. See-for-example, M. L. Matrix-theory, and . Mehta, Les Editions de Physique, 91944 Les Ulis Cedex, 1989.

G. Mahoux and M. L. Mehta, A method of integration over matrix variables IV, J. Phys. I France, vol.1, pp.1093-1108, 1991.
URL : https://hal.archives-ouvertes.fr/jpa-00246395

, §10.3 (5); or G. Szegö, Orthogonal polynomials, vol.2, 1939.

B. Eynard,

E. Brézin and S. Hikami, Characteristic polynomials of random matrices, Comm. Math. Phys, vol.214, pp.111-135, 2000.

J. P. Keating and N. C. Snaith, Random matrix theory and ?(1/2 + it), Comm. Math. Phys, vol.214, pp.57-89, 2000.

J. P. Keating and N. C. Snaith, Random matrix theory and L-functions at s = 1/2, Comm. Math. Phys, vol.214, pp.91-110, 2000.

C. P. Hughes, J. P. Keating, and N. O'connell, Random matrix theory and the derivative of the Riemann zeta function, Proc. Royal Soc. London A: Math, vol.456, pp.2611-2627, 2000.

, See for example, reference 1

M. L. Mehta, , 1991.

N. G. De-bruijn, On some multiple integrals involving determinants, J. Indian Math. Soc, vol.19, pp.133-151, 1955.

, See for example, Higher transcendental functions Bateman manuscript project, MacGraw Hill, vol.2, 1953.

P. J. Forrester, N. S. Witte, and ;. J. Forrester, Application of the ? -function theory of Painlevé equations to random matrices: PIV, PII and GUE, (preprint), equation (4.43) and the paragraph following equation (4.44). See also T.H. Baker and P, Comm. Math. Phys, vol.188, pp.175-216, 1997.