Order-dependent mappings: Strong-coupling behavior from weak-coupling expansions in non-Hermitian theories - Archive ouverte HAL Access content directly
Journal Articles Journal of Mathematical Physics Year : 2010

Order-dependent mappings: Strong-coupling behavior from weak-coupling expansions in non-Hermitian theories

(1) , (2)
1
2

Abstract

A long time ago, it has been conjectured that a Hamiltonian with a potential of the form $x^2$ + $ivx^3$ , $v$ real, has a real spectrum. This conjecture has been generalized to a class of so-called $\mathscr{P}{T}$ symmetric Hamiltonians and some proofs have been given. Here, we show by numerical investigation that the divergent perturbation series can be summed efficiently by an order-dependent mapping (ODM) in the whole complex plane of the coupling parameter $v^2$ , and that some information about the location of level crossing singularities can be obtained in this way. Furthermore, we discuss to which accuracy the strong-coupling limit can be obtained from the initially weak-coupling perturbative expansion, by the ODM summation method. The basic idea of the ODM summation method is the notion of order-dependent "local" disk of convergence and analytic continuation by an order-dependent mapping of the domain of analyticity augmented by the local disk of convergence onto a circle. In the limit of vanishing local radius of convergence, which is the limit of high transformation order, convergence is demonstrated both by numerical evidence as well as by analytic estimates.
Fichier principal
Vignette du fichier
jJenb.pdf (335.06 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

cea-02895258 , version 1 (09-07-2020)

Identifiers

Cite

Jean Zinn-Justin, Ulrich D. Jentschura. Order-dependent mappings: Strong-coupling behavior from weak-coupling expansions in non-Hermitian theories. Journal of Mathematical Physics, 2010, 51 (7), pp.072106. ⟨10.1063/1.3451104⟩. ⟨cea-02895258⟩
16 View
45 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More