C. M. Bender and S. Boettcher, Real spectra in non-Hermitian Hamiltonian having PT symmetry, Phys. Rev. Lett, vol.80, pp.5243-5246, 1998.

P. Dorey, C. Dunning, and R. Tateo, Spectral equivalences, Bethe ansatz equations, and reality properties in PT -symmetric quantum mechanics, J. Phys. A, vol.34, pp.5679-5704, 2001.

L. C. Shin, On the reality of eigenvalues for a class of PT -symmetric oscillators, Commun. Math. Phys, vol.229, pp.543-564, 2002.

J. Zinn-justin and U. D. Jentschura, Order-dependent mappings: strong coupling behaviour from weak coupling expansions in non-Hermitian theories, J. Math. Phys, vol.51, p.72106, 2010.

E. Caliceti, S. Graffi, and M. Maioli, Perturbation theory of odd anharmonic oscillators, Commun. Math. Phys, vol.75, pp.51-66, 1980.

E. Caliceti, Distributional Borel summability of odd anharmonic oscillators, J. Phys. A, vol.33, pp.3753-3770, 2000.

L. N. Lipatov, 104-107; Divergence of the perturbation-theory series and the quasi-classical theory, Sov. Phys. JETP, vol.25, pp.216-223, 1977.

E. Brézin, J. C. Le-guillou, and J. Zinn-justin, Perturbation theory at large order. I. The ? N interaction, Phys. Rev. D, vol.15, pp.1544-1557, 1977.

J. Zinn-justin, Perturbation series at large orders in quantum mechanics and field theories: application to the problem of resummation, Phys. Rep, vol.70, pp.109-167, 1981.

U. D. Jentschura, A. Surzhykov, and J. Zinn-justin, Generalized nonanalytic expansions, PT -symmetry and large order formulas for odd anharmonic oscillators, SIGMA, vol.5, p.5, 2009.

V. Grecchi, M. Maioli, and A. Martinez, Padé summability of the cubic oscillator, J. Phys. A, vol.42, p.425208, 2009.

C. M. Bender and E. J. Weniger, Numerical evidence that the perturbation expansion for a non-Hermitian PTsymmetric Hamiltonian is Stieltjes, J. Math. Phys, vol.42, pp.2167-2183, 2001.

R. Seznec and J. Zinn-justin, Summation of divergent series by order dependent mappings: Application to the anharmonic oscillator and critical exponents in field theory, J. Math. Phys, vol.20, pp.1398-1408, 1979.

J. Zinn-justin, Summation of divergent series: Orderdependent mapping

F. M. Fernandez, R. Guardiola, J. Ros, and M. Znojil, Strong-coupling expansions for the PT -symmetric oscillators V (x) = a(ix) + b(ix) 2 + c(ix) 3, J. Phys. A: Math. Gen, vol.31, pp.10105-10112, 1998.

U. D. Jentschura and J. Zinn-justin, Calculation of the Characteristic Functions of Anharmonic Oscillators
URL : https://hal.archives-ouvertes.fr/cea-02895309

C. M. Bender and T. T. Wu, Anharmonic oscillator, Phys. Rev, vol.184, pp.1231-1260, 1969.

E. Delabaere and D. T. Trinh, Spectral analysis of the complex cubic oscillator, J. Phys. A, vol.33, pp.8771-8796, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01886530

H. Kleinert and W. Janke, Convergence behavior of variational perturbation expansion: A method for locating Bender-Wu singularities, Phys. Lett. A, vol.206, pp.283-289, 1995.

M. E. Fisher, Yang-Lee Edge Singularity and ? 3 Field Theory, Phys. Rev. Lett, vol.40, pp.1610-1613, 1978.

C. M. Bender, D. C. Brody, and H. F. Jones, Scalar Quantum Field Theory with Cubic Interaction

U. D. Jentschura, A. Surzhykov, M. Lubasch, and J. Zinn-justin, Time Propagation and Dissipative Terms for Resonances, J. Phys. A, vol.41, p.95302, 2008.

D. Masoero, Poles of Intégrale Tritronquéée and Anharmonic Oscillators. A WKB Approach

R. Guida, L. Konishi, and H. Suzuki, Improved Convergence Proof of the Delta Expansion and Order Dependent Mappings, Ann. Phys. (N.Y.), vol.249, pp.109-145, 1996.

A. Voros, Airy function -exact WKB results for potentials of odd degree, J. Phys. A, vol.32, pp.1301-1311, 1999.