Integration over angular variables for two coupled matrices - Archive ouverte HAL Access content directly
Book Sections Year : 2001

Integration over angular variables for two coupled matrices

(1) , (1) , (1)
1

Abstract

An integral over the angular variables for two coupled $n$ x $n$ real symmetric, complex hermitian or quaternion self-dual matrices is expressed in term of the eigenvalues and eigenfunctions of a hamiltonian closely related to the Calogero hamiltinian. This generalizes the known result for the complex hermitian matrices. The integral can thus be evaluated for $n = 2$ and reduced to a single sum for $n = 3$
Fichier principal
Vignette du fichier
MaMehNo.pdf (264.11 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

cea-02905122 , version 1 (23-07-2020)

Identifiers

  • HAL Id : cea-02905122 , version 1

Cite

G. Mahoux, M.L. Mehta, J.-M. Normand. Integration over angular variables for two coupled matrices. Pavel Bleher; Alexander Its. Random Matrix Models and Their Applications, 40, Cambridge UP, pp.301-320, 2001, MSRI Publications, 0-521-80209-1. ⟨cea-02905122⟩
31 View
13 Download

Share

Gmail Facebook Twitter LinkedIn More