D. A. Knecht, The phagocytosis and toxicity of amorphous silica, PLoS ONE, vol.6, 2011.

B. Dalzon, C. Aude-garcia, V. Collin-faure, H. Diemer, D. Béal et al., Differential proteomics highlights macrophage-specific responses to amorphous silica nanoparticles, vol.9, pp.9641-9658, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01691353

B. Kim, H. Kim, and I. J. Yu, Assessment of nanoparticle exposure in nanosilica handling process: Including characteristics of nanoparticles leaking from a vacuum cleaner, Ind. Health, vol.52, pp.152-162, 2014.

S. Oh, B. Kim, and H. Kim, Comparison of nanoparticle exposures between fumed and sol-gel nano-silica manufacturing facilities, Ind. Health, vol.52, pp.190-198, 2014.

A. Tarantini, T. Douki, M. B. Personnaz, J. L. Besombes, J. L. Jafrezzo et al., Effect of the chemical composition of organic extracts from environmental and industrial atmospheric samples on the genotoxicity of polycyclic aromatic hydrocarbons mixtures, Toxicol. Environ. Chem, vol.93, pp.941-954, 2011.
URL : https://hal.archives-ouvertes.fr/insu-00647632

A. Tarantini, A. Maitre, E. Lefebvre, M. Marques, C. Marie et al., Relative contribution of DNA strand breaks and DNA adducts to the genotoxicity of benzo[a]pyrene as a pure compound and in complex mixtures, Mutat. Res, vol.671, pp.67-75, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01903200

T. Nikolova, F. Marini, and B. Kaina, Genotoxicity testing: Comparison of the ?H2AX focus assay with the alkaline and neutral comet assays, Mutat. Res, vol.822, pp.10-18, 2017.

T. Lesuffleur, N. Porchet, J. P. Aubert, D. Swallow, J. R. Gum et al., Differential expression of the human mucin genes MUC1 to MUC5 in relation to growth and differentiation of different mucus-secreting HT-29 cell subpopulations, J. Cell Sci, vol.106, pp.771-783, 1993.

M. Dorier, C. Tisseyre, F. Dussert, D. Béal, M. E. Arnal et al., Toxicological impact of acute exposure to E171 food additive and TiO 2 nanoparticles on a co-culture of Caco-2 and HT29-MTX intestinal cells, Mutat. Res, vol.845, p.402980, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01978322

D. Ferraro, U. Anselmi-tamburini, I. G. Tredici, V. Ricci, and P. Sommi, Overestimation of nanoparticles-induced DNA damage determined by the comet assay, Nanotoxicology, vol.10, pp.861-870, 2016.

Z. Magdolenova, Y. Lorenzo, A. Collins, and M. Dusinska, Can standard genotoxicity tests be applied to nanoparticles?, J. Toxicol. Environ. Health Part A, vol.75, pp.800-806, 2012.

J. L. Ravanat, B. Duretz, A. Guiller, T. Douki, and J. Cadet, Isotope dilution high-performance liquid chromatography-electrospray tandem mass spectrometry assay for the measurement of 8-oxo-7,8-dihydro-2 -deoxyguanosine in biological samples, J. Chromatogr. B Biomed. Sci. Appl, vol.715, pp.349-356, 1998.
URL : https://hal.archives-ouvertes.fr/hal-01974404

M. W. Pfaffl, A. Tichopad, C. Prgomet, and T. P. Neuvians, Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations, Biotechnol. Lett, vol.26, pp.509-515, 2004.

M. W. Pfaffl, A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acids Res, vol.29, 2001.

B. Drasler, P. Sayre, K. G. Steinhauser, A. Petri-fink, and B. Rothen-rutishauser, vitro approaches to assess the hazard of nanomaterials, vol.8, p.51, 2017.

C. Genies, A. Maître, E. Lefèbvre, A. Jullien, M. Chopard-lallier et al., The extreme variety of genotoxic response to benzo[a]pyrene in three different human cell lines from three different organs, PLoS ONE, vol.8, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01903135

T. Lindahl and R. D. Wood, Quality control by DNA repair, Science, vol.286, pp.1897-1905, 1999.

M. D. Wyatt and D. L. Pittman, Methylating agents and DNA repair responses: Methylated bases and sources of strand breaks, Chem. Res. Toxicol, vol.19, pp.1580-1594, 2006.

J. A. Champion, A. Walker, and S. Mitragotri, Role of particle size in phagocytosis of polymeric microspheres, Pharm. Res, vol.25, pp.1815-1821, 2008.

N. Oh and J. H. Park, Endocytosis and exocytosis of nanoparticles in mammalian cells, Int. J. Nanomed, vol.2014, pp.51-63

M. Dorier, D. Beal, C. Tisseyre, C. Marie-desvergne, M. Dubosson et al., The food additive E171 and titanium dioxide nanoparticles indirectly alter the homeostasis of human intestinal epithelial cells in vitro, Environ. Sci.-Nano, vol.6, pp.1549-1561, 2019.
URL : https://hal.archives-ouvertes.fr/cea-02101713

L. Di-cristo, D. Movia, M. G. Bianchi, M. Allegri, B. M. Mohamed et al., Proinflammatory Effects of Pyrogenic and Precipitated Amorphous Silica Nanoparticles in Innate Immunity Cells, Toxicol. Sci, vol.150, pp.40-53, 2016.

H. Zhang, D. R. Dunphy, X. Jiang, H. Meng, B. Sun et al., Processing pathway dependence of amorphous silica nanoparticle toxicity: Colloidal vs pyrolytic, J. Am. Chem. Soc, vol.134, pp.15790-15804, 2012.

G. Klein, S. Devineau, J. C. Aude, Y. Boulard, H. Pasquier et al., Interferences of Silica Nanoparticles in Green Fluorescent Protein Folding Processes, Langmuir, vol.32, pp.195-202, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01252408

L. Feng, X. Yang, Y. Shi, S. Liang, T. Zhao et al., Co-exposure subacute toxicity of silica nanoparticles and lead acetate on cardiovascular system, Int. J. Nanomed, vol.13, pp.7819-7834, 2018.

M. Guo, X. Xu, X. Yan, S. Wang, S. Gao et al., In vivo biodistribution and synergistic toxicity of silica nanoparticles and cadmium chloride in mice, J. Hazard. Mater, vol.260, pp.780-788, 2013.

H. Hu, Y. Shi, Y. Zhang, J. Wu, C. O. Asweto et al., Comprehensive gene and microRNA expression profiling on cardiovascular system in zebrafish co-exposured of SiNPs and MeHg, Sci. Total Environ, vol.607, pp.795-805, 2017.

X. Yang, L. Feng, Y. Zhang, H. Hu, Y. Shi et al., Co-exposure of silica nanoparticles and methylmercury induced cardiac toxicity in vitro and in vivo, Sci. Total Environ, vol.631, pp.811-821, 2018.

Y. Yu, J. Duan, Y. Li, Y. Yu, M. Jin et al., Combined toxicity of amorphous silica nanoparticles and methylmercury to human lung epithelial cells, Ecotoxicol. Environ. Saf, vol.112, pp.144-152, 2015.

M. Nakamura, S. Imaoka, F. Amano, and Y. Funae, P450 isoforms in a murine macrophage cell line, RAW264.7, and changes in the levels of P450 isoforms by treatment of cells with lipopolysaccharide and interferon-gamma, Biochim. Biophys. Acta, vol.1385, pp.101-106, 1998.

A. Torres, B. Dalzon, V. Collin-faure, and T. Rabilloud, Repeated vs. Acute Exposure of RAW264.7 Mouse Macrophages to Silica Nanoparticles: A Bioaccumulation and Functional Change Study, Nanomaterials, vol.10, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02461005

E. Demir and V. Castranova, Genotoxic effects of synthetic amorphous silica nanoparticles in the mouse lymphoma assay, Toxicol. Rep, vol.3, pp.807-815, 2016.

A. Haase, N. Dommershausen, M. Schulz, R. Landsiedel, P. Reichardt et al., Genotoxicity testing of different surface-functionalized SiO 2 , ZrO 2 and silver nanomaterials in 3D human bronchial models, Arch. Toxicol, vol.91, pp.3991-4007, 2017.

E. Maser, M. Schulz, U. G. Sauer, M. Wiemann, L. Ma-hock et al., In vitro and in vivo genotoxicity investigations of differently sized amorphous SiO 2 nanomaterials, Mutat. Res. Genet. Toxicol. Environ. Mutagen, vol.794, pp.57-74, 2015.

J. W. Wills, N. Hondow, A. D. Thomas, K. E. Chapman, D. Fish et al., Genetic toxicity assessment of engineered nanoparticles using a 3D in vitro skin model (EpiDerm?), Part. Fibre Toxicol, vol.13, 2016.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI