, Report to the General Assembly, with Scientific Annexes (United Nations, 1993.

A. V. Yablokov, V. B. Nesterenko, and A. V. Nesterenko, Chernobyl: Consequences of the Catastrophe for People and the Environment, vol.1181, 2009.

K. A. Higley, Environmental consequences of the chernobyl accident and their remediation: Twenty years of experience, International Atomic Energy Agency, vol.121, pp.476-477, 2006.

O. Evrard, Evidence of the radioactive fallout in France due to the Fukushima nuclear accident, J. Environ. Radioact, vol.114, p.24, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01006585

N. Evangeliou, Y. Balkanski, A. Cozic, and A. P. Moller, Global transport and deposition of 137Cs following the Fukushima nuclear power plant accident in Japan: Emphasis on Europe and Asia using high-resolution model versions and radiological impact assessment of the human population and the environment using interactive tools, Environ. Sci.Technol, vol.47, pp.5803-5812, 2013.

M. D. Cort, Atlas of Caesium Deposition on Europe after the Chernobyl Accident, 1998.

G. Dubois and M. De-cort, Mapping Cs-137 deposition: Data validation methods and data interpretation, J. Environ. Radioact, vol.53, issue.00, pp.136-139, 2001.

N. Evangeliou, Reconstructing the Chernobyl Nuclear Power Plant (CNPP) accident 30 years after. A unique database of air concentration and deposition measurements over, Europe. Environ. Pollut, vol.216, pp.408-418, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01587549

P. Bossew, Contamination of Austrian soil with caesium-137, J. Environ. Radioact, vol.55, issue.00, pp.192-194, 2001.

, Report of the UN Scientific Committee on the Effects of Atomic Radiation, 1962.

M. E. Ketterer, Resolving global versus local/regional Pu sources in the environment using sector ICP-MS, J. Anal. At. Spectrom, vol.19, pp.241-245, 2004.

J. W. Mietelski and B. Was, Plutonium from chernobyl in Poland, Appl. Radiat. Isot, vol.46, issue.95, pp.162-169, 1995.

A. Orgiazzi, C. Ballabio, P. Panagos, A. Jones, and O. Fernández-ugalde, LUCAS soil, the largest expandable soil dataset for Europe: A review, Eur. J. Soil Sci, vol.69, pp.140-153, 2018.

Y. Muramatsu, Concentrations of 239Pu and 240Pu and their isotopic ratios determined by ICP-MS in soils collected from the chernobyl 30-km zone, Environ. Sci. Technol, vol.34, pp.2913-2917, 2000.

G. R. Choppin, Humics and radionuclide migration, Radiochim. Acta, vol.44, issue.5, pp.23-28, 1988.

W. R. Penrose, D. N. Metta, J. M. Hylko, and L. A. Rinckel, The reduction of plutonium(V) by aquatic sediments, J. Environ. Radioact, vol.5, pp.90033-90039, 1987.

, IAEA. Summary Report on the Post-Accident Review Meeting on the Chernobyl Accident, vol.34, 1986.

B. N. Belyaev, Isotopic composition of plutonium in the soil and the possibilities of identifying sources of contamination, Atomnaya Energiya, vol.83, pp.298-304, 1997.

S. N. Begichev, Fission Product Transport Processes in Reactor Accidents, pp.717-734, 1990.

, Scientific RepoRtS |, vol.10, 2020.

S. F. Boulyga and J. S. Becker, Isotopic analysis of uranium and plutonium using ICP-MS and estimation of burn-up of spent uranium in contaminated environmental samples, J. Anal. At. Spectrom, vol.17, pp.1143-1147, 2002.

F. W. Krüger, L. Albrecht, E. Spoden, and W. Weiss, & Chr. Reiners), pp.3-22, 1996.

N. Erdmann, Fresenius J. Anal. Chem, vol.359, pp.378-381, 1997.

G. Kirchner and C. C. Noack, Core History and Nuclide Inventory of the Chernobyl Core at the Time of Accident, vol.1, 1988.

S. E. Everett, S. G. Tims, G. J. Hancock, R. Bartley, and L. K. Fifield, Comparison of Pu and 137Cs as tracers of soil and sediment transport in a terrestrial environment, J. Environ. Radioact, vol.99, pp.383-393, 2008.

J. M. Kelley, L. A. Bond, and T. M. Beasley, Global distribution of Pu isotopes and 237Np, Sci. Total Environ, issue.99, pp.160-166, 1999.

K. Meusburger, A multi-radionuclide approach to evaluate the suitability of Pu239+240 as soil erosion tracer, Sci. Total Environ, vol.566, pp.1489-1499, 2016.

K. Meusburger, Excess Lead-210 and Plutonium-239+240: Two suitable radiogenic soil erosion tracers for mountain grassland sites, Environ. Res, vol.160, pp.195-202, 2018.

S. G. Tims, L. K. Fifield, G. J. Hancock, R. R. Lal, and W. T. Hoo, Plutonium isotope measurements from across continental Australia, Nucl. Instrum. Methods Phys. Res. Sect. B, vol.294, pp.636-641, 2013.

Y. H. Xu, J. X. Qiao, X. L. Hou, and S. M. Pan, Plutonium in soils from Northeast China and its potential application for evaluation of soil erosion, Sci. Rep, 2013.

E. Hardy, Plutonium in soil northeast of the Nevada test site, vol.306, pp.1-51, 1976.

V. Hodge, C. Smith, and J. Whiting, Radiocesium and plutonium: Still together in "background" soils after more than thirty years, Chemosphere, vol.32, pp.108-115, 1996.

C. S. Kim, M. H. Lee, C. K. Kim, and K. H. Kim, Sr-90, Cs-137, Pu239+240 and Pu-238 concentrations in surface soils of, Korea. J. Environ. Radioact, vol.40, issue.97, pp.62-65, 1998.

P. W. Krey, Transuranium Nuclides in the Environment, 1976.

R. D. Mcarthur and F. L. Miller, Off-Site Radiation Exposure Review Project: Phase 2 Soils Program, Other: ON: DE90012890 United States 10.2172/6811246 Other: ON: DE90012890 NTIS, PC A11/MF A01-OSTI, 1989.

D. H. Peirson, R. S. Cambray, P. A. Cawse, J. D. Eakins, and N. J. Pattenden, Environmental radioactivity in Cumbria, Nature, vol.300, pp.27-31, 1982.

J. Abraham, K. Meusburger, J. K. Waldis, M. E. Ketterer, and M. Zehringer, Fate of Cs-137, Sr-90 and Pu239+240 in soil profiles at a water recharge site in Basel, Switzerland, J. Environ. Radioact, vol.182, pp.85-94, 2018.

W. Schimmack and W. Schultz, Migration of fallout radiocaesium in a grassland soil from 1986 to 2001-part 1: Activity-depth profiles of Cs-134 and Cs-137, Sci. Total Environ, vol.368, pp.853-862, 2006.

A. Fourmont, Erosion et sédimentation contemporaines dans le bassin-versant du Négron. Première application des marqueurs radioactifs environnementaux, 2000.

L. Vanden-berghe and H. Gulinck, Fallout 137 Cs as a tracer for soil mobility in the landscape framework of the Belgian loamy region, Pedologie, vol.37, pp.5-20, 1987.

K. Van-oost, W. Van-muysen, G. Govers, J. Deckers, and T. A. Quine, From water to tillage erosion dominated landform evolution, Geomorphology, vol.72, pp.193-203, 2005.

K. Van-oost, G. Govers, and W. Van-muysen, A process-based conversion model for caesium-137 derived erosion rates on agricultural land: An integrated spatial approach, Earth Surf. Process. Landf, vol.28, pp.187-207, 2003.

S. Sogon, M. J. Penven, P. Bonte, and T. Muxart, Estimation of sediment yield and soil loss using suspended sediment load and Cs-137 measurements on agricultural land, Hydrobiologia, vol.410, pp.251-261, 1999.
URL : https://hal.archives-ouvertes.fr/cea-02651177

G. Le-roux, C. Duffa, F. Vray, and P. Renaud, Deposition of artificial radionuclides from atmospheric Nuclear Weapon Tests estimated by soil inventories in French areas low-impacted by Chernobyl, J. Environ. Radioact, vol.101, pp.211-218, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00977781

M. Lacoste, D. Michot, V. Viaud, O. Evrard, and C. Walter, Combining Cs-137 measurements and a spatially distributed erosion model to assess soil redistribution in a hedgerow landscape in northwestern France, CATENA, vol.119, pp.78-89, 1960.
URL : https://hal.archives-ouvertes.fr/hal-01209192

M. Jagercikova, O. Evrard, J. Balesdent, I. Lefevre, and S. Cornu, Modeling the migration of fallout radionuclides to quantify the contemporary transfer of fine particles in Luvisol profiles under different land uses and farming practices, Soil Tillage Res, vol.140, pp.82-97, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01458016

O. Evrard, Modelling the impact of land use change and rainfall seasonality on sediment export from an agricultural catchment of the northwestern European loess belt, Agric. Ecosyst. Environ, vol.138, pp.83-94, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01197838

A. P. De-roo, The use of 137Cs as a tracer in an erosion study in south limburg (the Netherlands) and the influence of chernobyl fallout, Hydrol. Process, vol.5, pp.215-227, 1991.

C. Chartin, Quantifying and modelling the impact of land consolidation and field borders on soil redistribution in agricultural landscapes, CATENA, vol.110, pp.184-195, 1954.
URL : https://hal.archives-ouvertes.fr/hal-02320703

C. Bernard, L. Mabit, S. Wicherek, and M. R. Laverdière, Long-term soil redistribution in a small French watershed as estimated from Cesium-137 data, J. Environ. Qual, vol.27, 1998.

M. Sangiorgi, M. A. Hernández-ceballos, G. Iurlaro, and G. Cinelli, & de Cort, M. 30 years of European Commission Radioactivity Environmental Monitoring data bank (REMdb)-An open door to boost environmental radioactivity research, Earth Syst. Sci. Data, vol.11, pp.589-601, 2019.

L. Mabit, M. Benmansour, and D. E. Walling, Comparative advantages and limitations of the fallout radionuclides 137 Cs, 210 Pb ex and 7 Be for assessing soil erosion and sedimentation, J. Environ. Radioact, vol.99, pp.1799-1807, 2008.

L. Mabit, K. Meusburger, E. Fulajtar, and C. Alewell, The usefulness of 137Cs as a tracer for soil erosion assessment: A critical reply to Parsons and Foster, Earth Sci. Rev, vol.137, pp.300-307, 2011.

C. Alewell, A. Pitois, K. Meusburger, M. Ketterer, and L. Mabit, Pu239+240 from "contaminant" to soil erosion tracer: Where do we stand?, Earth Sci. Rev, vol.172, pp.107-123, 2017.

L. Mabit, Fallout 210 Pb ex as a soil and sediment tracer in catchment sediment budget investigations: A review, Earth Sci. Rev, vol.138, pp.335-351, 2014.

J. De-gruijter, J. Brus, D. , and F. P. Bierkens, M. & Knotters, M. Sampling for Natural Resource Monitoring, 2006.

O. Fernández-ugalde, A. Jones, and R. G. Meuli, Comparison of spade and gouge-auger sampling for topsoil monitoring at continental scale, Eur. J. Soil Sci, vol.71, pp.137-150, 2020.

N. Cools, Quality assurance and quality control in forest soil analyses: A comparison between European soil laboratories, Accred. Qual. Assur, vol.9, pp.688-694, 2004.

G. Toth, A. Jones, L. Montanarella, and . Topsoil, Survey: Methodology, Data and Results, 2013.

A. Chappell, G. Hancock, R. A. Rossel, and R. Loughran, Spatial uncertainty of the Cs-137 reference inventory for Australian soil, J. Geophys. Res. Earth Surf, vol.116, 2011.

, Scientific RepoRtS |, vol.10, 2020.

M. E. Ketterer, J. Zheng, and M. Yamada, Applications of Transuranics as Tracers and Chronometers in the Environment, 2011.

C. Ballabio, P. Panagos, and L. Monatanarella, Mapping topsoil physical properties at European scale using the LUCAS database, Geoderma, vol.261, pp.110-123, 2016.

T. Hastie and R. Tibshirani, Varying-coefficient models, J. R. Stat. Soc. Ser. B Methodol, vol.55, pp.757-796, 1993.

S. N. Wood, Low-rank scale-invariant tensor product smooths for generalized additive mixed models, Biometrics, vol.62, pp.1025-1036, 2006.

L. Poggio, A. Gimona, and M. J. Brewer, Regional scale mapping of soil properties and their uncertainty with a large number of satellite-derived covariates, Geoderma, vol.209, pp.1-14, 2013.

H. Akaike, New look at statistical-model identification, IEEE Trans. Autom. Control, vol.19, p.5, 1974.

R. J. Hijmans, S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis, Very high resolution interpolated climate surfaces for global land areas, Int. J. Climatol, vol.25, pp.1965-1978, 2005.

I. Biavetti, S. Karetsos, A. Ceglar, A. Toreti, and P. Panagos, European Meteorological Data: Contribution To Research, Development, and Policy Support, vol.9229, 2014.

D. N. Karger, Data descriptor: Climatologies at high resolution for the Earth's land surface areas, Sci. Data, vol.4, 2017.

L. Mabit, Establishment of control site baseline data for erosion studies using radionuclides: A case study in East Slovenia, J. Environ. Radioact, vol.101, pp.854-863, 2010.