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Abstract
Several determinants with gamma functions as elements are evaluated. These kinds of determinants
are encountered, for example, in the computation of the probability density of the determinant of
random matrices. The s-shifted factorial is defined as a generalization for non-negative integers of
the power function, the rising factorial (or Pochammer’s symbol) and the falling factorial. It is a
special case of polynomial sequence of the binomial type studied in combinatorics theory. In terms
of the gamma function, an extension is defined for negative integers and even complex values.
Properties, mainly composition laws and binomial formulae, are given. They are used to evaluate
families of generalized Vandermonde determinants with s-shifted factorials as elements, instead of
power functions.

1. Introduction

This work has been motivated by studies of the probability density of the determinant (PDD) of random
matrices [1–3]. The method used, and sketched in section 5, is to compute the Mellin transform of the
PDD. In many cases it turned out to be a determinant with gamma functions as elements. One aim of this
work is to evaluate some of these determinants and more generally determinants with shifted factorials (or
Pochhammer’s symbols) as elements.

We define in section 2 the s-shifted factorial (z)s;n, equation (2.1), as a generalization for non-negative
values of n of the power function zn, the rising factorial (z)n, equation (2.3), and the falling factorial [z]n,
equation (2.4); both the names and the notations of these last two objects are not well established, see [4–
10] 1 . As a function of z, the s-shifted factorial is a special case of the polynomial sequences of the binomial
type studied mainly in the calculus of finite differences and combinatorics; see in particular [6, 7] and for a
wide bibliography [8, 9]. Expressed in terms of gamma functions, the s-shifted factorial can be extended to
negative values and even complex values of n. The s-shifted factorial provides a compact formulation which
emphasizes similarities and connections which exist between the power function and the shifted factorials:
multiplication laws, Pascal triangle property, generating function and binomial formulae.

It is shown in section 3 that Vandermonde determinant with (zj)s;i instead of (zj)
i as elements is still

equal to the usual Vandermonde determinant. Other determinants with the inverse of a s-shifted factorial,
or the ratio of two s-shifted factorials, as elements are also evaluated, both for positive and negative values
of the index i. Using the relations between the s-shifted factorial and the gamma function, or the binomial
coefficient, to each determinant evaluated in section 3, it corresponds a determinant in section 4 with elements
expressed in terms of gamma functions. Finally, some applications of these determinants are given in section
5: evaluation of the PDD of random matrices and also, a possible application to Stieltjes moment problems

1 See [4] Pochhammer’s symbol (z)n := z(z + 1) · · · (z + n− 1) 6.1.22, [5] (z)n := z(z + 1) · · · (z + n− 1)
p. xLiii, [6] ‘factorielle z descendante d’ordre n’ (z)n := z(z − 1) · · · (z − n+ 1) [4f], ‘factorielle z montante
d’ordre n’ or Pochhammer’s symbol n < z >n:= z(z+1) · · · (z+n− 1) [4g], [7] lower factorial (z)n := z(z−
1) · · · (z−n+1) (1.1), upper factorial z(n) := z(z+1) · · · (z+n−1) (1.2), [8] section 5 falling factorial sequence
(z)n := z(z − 1) · · · (z − n+ 1) 2.1, rising factorial sequence < z >n:= z(z + 1) · · · (z + n− 1) 3.1, [9] falling
factorial of length n [z]n := z(z−1) · · · (z−n+1) 3.2, rising factorial of length n [z]n := z(z+1) · · · (z+n−1)
3.4 and III.2.A and [10] zn := z(z− 1) · · · (z −n+1) nth falling power of z and zn := z(z+1) · · · (z+ n− 1)
nth rising power of z 3.4.2.
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arising in connection with the boson normal ordering problem. As another example of application of the
binomial formula, the finite sum of s-shifted factorials of arithmetic progression to n terms is evaluated in
appendix A. Some basic properties of the product of differences and of the Vandermonde determinant are
recalled, respectively, in appendices B and C. Finally, appendix D illustrates another way to handle s-shifted
factorials.

2. Definition and some properties of the s-shifted factorial

2.1. Definitions and relations between shifted factorials

With n a non-negative integer, z and s (the shift) some complex numbers, let us define the s-shifted factorial
by

(z)s;n :=

{

1 n = 0

z(z + s) · · ·
(

z + (n− 1)s
)

n = 1, 2, . . . .
(2.1)

For s = 0, 1 and −1, this definition coincides, respectively, with the power function, the rising factorial (or
Pochhammer’s symbol, mainly in hypergeometric theory) and the falling factorial, namely for n nonzero,

(z)0;n = zn (2.2)

(z)1;n = (z)n := z(z + 1) · · · (z + n− 1) (2.3)

(z)−1;n = [z]n := z(z − 1) · · · (z − n+ 1) (2.4)

and when n = 0 all these quantities take the value 1. Thereby, the s-shifted factorial allows compact
expressions which emphasize the similarities between the power function and the shifted factorials.

For any non-negative integer n, one has

(z)s;n = (−1)n (−z)−s;n (2.5)

=
(

z + (n− 1)s
)

−s;n
. (2.6)

For s nonzero, the s-shifted factorials are related to the rising factorial, equation (2.3), by

(z)s;n = sn
(z

s

)

n
. (2.7)

As a function of z, (z)s;n is a monic polynomial (i.e. the coefficient of the highest power is one) in z of
degree n,

(z)s;n = zn +
n(n− 1)

2
s zn−1 + · · ·+ (n− 1)! sn−1 z (2.8)

with 0,−s, . . . ,−(n− 1) s as zeros. Consequences of these properties in terms of Vandermonde determinants
are developed in section 3. The sets of polynomials {(z)s;n, n = 0, 1, . . .} are special cases of the polynomial
sequences {pn(z), n = 0, 1, . . .}, pn(z) being exactly of degree n. We are going to use these sequences in the
way it is done in combinatorics [7–9] 2. Any polynomial sequence is a basis of the vector space P over the
complex field of complex polynomials in the variable z. Then, to any two polynomial sequences {pn(z)} and
{qn(z)} there exist uniquely determined connecting coefficients such that qn(z) =

∑n
k=0 cn,k pk(z). These

important coefficients have been widely studied, e.g.,

[z]n =

n
∑

k=0

s(n, k) zk zn =

n
∑

k=0

S(n, k) [z]k (z)n =

n
∑

k=0

L(n, k) [z]k (2.9)

where s(n, k), S(n, k) and L(n, k) =
(

n−1
k−1

)

n!/k! are, respectively, the Stirling numbers of the first and second

kind [4, 6, 7, 9, 10] 3 and the signless Lah numbers [6, 7, 9, 10] 4 (other relations between zn, (z)n and [z]n

2 See, e.g., [7] section 1, [8] section 3, [9] section III.2.
3 See, e.g., [4] 24.1.3,4, [6] chapter V [5e,f], [7] (1.11–13), [9] 3.24,25 or [10] 2.5.2.
4 See, e.g., [6] chapter III p. 165 , [7] (1.14) and section 9, [9] 3.24,25, [10] 3.1.8.
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immediately follow from equations (2.5) and (2.6)). We will see in subsection 2.6 that {(z)s;n, n = 0, 1, . . .}
has in addition the important property to be a polynomial sequence of the binomial type.

2.2. Special values

With k some non-negative integer, one gets

(−k)n = (−1)n [k]n =







0 k = 0, . . . , n− 1

(−1)n
k!

(k − n)!
k = n, n+ 1, . . .

(2.10)

(k)n = (−1)n [−k]n =







0 k = 0
(k + n− 1)!

(k − 1)!
k = 1, 2, . . . .

(2.11)

Then, for s nonzero, values of (ks)s;n follow from equation (2.7), in particular (s)s;n = n!sn.

2.3. Relations with the gamma function and definition of the generalized s-shifted factorial

One has [4] 5

(z)n =
Γ(z + n)

Γ(z)
=

(z + n− 1)!

(z − 1)!
= (−1)n n!

(

−z

n

)

(2.12)

[z]n =
Γ(z + 1)

Γ(z − n+ 1)
=

z!

(z − n)!
= n!

(

z

n

)

. (2.13)

For s nonzero, relations with (z)s;n follow from equation (2.7).
Actually, the relations above can be taken as the definition of (z)s;n in terms of the gamma function.

Thereby, one extends the s-shifted factorial to negative values, and even to complex values t of n, defining
the generalized s-shifted factorial by

(z)s;t := st
Γ
(

z
s + t

)

Γ
(

z
s

) (2.14)

with a cut, say, along the negative real axis of the complex s plane, with −π < arg s ≤ π, to ensure a
single-valued dependence on s, and we choose the determination such that st = 1 for s = 1. As s goes to
zero, say, along the real axis, using the Stirling formula [4] 6, Γ(z) ∼ e−zzz−

1
2 (2π)

1
2

(

1 +O(1/z)
)

as z → ∞
in |arg z| < π, one recovers the function zt. Furthermore, the definitions of the rising and falling factorials
are extended by

(z)t := (z)1;t [z]t := (z)−1;t . (2.15)

Then, it immediately follows from the definition (2.14),

(z)s;0 = 1 (2.16)

(z)s;t =
st

(−s)t
(−z)−s;t (2.17)

by the recurrence formula Γ(z + 1) = z Γ(z),

(z)s;1 = z (2.18)

and by the reflection formula [4] 7, Γ(z) Γ(1− z) = π/ sin(πz),

(z)s;t =
st sin

(

π z
s

)

(−s)t sin
(

π( zs + t)
)

(

z + (t− 1)s
)

−s;t
. (2.19)

5 See, e.g., [4] 6.1.5, 6.1.21 and 6.1.22.
6 See, e.g., [4] 6.1.37.
7 See, e.g., [4] 6.1.17.
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Thus for any integer q,

(z)s;q = (−1)q (−z)−s;q (2.20)

=
(

z + (q − 1)s
)

−s;q
(2.21)

which generalize equations (2.5) and (2.6) for any integer, even negative.

2.4. Multiplication laws

When the power function fulfils zt zr = zt+r with r and t some complex numbers, it follows from the
definition (2.14),

(z)s;t (z + ts)s;r = (z)s;t+r (2.22)

and in particular, by equation (2.16), setting r = −t yields

(z)s;t =
1

(z + ts)s;−t
. (2.23)

This relation generalizes zt = 1/z−t for s = 0 and provides the relation between the s-shifted factorials for
any integer q and −q, by equation (2.21),

(z)s;−q =
1

(z − qs)s;q
=

1

(z − qs)
(

z − (q − 1)s
)

· · · (z − s)
=

1

(z − s)−s;q
. (2.24)

In terms of binomial coefficients, the multiplication law (2.22) reads

(

z

n

)(

z − n

p

)

=

(

n+ p

n

)(

z

n+ p

)

or

(

z

n

)

[n]p = [z]p

(

z − p

n− p

)

. (2.25)

For a proper choice of determination the power function fulfils wtzt = (wz)t. For the s-shifted factorial,
one has

(wz)s;t =
st

( s
w )t

(z) s
w
;t (2.26)

and thus for any integer q,
(wz)s;q = wq (z) s

w
;q . (2.27)

For w = −1, relation (2.26) corresponds to equation (2.17). For w = k and q = n some non-negative integers,
iterating the multiplication law (2.22) and from equation (2.27),

(kz)s;kn = kkn
k−1
∏

ℓ=0

n−1
∏

j=0

(

z + (nℓ+ j)
s

k

)

= kkn
k−1
∏

ℓ=0

(

z +
ℓ

k
s
)

s;n
(2.28)

where the last equality corresponds to a rearrangement of the factors, both nℓ + j and ℓ + jk taking once
all the kn values 0, 1, . . . , kn − 1. The equation above can also be obtained from the definition (2.14) and

the Gauss multiplication formula [4] 8 , Γ(kz) = (2π)
1
2
(1−k)kkz−

1
2

∏k−1
ℓ=0 Γ

(

z + ℓ/k
)

. Note that, based on the
reflection formula and the Gauss’ multiplication formula, 2 sin(πkz) follows the known multiplication law
similar to equation (2.28) [5] 9 ,

2 sin(πkz) =

k−1
∏

ℓ=0

2 sin
(

π
(

z +
ℓ

k

)

)

. (2.29)

8 See, e.g., [4] 6.1.20.
9 See, e.g., [5] 1.392 (1.).

4



For a proper choice of determination the power function fulfils (zt)r = ztr. No equivalent general
relation exists for the s-shifted factorial. Although (z−1)p has no simple relation with ((z)p)

−1, let us
point out the following expression for any integers n ≥ p ≥ 0, by equations (2.24), (2.22) and (2.6), with
z 6= 0,−s, . . . ,−(n− 1)s,

1

(z)s;p
= (z + ps)s;−p =

(z + ps)s;n−p

(z)s;n
=

(

z + (n− 1)s
)

−s;n−p

(z)s;n
(2.30)

recovering for s = 0 the relation (zp)−1 = z−p = zn−p (zn)−1.

2.5. Generalized Pascal triangle property and s-difference operator

The multiplication law (2.22) and equation (2.18) yield

(z)s;t − (z − s)s;t = ts (z)s;t−1 (2.31)

which generalizes the Pascal triangle property for binomial coefficients, by equation (2.12),

(

z + 1

n

)

=

(

z

n

)

+

(

z

n− 1

)

. (2.32)

Let us define the s-difference operator ∆s on functions f of z by

∆sf(z) := f(z + s)− f(z) (2.33)

(this operator must not be confused with the product of differences ∆n(z) introduced latter in section 3 and
defined by equation (B.1)). It follows immediately from equation (2.31),

∆s(z)s;t = ts (z + s)s;t−1 ∆−s(z)s;t = −ts (z)s;t−1 (2.34)

and iterating these formulae, e.g., the first one

∆p
s (z)s;t = [t]p s

p (z + ps)s;t−p (2.35)

recovering for s = 0 the expression of dp

dzp z
n.

2.6. Generating function and binomial formulae

With x some complex variable, let Gs;z(x) be the generating function of the s-shifted factorials (z)s;n,

Gs;z(x) :=

∞
∑

n=0

(z)s;n
xn

n!
, |sx| < 1 (2.36)

and, using equation (2.7),
Gs;z(x) = G1; z

s
(sx) . (2.37)

Now, the generating function of the rising factorials can be obtained directly from the binomial series with
equation (2.12),

(1− x)−z =

∞
∑

n=0

(−1)n
(

−z

n

)

xn =

∞
∑

n=0

(z)n
xn

n!
= G1;z(x) , |x| < 1 . (2.38)

Therefore,

Gs;z(x) = (1− sx)
−z

s (2.39)

recovering for s = 0 the expression G0,z(x) :=
∑∞

n=0 z
n xn

n! = exz.
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Since the generating function Gs;z(x) above reads as an exponential function F(x)z of z, it satisfies the
multiplication law [11]

Gs;z(x)Gs;w(x) = Gs;z+w(x) . (2.40)

Expanding both sides of this last equation as a power series in x yields,

(z + w)s;n =

n
∑

k=0

(

n

k

)

(z)s;k (w)s;n−k (2.41)

namely, the s-shifted factorial satisfies the binomial formula. The polynomial sequence {(z)s;n, n = 0, 1, . . .}
which satisfies (z)s;0 = 1 and the binomial formula above is said to be of binomial type [6–10] 10. This
property is shared by many other binomial sequences {pn(z), n = 0, 1, . . .} which have been studied mainly
in combinatorics using generating function methods and above all efficient operator methods.

The binomial sequences can be characterized by a generating function which depends exponentially on
z [9] 11

Gz(x) = eg(x)z = e(x+g2x
2+···) z =

∞
∑

n=0

p{g}n (z)
xn

n!
(2.42)

then p
{g}
n (z) is a monic polynomial of degree n in z, the coefficients of which are known as Bell polynomials

[6] 12 (indeed, expanding the exponential series above, the term in zn reads zn xn
(

1 + O(x)
)

/n!). In the

case we consider, g(x) := −s−1 ln(1 − sx) and p
{g}
n (z) = (z)s;n; for s = 0, g(x) = x and p

{g}
n (z) = zn. The

binomial sequences can as well be characterized by the fact [7–9] 13 that the basis operator of the sequence,
i.e. the linear operator D of the vector space P (already considered in subsection 2.1) into itself defined by
Dp0(z) := 0 and Dpn(z) := npn−1(z) for n ≥ 1, is a delta operator, i.e. it is shift invariant, DEa = EaD
for all complex number a, where Ea is the translation operator defined by Eaf(z) := f(a + z) and moreover
Dz = c 6= 0. In our case, from equation (2.34), Ds := −∆−s/s = (I−E−s)/s, where I is the identity operator,
is clearly shift invariant and Dsz = 1. Indeed, the binomial formula (2.41) for the s-shifted factorial can also
be demonstrated by recurrence from the Pascal triangle properties (2.31) and (2.32). It is true for n = 0
and 1. Let us assume it to be true for n, then,

(z + w)s;n+1 =

n
∑

k=0

(

n

k

)

(z)s;k (w)s;n−k

(

z + ks+ w + (n− k)s
)

=

n+1
∑

k=0

(

n

k − 1

)

(z)s;k (w)s;n+1−k +

n+1
∑

k=0

(

n

k

)

(z)s;k (w)s;n+1−k

=

n+1
∑

k=0

(

n+ 1

k

)

(z)s;k (w)s;n+1−k . (2.43)

By equation (2.12), in terms of binomial coefficients, the binomial formula (2.41) reads

(

z + w

n

)

=

n
∑

k=0

(

z

k

)(

w

n− k

)

. (2.44)

As for the power function, the binomial formula for the s-shifted factorial can be directly extended to p > 2
variables using multinomial coefficients,

(

p
∑

j=1

zj

)

s;n
=

n
∑

n1,...,np=0

n1+···+np=n

n!

n1! · · ·np!
(z1)s;n1

· · · (zp)s;np
. (2.45)

10 See, e.g., [6] [6a] and [13c,d], [7] (1.6), [8] section 5, [9] section III.2, [10] 3.4.2 (3.).
11 See, e.g., [9] 3.59.
12 See, e.g., [6] section III.3.
13 See, e.g., [7] section 3 theorem 1, [8] section 7, [9] 3.45.
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From equation (2.5) the following corollary is immediately obtained:

(z − w)s;n =

n
∑

k=0

(−1)n−k

(

n

k

)

(z)s;k (w)−s;n−k . (2.46)

Although, as already noted, (z−1)i 6= ((z)i)
−1, the binomial formula can be extended to the inverse of

s-shifted factorials. Indeed, by equations (2.30), (2.41) and (2.6),

n
∑

k=0

(

n

k

)

1

(z)s;k

1

(w)s;n−k
=

n
∑

k=0

(

n

k

)

(

z + (n− 1)s
)

−s;n−k

(z)s;n

(

w + (n− 1)s
)

−s;k

(w)s;n

=

(

z + w + 2(n− 1)s
)

−s;n

(z)s;n (w)s;n
=

(

z + w + (n− 1)s
)

s;n

(z)s;n (w)s;n
(2.47)

corresponding for s = 0 to
n
∑

k=0

(

n

k

)

1

zk
1

wn−k
=

(z + w)n

znwn
=

(

1

z
+

1

w

)n

(2.48)

where, once again, the last equality above does not hold for s nonzero. Similarly, one also gets from equations
(2.30) and (2.46)

n
∑

k=0

(−1)n−k

(

n

k

)

(z)s;k
(w)s;k

=

n
∑

k=0

(−1)n−k

(

n

k

)

(z)s;k

(

w + (n− 1)s
)

−s;n−k

(w)s;n

=

(

z − w − (n− 1)s
)

s;n

(w)s;n
(2.49)

corresponding for s = 0 to

n
∑

k=0

(−1)n−k

(

n

k

)

zk

wk
=

(z − w)n

wn
=

(

z

w
− 1

)n

. (2.50)

Another kind of useful relations is as follows. From equation (2.25), the multiplication law (2.22) and
the binomial formula (2.41),

n
∑

k=0

(

n

k

)

[k]p (z)s;k (w)s;n−k = [n]p

n
∑

k=p

(

n− p

k − p

)

(z)s;k (w)s;n−k

= [n]p (z)s;p

n
∑

k=p

(

n− p

k − p

)

(z + ps)s;k−p (w)s;n−k

= [n]p (z)s;p (z + w + ps)s;n−p . (2.51)

Several of these binomial formulae are used in the next section to evaluate some determinants with
s-shifted factorials as elements. As another example of application, the finite sum of s-shifted factorials of
arithmetic progression to n terms is evaluated in appendix A.

3. Generalized Vandermonde determinant with s-shifted factorials as elements

In what follows, n is a positive integer and z is, either a set of complex numbers, or a complex function,

z := {zj, j = 0, . . . , n− 1} or j 7→ z(j) := zj j = 0, . . . , n− 1 . (3.1)
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Some basic properties of the product of differences ∆n(z) :=
∏

0≤i<j≤n−1(zj − zi), equation (B.1), and of

the Vandermonde determinant det
[

(zj)
i
]

i,j=0,...,n−1
, are recalled, respectively, in appendices B and C.

3.1. Expressions for s-shifted factorial with a non-negative index

Lemma 1. With n a positive integer and s some complex number, the generalized Vandermonde determinant
of s-shifted factorials, still is the product of differences,

det
[

(zj)s;i
]

i,j=0,...,n−1
= ∆n(z) (3.2)

thus, it does not depends on s. More generally,

det
[

Πi(zj)
]

i,j=0,...,n−1
= λ∆n(z) (3.3)

where Πi(z) are n linearly independent polynomials in (z)s;. each of degree less than n and defined as follows:

Πi(z) :=

n−1
∑

k=0

ci,k (z)s;k i = 0, . . . , n− 1 λ := det
[

ci,k
]

i,k=0,...,n−1
6= 0 . (3.4)

In particular, with bi some complex numbers, one has

det
[

(bi + zj)s;i
]

i,j=0,...,n−1
= ∆n(z) . (3.5)

Finally, with t some complex number,

det
[

(zj)s;t+i

]

i,j=0,...,n−1
=
{

n−1
∏

j=0

(zj)s;t

}

∆n(z) . (3.6)

Two proofs are given. Based on the properties of the s-shifted factorial, proof 1 expresses the determi-
nants considered in terms of Vandermonde determinants. Illustrating again the similarities between (z)s;i
and zi, proof 2 follows the same steps as a usual way of computing the Vandermonde determinant, equation
(C.1).

Proof 1. The s-shifted factorial (z)s;i is a monic polynomial of degree i in z, see equation (2.8). Hence,
formula (3.2) follows from equation (C.3). Note that equation (3.2) still holds for the monic polynomials
obtained from any generating function defined by equation (2.42). Formulae (3.3) and (3.5) can be directly
obtained either from equation (C.3) in terms of usual polynomials (e.g., (bi+z)s;i is also a monic polynomial
of degree i in z) or starting from formula (3.2), by the same arguments as for equation (C.3), in terms of

polynomials in s-shifted factorials (e.g., by the binomial formula (2.41), (bi+z)s;i =
∑i

k=0

(

i
k

)

(bi)s;k(z)s;n−k,
i.e. a monic polynomial of degree i in (z)s;.). Finally, equation (3.6) follows from the multiplication law
(2.22) and formula (3.5).

Proof 2. Let Mi,j := (zj)s;i. The determinant det[Mi,j ]i,j=0,...,n−1 is not changed if one replaces the row
Ri by the linear combination Ri − (Mi,0/Mi−1,0)Ri−1, successively for i = n− 1, n− 2, . . . , 1. Then, by the
multiplication law (2.22), for i = 1, . . . , n− 1 and j = 0, . . . , n− 1,

Mi,j → (zj)s;i −
(

z0 + (i − 1)s
)

(zj)s;i−1 = (zj − z0) (zj)s;i−1 . (3.7)

This operation replaces the column C0 by zeros except for the row R0 left unchanged. Expanding the
determinant with respect to C0 and taking out the factors depending only on j yield the recurrence formula
on n,

Ds;n(z0, . . . , zn−1) := det
[

Mi,j

]

i,j=0,...,n−1

=
{

n−1
∏

j=1

(zj − z0)
}

Ds;n−1(z1, . . . , zn−1) . (3.8)
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An iteration of this last equation, down to Ds;1(zn−1) = 1, completes the proof.

The recurrence procedure above makes step by step the matrix (Mi,j)i,j=0,...,n−1 triangular. Let us
denote by a superscript the rank of the step in this procedure. At the first step the row i = 0 is unchanged
while for i = 1, . . . , n− 1,

R
(1)
i = Ri −

Mi,0

Mi−1,0
Ri−1 . (3.9)

At the second step the rows i = 0, 1 are unchanged, while for i = 2, . . . , n− 1,

R
(2)
i = R

(1)
i −

M
(1)
i,1

M
(1)
i−1,1

R
(1)
i−1

= Ri −

(

Mi,0

Mi−1,0
+

M
(1)
i,1

M
(1)
i−1,1

)

Ri−1 +
M

(1)
i,1

M
(1)
i−1,1

Mi−1,0

Mi−2,0
Ri−2 . (3.10)

Generically, the final expression of the row i is given by R
(i)
i . It happens that in the special case zj := b+ js,

with b some complex number and s nonzero, these expressions read

R
(1)
i = Ri −

(

b+ (i − 1)s
)

Ri−1 (3.11)

R
(2)
i = Ri − 2

(

b+ (i− 1)s
)

Ri−1 +
(

b+ (i − 1)s
)(

b+ (i− 2)s
)

Ri−2 (3.12)

...

R
(i)
i =

i
∑

k=0

(−1)i−k

(

i

k

)

(

b+ (i − 1)s
)

−s;i−k
Rk (3.13)

where the last formula can be checked as follows. With Mi,j := (b + js)s;i, by the binomial formula (2.46),
equations (2.7) and (2.6),

M
(i)
i,j =

i
∑

k=0

(−1)i−k

(

i

k

)

(

b+ (i − 1)s
)

−s;i−k
(b+ js)s;k

= si (j − i+ 1)i = si [j]i (3.14)

which vanishes for i > j, see equation (2.10). Another proof of this identity is given in appendix D.1. Thus,
as expected, the resulting matrix is triangular and its determinant is the product of its diagonal elements
sj [j]j = sj j!. Then, by equation (B.5),

det
[

(b + js)s;i
]

i,j=0,...,n−1
= sn(n−1)/2

n−1
∏

j=0

j! = ∆n(j 7→ b+ js) (3.15)

completing the proof of equation (3.2) in the special case zj := b + js.

Lemma 2. With n a positive integer, s some complex number and zj 6= 0,−s, . . . ,−(n− 2)s,

det

[

1

(zj)s;i

]

i,j=0,...,n−1

=
(−1)n(n−1)/2

∏n−1
j=0 (zj)s;n−1

∆n(z) . (3.16)

This formula generalizes equation (C.5).

Proof 1. With n− 1 ≥ i ≥ 0 and zj 6= 0,−s, . . . ,−(n− 2)s, by equations (2.30) one gets

det

[

1

(zj)s;i

]

i,j=0,...,n−1

=
det
[(

zj + (n− 2)s
)

−s;n−1−i

]

i,j=0,...,n−1
∏n−1

j=0 (zj)s;n−1

. (3.17)
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Then, changing i into n− 1− i (i.e. rearranging the rows) on the right-hand side determinant above, lemma
2 follows from equation (3.5). Note that when s = 0, equation (C.5) for the power function can also be
derived as above from 1/zi = zn−1−i/zn−1.

Proof 2. This proof of lemma 2 follows the same steps as proof 2 of lemma 1. With the linear combination
of rows Ri − (Mi,0/Mi−1,0)Ri−1,

Mi,j :=
1

(zj)s;i
→

−(zj − z0)
(

z0 + (i − 1)s
)

zj

1

(zj + s)s;i−1
, i = 1, . . . , n− 1 . (3.18)

Then, with zj 6= 0,−s, . . . ,−(n− 2)s, the recurrence formula on n reads

Ds;n(z0, . . . , zn−1) := det
[

Mi,j

]

i,j=0,...,n−1

=
(−1)n−1

∏n−1
j=1 (zj − z0)

(z0)s;n−1

∏n−1
j=1 zj

Ds;n−1(z1 + s, . . . , zn−1 + s) . (3.19)

Iteration of this last equation, down to Ds;1

(

zn−1 + (n− 1)s
)

= 1, ends the proof.

As in proof 2 of lemma 1, in the special case zj := b + js with b some complex number and s nonzero,
the determinant can be made triangular in one step, replacing Ri by the linear combination

R
(i)
i =

i
∑

k=0

(

i

k

)

1
(

−b− 2(i− 1)s
)

s;i−k

Rk . (3.20)

Indeed, with Mi,j := 1/(b+ js)s;i and b 6= 0,−s, . . . ,−(2n− 3)s, it follows from the binomial formula (2.47)
and equations (2.5)–(2.7)

M
(i)
i,j =

i
∑

k=0

(

i

k

)

1
(

−b− 2(i− 1)s
)

s;i−k

1

(b + js)s;k
=

(−s)i [j]i
(

b+ (i− 1)s
)

s;i
(b + js)s;i

(3.21)

which vanishes for i > j. Another proof of this identity is given in appendix D.2. Then, the determinant is
the product of its diagonal elements,

det

[

1

(b + js)s;i

]

i,j=0,...,n−1

= (−s)n(n−1)/2
n−1
∏

j=0

j!
(

b+ (j − 1)s
)

s;j
(b + js)s;j

(3.22)

and, using the multiplication law (2.22), it can be shown by recurrence that for all s

n−1
∏

j=0

(

b+ (j − 1)s
)

s;j
(b + js)s;j =

n−1
∏

j=0

(b+ js)s;n−1 (3.23)

corresponding to a rearrangement of the factors. Finally, by equation (B.5),

det

[

1

(b + js)s;i

]

i,j=0,...,n−1

=
(−1)n(n−1)/2

∏n−1
j=0 (b + js)s;n−1

∆n(j 7→ b+ js) (3.24)

ending the proof of equation (3.16) in the special case zj := b+ js.

Lemma 3. With n a positive integer, a and b some complex numbers and azj + b 6= 0,−s, . . . ,−(n− 2)s,

det

[

(zj)s;i
(azj + b)s;i

]

i,j=0,...,n−1

=

{n−1
∏

j=0

(

b+ (n− 1− j)(1 − a)s
)

s;j

(azj + b)s;n−1

}

∆n(z) . (3.25)

10



This formula generalizes equation (C.6).

Proof 1. From equation (2.30), with n− 1 ≥ i ≥ 0 and az + b 6= 0,−s, . . . ,−(n− 1)s,

(z)s;i
(az + b)s;i

=
1

(az + b)s;n−1
(z)s;i (az + b + is)s;n−1−i . (3.26)

When a = 1, from the binomial formula (2.41) and the multiplication law (2.22),

(z)s;i (z + b+ is)s;n−1−i =
n−1−i
∑

k=0

(

n− 1− i

k

)

(b)s;k (z)s;i (z + is)s;n−1−i−k

=

n−1−i
∑

k=0

(

n− 1− i

k

)

(b)s;k (z)s;n−1−k = Πi(z) (3.27)

where Πi(z), a polynomial in (z)s;. of degree n− 1, is defined as in equation (3.4) with

ci,k :=







0 k = 0, . . . , i− 1
(

n− 1− i

n− 1− k

)

(b)s;n−1−k k = i, . . . , n− 1 .
(3.28)

Thus, the matrix [ci,k]i,k=0,...,n−1 is triangular and its determinant is the product of its diagonal elements,

det[ci,k]i,k=0,...,n−1 =

n−1
∏

j=0

(b)s;j . (3.29)

Then, when a = 1, lemma 3 follows from equation (3.3), with zj + b 6= 0,−s, . . . ,−(n− 2)s,

det

[

(zj)s;i
(zj + b)s;i

]

i,j=0,...,n−1

=

{ n−1
∏

j=0

1

(zj + b)s;n−1

}

det[Πi(zj)]i,j=0,...,n−1

=

{ n−1
∏

j=0

(b)s;j
(zj + b)s;n−1

}

∆n(z) . (3.30)

Note that for s = 0, the equation (C.6) for the power function can also be derived as above.
When a 6= 1, (z)s;i (az+ b+ is)s;n−1−i is still a polynomial Πi(z) of degree n− 1 in (z)s;. (or equivalently z).
But now the evaluation of the connecting coefficients ci,k (or even to compute det[ci,k]i,k=0,...,n−1 we only
need) is no longer easy since there is no simple combination law between the s-shifted factorials of z and az.
proof 2 provides a simple proof of lemma 3 for all values of a.

Proof 2. This proof of equation (3.25) follows the same steps as proof 2 of lemma 1. With the linear
combinations of rows Ri − (Mi,0/Mi−1,0)Ri−1,

Mi,j :=
(zj)s;i

(azj + b)s;i
→

(zj − z0)
(

b+ (i− 1)(1− a)s
)

(

az0 + b+ (i− 1)s
)

(azj + b)

(zj)s;i−1

(azj + b+ s)s;i−1
, i = 1, . . . , n− 1 . (3.31)

Then, with azj + b 6= 0,−s, . . . ,−(n− 2)s, the recurrence formula on n reads

Ds;n(z0, . . . , zn−1; a, b) := det
[

Mi,j

]

i,j=0,...,n−1

=
(b)(1−a)s;n−1

(az0 + b)s;n−1

{ n−1
∏

j=1

zj − z0
azj + b

}

Ds;n−1(z1, . . . , zn−1; a, b+ s) . (3.32)

Iteration of this equation, down to Ds;1

(

zn−1; a, b+ (n− 1)s
)

= 1, ends the proof.
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Note that in lemma 3, corresponding to a rearrangement of the factors,

n−1
∏

j=0

(

b+ (n− 1− j)(1− a)s
)

s;j
=

n−1
∏

j=0

(

b+ (n− 1− j)s
)

(1−a)s;j
. (3.33)

As in proof 2 of lemma 1, in the special case zj := c + js with c some complex number, a = 1 and s
nonzero, the determinant can be made triangular in one step, replacing Ri by the linear combination

R
(i)
i =

i
∑

k=0

(−1)i−k

(

i

k

)

(

c+ (i− 1)s
)

−s;i−k
(

d+ 2(i− 1)s
)

−s;i−k

Rk (3.34)

where d := b + c. Indeed, with Mi,j := (c + js)s;i/(d + js)s;i and d 6= 0,−s, . . . ,−(2n − 3)s, after some
elementary algebra based on the relations (2.5)–(2.7), (2.12) and (2.13), one gets

M
(i)
i,j =

i
∑

k=0

(−1)i−k

(

i

k

)

(

c+ (i− 1)s
)

−s;i−k
(

d+ 2(i− 1)s
)

−s;i−k

(c+ js)s;k
(d+ js)s;k

= (−1)i
(c)s;i

(

d+ (i− 1)s
)

s;i

3F2(cs
−1 + j, ds−1 + i− 1,−i; cs−1, ds−1 + j; 1) (3.35)

where the 3F2 is a terminating Saalschützian generalized hypergeometric series [12] 14 ,

3F2(α, β,−i; γ, 1 + α+ β − γ − i; 1) =
(γ − α)i (γ − β)i
(γ)i (γ − α− β)i

i = 0, 1, . . . . (3.36)

Hence,

M
(i)
i,j =

si [j]i (d− c)s;i

(d+ js)s;i
(

d+ (i − 1)s
)

s;i

(3.37)

which vanishes for i > j. Another proof of this identity is given in appendix D.3. Then, the determinant is
the product of its diagonal elements and with equation (3.23), one finds

det

[

(c+ js)s;i
(d+ js)s;i

]

i,j=0,...,n−1

=

n−1
∏

j=0

sj j! (d− c)s;j
(d+ js)s;n−1

=

n−1
∏

j=0

(d− c)s;j
(d+ js)s;n−1

∆n(j 7→ c+ js) (3.38)

ending the proof of equation (3.25) in the special case zj := c+ js and a = 1.

3.2. Consequences for s-shifted factorial with a negative index

Using equation (2.24), (z)s;−i = 1/(z − s)−s;i, and (B.2), the following corollaries are direct consequences of
the previous lemmas.

Corollary 1. With n a positive integer, s some complex number and zj 6= s, 2s, . . . , (n− 1)s,

det
[

(zj)s;−i

]

i,j=0,...,n−1
= det

[

1

(zj − s)−s;i

]

i,j=0,...,n−1

= (−1)n(n−1)/2

{n−1
∏

j=0

(zj)s;−(n−1)

}

∆n(z) . (3.39)

Proof. Consequence of lemma 2.

14 See, e.g., [12] equations 2.1(30) and 4.4(3).
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Corollary 2. With n a positive integer and s some complex number,

det

[

1

(zj)s;−i

]

i,j=0,...,n−1

= det
[

(zj)s;i
]

i,j=0,...,n−1
= ∆n(z) . (3.40)

Proof. Consequence of lemma 1.

Corollary 3. With n a positive integer, a, b and s some complex numbers and azj + b 6= s, 2s, . . . , (n− 1)s,

det

[

(azj + b)s;−i

(zj)s;−i

]

i,j=0,...,n−1

= det

[

(zj − s)−s;i

(azj + b− s)−s;i

]

i,j=0,...,n−1

=

{n−1
∏

j=0

(azj + b)s;−(n−1)
(

b+ s+ (n− j)(a− 1)s
)

s;−j

}

∆n(z) . (3.41)

Proof. Consequence of lemma 3.

Remarks:
(i) It should be noted that equations (3.39), (3.40) and ‘almost’ (3.41) can be obtained, respectively, from
equations (3.16), (3.2) and (3.25) changing for all w and i, 1/(w)s;i into (w)s;−i, although these quantities
are not equal.
(ii) A proof following the same steps as proof 2 of lemma 1, and using the same linear combination of rows
Ri − (Mi,0/Mi−1,0)Ri−1, can also be given for corollaries 1–3.
(iii) The extensions of lemma 1, corresponding to equations (3.3) and (3.6), apply as well to lemmas 2 and
3 and to corollaries 1–3, see equation (C.7), e.g., with

Πi(z) :=

n−1
∑

k=0

ci,k (z)s;−k i = 0, . . . , n− 1 λ := det
[

ci,k
]

i,k=0,...,n−1
6= 0 (3.42)

then
det
[

Πi(zj)
]

i,j=0,...,n−1
= λ det

[

(zj)s;−k

]

j,k=0,...,n−1
(3.43)

and also, with t some complex number,

det
[

(zj)s;t−i

]

i,j=0,...,n−1
=

n−1
∏

j=0

(zj)s;t det
[

(zj + t)s;−i

]

i,j=0,...,n−1
. (3.44)

Lemma 4. With n a positive integer and s some complex number,

det
[

(zi + wj)s;n−1

]

i,j=0,...,n−1
= (−1)n(n−1)/2

(

(n− 1)!
)n

(
∏n−1

j=0 j!
)2 ∆n(z)∆n(w) . (3.45)

Proof. By the binomial formula (2.41), with Mi,j := (zi + wj)s;n−1 =
∑n−1

k=0

(

n−1
k

)

(zi)s;k (wj)s;n−1−k, the
matrix M reads as the product of two matrices. Since the determinant of the product is the product of the
determinants, one gets

det
[

(zi + wj)s;n−1

]

i,j=0,...,n−1
= det

[

(

n− 1

k

)

(zi)s;k
]

i,k=0,...,n−1
det
[

(wj)s;n−1−k

]

j,k=0,...,n−1
. (3.46)

Taking the binomial coefficients out of the first determinant and rearranging the rows of the last determinant,
equation (3.45) follows from lemma 1.
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Note that in all lemmas and corollaries above, the determinants considered are anti-symmetric poly-
nomials or rational fractions of the n variables z0, . . . , zn−1, therefore one expects the simplest polynomial
alternant ∆n(z) to be a factor of the result. The same argument holds for ∆n(w) in lemma 4.

4. Determinants with gamma functions or binomial coefficients as elements

Using the relations (2.12)–(2.14) between the s-shifted factorial and the gamma function or the binomial
coefficient, the results listed below are immediate consequences of the formulae derived in section 3 with
s = ±1. For corollaries 4–6, a direct proof following the same steps as proof 2 of lemma 1, and using the same
linear combination of rows Ri− (Mi,0/Mi−1,0)Ri−1, can also be given. It is only sketched as an example for
corollary 4. In the special case zj = b+ aj, with a and b some complex numbers, the product of differences
∆n(z) is given by equation (B.5).

Corollary 4. With n a positive integer,

det
[

Γ(zj + i)
]

i,j=0,...,n−1
=
{

n−1
∏

j=0

Γ(zj)
}

∆n(z) zj 6= 0,−1, . . . (4.1)

det

[(

zj
i

)]

i,j=0,...,n−1

=
1

∏n−1
j=0 j!

∆n(z) . (4.2)

Proof 1. Consequences of lemma 1.

Proof 2. With the linear combination of rows Ri − (Mi,0/Mi−1,0)Ri−1,

Mi,j := Γ(zj + i) → (zj − z0) Γ(zj + i− 1) i = 1, . . . , n− 1 . (4.3)

Then, with zj 6= 0,−1, . . ., the recurrence formula on n reads

Dn(z0, . . . , zn−1) := det
[

Mi,j

]

i,j=0,...,n−1

= Γ(z0)
{

n−1
∏

j=1

(zj − z0)
}

Dn−1(z1, . . . , zn−1) . (4.4)

Iteration of this equation, down to D1(zn−1) = Γ(zn−1), ends the proof of equation (4.1).

In the special case zj := b+ j 6= 0,−1, . . ., one recovers the result already published in [1] 15 ,

det
[

Γ(b+ i+ j)
]

i,j=0,...,n−1
=

n−1
∏

j=0

j! Γ(b + j) . (4.5)

Corollary 5. With n a positive integer,

det

[

1

Γ(zj + i)

]

i,j=0,...,n−1

=
(−1)n(n−1)/2

∏n−1
j=0 Γ(zj + n− 1)

∆n(z) (4.6)

and for zj 6= 0, 1, . . . , n− 2,

det

[

1
(

zj
i

)

]

i,j=0,...,n−1

= (−1)n(n−1)/2

{n−1
∏

j=0

j!

[zj ]n−1

}

∆n(z) . (4.7)

15 See [1] equation (A.12).
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Proof. Consequences of lemma 2.

In the special case zj := b+ j, one gets [13]

det

[

1

Γ(b + i+ j)

]

i,j=0,...,n−1

= (−1)n(n−1)/2
n−1
∏

j=0

j!

Γ(b+ n− 1 + j)
. (4.8)

Corollary 6. With n a positive integer and b some complex numbers, for zj 6= 0,−1, . . .,

det

[

Γ(zj + i)

Γ(azj + b+ i)

]

i,j=0,...,n−1

=

{n−1
∏

j=0

(

b+ (n− 1− j)(1 − a)
)

j
Γ(zj)

Γ(azj + b + n− 1)

}

∆n(z) (4.9)

and for azj + b 6= 0, 1, . . . , n− 2,

det

[

(

zj
i

)

(

azj+b
i

)

]

i,j=0,...,n−1

=

{n−1
∏

j=0

[

b − (n− 1− j)(1 − a)
]

j

[azj + b]n−1

}

∆n(z) . (4.10)

Proof. Consequences of lemma 3.

In the special case zj := c+ j, a = 1 and d := b+ c with c 6= 0,−1, . . ., one gets [13]

det

[

Γ(c+ i+ j)

Γ(d+ i+ j)

]

i,j=0,...,n−1

=
n−1
∏

j=0

j! (d− c)j
Γ(c+ j)

Γ(d+ n− 1 + j)
(4.11)

where
∏n−1

j=0 (d− c)j =
∏n−1

j=0 (d− c+ j)n−1−j .

Corollary 7. With n a positive integer and zj 6= 0,−1, . . .,

det
[

Γ(zj − i)
]

i,j=0,...,n−1
= (−1)n(n−1)/2

{

n−1
∏

j=0

Γ(zj − n+ 1)
}

∆n(z) . (4.12)

Proof. Consequence of corollary 1.

Corollary 8. With n a positive integer,

det

[

1

Γ(zj − i)

]

i,j=0,...,n−1

=
1

∏n−1
j=0 Γ(zj)

∆n(z) . (4.13)

Proof. Consequence of corollary 2.

Corollary 9. With n a positive integer and azj + b 6= n− 1, n− 2, . . .,

det

[

Γ(azj + b − i)

Γ(zj − i)

]

i,j=0,...,n−1

=

{n−1
∏

j=0

Γ(azj + b− n+ 1)
(

b+ 1 + (n− j)(a− 1)
)

−j
Γ(zj)

}

∆n(z) . (4.14)

Proof. Consequence of corollary 3.
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In the special case zj := c+ j and a = 1 with d := b + c 6= n− 1, n− 2, . . ., one gets

det

[

Γ(d+ j − i)

Γ(c+ j − i)

]

i,j=0,...,n−1

=

{n−1
∏

j=0

j! [d− c]j
Γ(d− n+ 1 + j)

Γ(c+ j)

}

. (4.15)

Corollary 10. With n a positive integer,

det

[

Γ(zi + wj + n− 1)

Γ(zi + wj)

]

i,j=0,...,n−1

=
(−1)n(n−1)/2

(

(n− 1)!
)n

(
∏n−1

j=0 j!
)2 ∆n(z)∆n(w) (4.16)

det

[(

zi + wj

n− 1

)]

i,j=0,...,n−1

=
(−1)n(n−1)/2

(
∏n−1

j=0 j!
)2 ∆n(z)∆n(w) . (4.17)

Proof. Consequences of lemma 4.

5. Some examples of applications

Let us sketch some examples of applications which motivated this work, i.e. the calculation of the probability
density of the determinant (PDD) of random matrices. Three ensembles of n × n random matrices, with
n = 1, 2, . . ., have been extensively investigated, namely the orthogonal (β = 1), unitary (β = 2) and
symplectic (β = 4) ensembles of, respectively, real symmetric, complex Hermitian and real quaternion self-
dual matrices [14]. Then, the probability density of the eigenvalues x := {xj real ∈ D, j = 0, . . . , n − 1}
reads

Pn,β(x) = Cn,β

∣

∣∆n(x)
∣

∣

β
n−1
∏

j=0

w(xj) (5.1)

where Cn,β is the normalization constant, ∆n(x) is defined by equation (B.1) and w(x) is a non-negative
weight function. Quantities one computes in random matrix theory are often expressed in terms of determi-
nants (or Pfaffians). This is the case for the expectation value of any factorized function of the eigenvalues,

Φ(x) :=
∏n−1

j=0 ϕ(xj) [1,3]. Let us show here this result only in the simplest case β = 2, namely with
dµ(x) := w(x)ϕ(x) dx, one has

〈Φ〉 :=

∫

D

dµ(x0) · · ·

∫

D

dµ(xn−1)
∣

∣∆n(x)
∣

∣

2
= n! det

[

Φj,k

]

j,k=0,...,n−1
(5.2)

Φj,k :=

∫

D

dµ(x)Pj(x)Qk(x) (5.3)

where Pj (resp. Qk) is any monic polynomial (i.e. the coefficient of its highest power is one) of degree j
(resp. k). Indeed, from equation (C.3), each of the two factors ∆n(x) can be expressed as a polynomial

alternant and expanded as
∑

ρ∈Sn{0,...,n−1} ε(ρ)
∏n−1

j=0 Pρj
(xj), where ε(ρ) is the signature of the permutation

ρ := {ρ0, . . . , ρn−1}. Thereby, one gets

〈Φ〉 =
∑

ρ,σ∈Sn{0,...,n−1}

ε(ρ) ε(σ)
n−1
∏

j=0

∫

D

dµ(x)Pρj
(x)Qσj

(x) = n!
∑

ρ∈Sn{0,...,n−1}

ε(ρ)
n−1
∏

j=0

Φρj ,j (5.4)

completing the proof of equation (5.2). According to the measure dµ(x) considered, one may take advantage
of the freedom of choice of the monic polynomials in order to simplify the calculations. Thus, it may be
useful to choose the set of orthogonal (or skew orthogonal for β = 1 or 4) polynomials with respect to the
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weight w(x) [14, 15] 16 . For example, taking Φ as the identity operator, the result above with ϕ(x) = 1
provides a convenient way to compute the normalization constant, e.g., for β = 2

(

Cn,2

)−1
= n!

n−1
∏

j=0

νj νj :=

∫

D

dxw(x)Pj(x)
2 (5.5)

where Pj are the orthogonal monic polynomials for the weight w(x).

The calculation of the PDD,

gn,β(y) :=

∫

D

dx0 · · ·

∫

D

dxn−1 Pn,β(x) δ(y − x0 · · ·xn−1) (5.6)

of the random matrices we consider, is based on the use of the Mellin transform. Since this transformation
explores a function only on the real non-negative half-axis, one needs to compute the Mellin transform of
the restriction to y ≥ 0 of both the even and odd parts of the PDD, g±n,β(y) :=

1
2 (gn,β(y) ± gn,β(−y)). From

equations (5.6), with s some complex number, the Mellin transform of g±n,β(y) reads

M±
n,β(s) :=

∫ ∞

0

dy ys−1 g±n,β(y) =
1

2

∫

D

dx0 · · ·

∫

D

dxn−1 Pn,β(x)

n−1
∏

j=0

ϕ±
β,s(x) (5.7)

ϕ±
β,s(x) := ε±(x) |x|s−1 ε+(x) := 1 ε−(x) := sign(x) (5.8)

namely, an expression of the type given by equations (5.2) and (5.3) when β = 2, thus

M±
n,2(s) =

1

2
Cn,2 n! det

[

Φ±
j,k(s)

]

j,k=0,...,n−1
(5.9)

Φ±
j,k(s) :=

∫

D

dxw(x)ϕ±
2,s(x)Pj(x)Qk(x) . (5.10)

Now, one can consider several ensembles of random matrices associated with the classical orthogonal
polynomials characterized by the weight function w(x) and the domain D [14] 17 .
(i) For the frequently used Gaussian unitary ensemble [1] associated with the Hermite polynomials, w(x) =
exp(−x2) with D = R. Choosing the polynomials Pj (resp. Qk) to be the monomial xj (resp. xk), one finds
[4] 18

Φ±
j,k(s) =

∫ ∞

−∞

dx e−x2

ε±(x) |x|s−1 xj+k Re s > 0

=
1

2

(

1± (−1)j+k
)

Γ
(

s+j+k
2

)

. (5.11)

Then, the alternate elements of det
[

Φ±
j,k(s)

]

j,k=0,...,n−1
being zero, we can rearrange its rows and columns

so as to collect the zero elements separate from the nonzero elements. Note that this checkerboard structure
of the determinant is true for any w(x)ϕ(x) with a well-defined parity and a domain D symmetrical with
respect to x = 0. Thus,

det
[

Φ+
j,k(s)

]

j,k=0,...,n−1
= det

[

Φ+
2j,2k(s)

]

j,k=0,...,[(n−1)/2]
det
[

Φ±
2j+1,2k+1(s)

]

j,k=0,...,[(n−2)/2]
(5.12)

det
[

Φ−
j,k(s)

]

j,k=0,...,n−1
=







(−1)n/2
(

det
[

Φ−
2j,2k+1(s)

]

j,k=0,...,n/2

)2

n even

0 n odd

(5.13)

16 See, e.g., [15] appendix A.14.
17 See, e.g., [14] section 19.3.
18 See, e.g., [4] 6.1.1.
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where [x] denotes the largest integer less than or equal to x. From equation (5.11), the three determinants
above are of the type considered in corollary 4, equation (4.5), e.g.,

det
[

Φ+
2j,2k(s)

]

j,k=0,...,[(n−1)/2]
= det

[

Γ
(

s
2 + j + k

)]

j,k=0,...,[(n−1)/2]
=

[(n−1)/2]
∏

j=0

j! Γ
(

s
2 + j

)

. (5.14)

(ii) For the so-called Laguerre unitary ensemble [3], w(x) = xα exp(−x) with α > −1 and D = [0,∞[. Still
choosing the polynomials Pj (resp. Qk) to be the monomial xj (resp. xk), one finds [4] 19

Φ±
j,k(s) =

∫ ∞

0

dxxα e−x |x|s−1 xj+k = Γ(s+ α+ j + k) Re s > 0 (5.15)

Then, again with corollary 4 equation (4.5), one obtains

det
[

Φ±
j,k(s)

]

j,k=0,...,n−1
=

n−1
∏

j=0

j! Γ(s+ α+ j) (5.16)

the result being the same for ± since the spectrum is non-negative.
(iii) For the so-called Gegenbauer unitary ensemble [3]: w(x) = (1 − x2)λ−1/2 with λ > 1

2 and D = [−1, 1].
Note that the special case λ = 1

2 corresponds to the the so-called Legendre ensemble with w(x) = 1. Still
choosing the polynomials Pj (resp. Qk) to be the monomial xj (resp. xk), one finds [4] 20

Φ±
j,k(s) =

∫ 1

−1

dx (1 − x2)λ−1/2 ε±(x) |x|s−1 xj+k Re s > 0

=
1

2

(

1± (−1)j+k
)

Γ
(

λ+ 1
2

) Γ
(

s+j+k
2

)

Γ
(

λ+ s+j+k+1
2

) . (5.17)

Therefore, the equations (5.12) and (5.13) are still satisfied and the three determinants which occur are of
the type considered in corollary 6 equation (4.11), e.g.,

det
[

Φ+
2j,2k(s)

]

j,k=0,...,[(n−1)/2]
= Γ

(

λ+ 1
2

)[(n−1)/2]+1
det

[

Γ
(

s
2 + j + k

)

Γ
(

s+1
2 + λ+ j + k

)

]

j,k=0,...,[(n−1)/2]

=

[(n−1)/2]
∏

j=0

j! Γ
(

λ+ 1
2 + j

)

Γ
(

s
2 + j

)

Γ
(

s+1
2 + λ+ [(n− 1)/2] + j

) . (5.18)

(iv) For the so-called Jacobi unitary ensemble [3], w(x) = (1−x)a (1+x)b with a > 1, b > 1 and D = [−1, 1].
For a = b = λ − 1

2 , this ensemble is identical to the Gegenbauer ensemble above. For a 6= b, the problem is
more complicated, in particular due to the fact that w(x) is no longer an even function. To illustrate the
use of the formulae we derived, let us calculate only the normalization constant Cn,2. Choosing the monic
polynomials Pj(x) = (x− 1)j and Qk(x) = (1 + x)k, one finds from equation (5.3) with ϕ(x) = 1

Φ±
j,k(s) =

∫ 1

−1

dx (1− x)a+j (1 + x)b+k = (−1)j 2a+b+1+j+k Γ(a+ 1 + j) Γ(b+ 1 + k)

Γ(a+ b+ 2 + j + k)
. (5.19)

Then, the determinant in equation (5.2) is of the type considered in corollary 5 equation (4.8),

(

Cn,2

)−1
= n!

(

n−1
∏

j=0

(−1)j 2a+b+1+2j Γ(a+ 1 + j) Γ(b + 1 + j)

)

det

[

1

Γ(a+ b+ 2 + j + k)

]

j,k=0,...,n−1

= n! 2n(n−1)+(a+b+1)n
n−1
∏

j=0

j! Γ(a+ 1 + j) Γ(b+ 1 + j)

Γ(a+ b+ n+ 1 + j)
. (5.20)

19 See, e.g., [4] 6.1.1.
20 See, e.g., [4] 6.2.1 and 6.2.2.
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This result can be checked either from equation (5.5) using the constants associated with the Jacobi poly-
nomials [16] 21 , or from the Selberg integral [14] 22 .

Finally, for all these unitary ensembles (except, possibly, for the currently unknown Jacobi ensemble
with a 6= b), the Mellin transform M±

n,2(s) appears to be a product, or a ratio of products, of gamma
functions whose arguments are linear in s. Then, from the inverse Mellin transform, the PDD is expressed
in terms of Meijer G-functions [17] 23 . For the orthogonal and symplectic ensembles the expressions are
more complicated [1–3], but we are still led to consider similar determinants. Note that, as a by-product,
one gets also the non-negative integer moments of the PDD for q = 0, 1, . . .,

Mn,β(q) :=

∫

D

dy gn,β(y) y
q =

(

1 + (−1)q
)

M+
n,β(q + 1) +

(

1− (−1)q
)

M−
n,β(q + 1) . (5.21)

In connection with quantum coherent states, Dr K A Penson brought our attention on the boson
normal ordering problem, see [18–20] and references therein. Let a and a† be the boson annihilation and
creation operators respectively, satisfying [a, a†] = 1. The normal ordering of powers of boson monomials
(

(a†)r as
)n

, with n, r, s (r ≥ s) some non-negative integers involves integer sequences of numbers which are
generalizations of the usual Stirling numbers of the second kind, equation (2.9), and Bell numbers, whose
values they assume for r = s = 1,

(

(a†)r as
)n

:= (a†)n(r−s)
ns
∑

k=s

Sr,s(n, k) (a†)
k ak Br,s(n) :=

ns
∑

k=s

Sr,s(n, k) . (5.22)

A complete theory of these sequences of numbers has been worked out. In particular, the Br,s(n) can be
expressed as a sum of of an infinite series of shifted factorials (generalized Dobiński formula) and moreover,
can be considered as the n-th moments of a positive weight function Wr,s(x) with x ≥ 0,

Br,s(n) =

∫ ∞

0

dxxn Wr,s(x) . (5.23)

Extending n to complex values and using the inverse Mellin transform, one gets from above many solutions
Wr,s(x) of the Stieltjes moment problem [19]. Generalizing this approach to the integer sequences arising
from the normal ordering of exponentiated boson monomials, as given by equation (5.22), also provides
solutions to Stieltjes moment problems. It happens that determinants of the type we evaluate are the
Hankel determinants which positivity, if it can be proved, ensures the existence of the moment problem [20].

Let us add that the reader can find in [21] many methods of evaluations, lists of results and a wide
bibliography on the determinant calculus. Beyond the evaluation of particular determinants, we want to
point out that the properties of the s-shifted factorials given in section 2 emphasize similarities and connec-
tions which exist with the power function (see another example in appendix A), thereby providing compact
formulae and possibly a guide to find new relations.
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Appendix A. Finite sum of s-shifted factorials of arithmetic progression

For p a non-negative integer and a, r and s some complex numbers, we compute the finite sum of s-shifted
factorials of arithmetic progression to n terms,

zk := a+ k r Ss;p,n(a, r) :=

n−1
∑

k=0

(zk)s;p n = 1, 2, . . . (A.1)

using the same trick as for the sum of powers of natural numbers. By the binomial formula (2.41),

(zk+1)s;p+1 = (zk + r)s;p+1 =

p+1
∑

ℓ=0

(

p+ 1

ℓ

)

(zk)s;ℓ (r)s;p+1−ℓ . (A.2)

Summing up both sides of this equation for k = 0, . . . , n− 1 yields the recurrence formula on p, for n fixed,

Ss;p,n(a, r) =
1

(p+ 1)r

(

(zn)s;p+1 − (z0)s;p+1 −

p−1
∑

ℓ=0

(

p+ 1

ℓ

)

Ss;ℓ,n(a, r) (r)s;p+1−ℓ

)

p, n = 1, 2, . . . . (A.3)

The first two sums are independent of s,

Ss;0,n(a, r) = n Ss;1,n(a, r) = na+
n(n− 1)

2
r . (A.4)

When r = s, then zk − s = zk−1, and with s nonzero, an explicit expression of Ss;p,n(a, s) can be
obtained directly from the generalized Pascal triangle property (2.31),

Ss;p,n(a, s) =
1

(p+ 1)s

n−1
∑

k=0

(

(zk)s;p+1 − (zk−1)s;p+1

)

=
1

(p+ 1)s

(

(zn−1)s;p+1 − (z−1)s;p+1

)

(A.5)

where z−1 = a− s. This result can be checked by recurrence using the general equation (A.3). Similarly, for
r = −s one gets

Ss;p,n(a,−s) =
1

s(p+ 1)

(

(z0)s;p+1 − (zn)s;p+1

)

. (A.6)

Thus, for a = r = s = 1 one has, respectively, for the rising and the falling factorials

S1;p,n(1, 1) = (1)p + · · ·+ (n)p =
(n)p+1

p+ 1
(A.7)

S−1;p,n(1, 1) = [1]p + · · ·+ [n]p =



















n p = 0

[p]p + · · ·+ [n]p =
[n+ 1]p+1

p+ 1
p = 1, . . . , n

0 p = n+ 1, . . . .

(A.8)

Further general properties follow from equations (2.5) and (2.7):

Ss;p,n(−a,−r) = (−1)p S−s;p,n(a, r) (A.9)

Ss;p,n(a, r) = sp S1;p,n(
a

s
,
r

s
) s 6= 0 . (A.10)

Appendix B. Product of differences
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With the notations of equation (3.1), the product of differences ∆n(z) is defined by

∆n(z) := ∆n(z0, . . . , zn−1) :=







1 n = 1
∏

0≤i<j≤n−1

(zj − zi) n = 2, 3, . . . . (B.1)

The following relations are immediately obtained with a and b some complex numbers:

∆n(b + az0, . . . , b+ azn−1) = an(n−1)/2 ∆n(z) (B.2)

∆n

( 1

z0
, . . . ,

1

zn−1

)

=
(−1)n(n−1)/2

∏n−1
j=0 (zj)

n−1
∆n(z) zj 6= 0 (B.3)

∆n

( z0
b+ az0

, . . . ,
zn−1

b+ azn−1

)

=
bn(n−1)/2

∏n−1
j=0 (b + azj)n−1

∆n(z) b+ azj 6= 0 . (B.4)

Finally, with a and b some complex numbers, in the special case zj := b+aj, the product of differences reads

∆n(j 7→ b+ aj) = an(n−1)/2
n−1
∏

j=0

j! . (B.5)

Appendix C. Vandermonde’s determinant

It is well known [5, 15] 24 that the Vandermonde determinant det
[

(zj)
i
]

i,j=0,...,n−1
is equal to the product

of differences defined by equation (B.1), namely,

det
[

(zj)
i
]

i,j=0,...,n−1
= ∆n(z) . (C.1)

More generally, let us consider any set of n linearly independent polynomials in z each of degree less than n,

pi(z) :=
n−1
∑

k=0

ci,k z
k i = 0, . . . , n− 1 λ := det

[

ci,k
]

i,k=0,...,n−1
6= 0 . (C.2)

Then, since the determinant of the product is the product of the determinants, one gets for the polynomial
alternant

det
[

pi(zj)
]

i,j=0,...,n−1
= det

[

ci,k
]

i,k=0,...,n−1
det
[

(zj)
k
]

j,k=0,...,n−1

= λ∆n(z) . (C.3)

Choosing the pi’s to be monic polynomials of degree i (e.g., the monomials zi), then ci,k = 0 for k =
i + 1, . . . , n − 1 and ci,i = 1, therefore λ = 1 in equation (C.2). Now, with bi some complex numbers, it
follows from the binomial formula that (z + bi)

i is an other choice of monic polynomial of degree i, hence

det
[

(bi + zj)
i
]

i,j=0,...,n−1
= ∆n(z) . (C.4)

When bi = b, the relation above is also a direct consequence of equations (C.1) and (B.2).

Since (zi)−1 = (z−1)i, with a and b some complex numbers, one immediately obtains from equations
(C.1), (B.3) and (B.4)

det
[ 1

(zj)i

]

i,j=0,...,n−1
=

(−1)n(n−1)/2

∏n−1
j=0 (zj)

n−1
∆n(z) zj 6= 0 (C.5)

det
[ (zj)

i

(azj + b)i

]

i,j=0,...,n−1
=

bn(n−1)/2

∏n−1
j=0 (azj + b)n−1

∆n(z) azj + b 6= 0 . (C.6)

24 See, e.g., [5] section 14.311 or [15] section 7.1.
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More generally, following the same arguments as for equation (C.3), one can consider polynomials of the
monomials introduced above (or even of any function), e.g., with λ := det

[

ci,k
]

i,k=0,...,n−1
and azj + b

nonzero,

det
[

n−1
∑

k=0

ci,k

( zj
azj + b

)k]

i,j=0,...,n−1
= λ

bn(n−1)/2

∏n−1
j=0 (azj + b)n−1

∆n(z) . (C.7)

Appendix D. Other proofs of equations (3.14), (3.21) and (3.35), (3.37)

These identities can be proved by recurrence on i. Let us also give a proof which illustrates another way to
handle shifted factorials, namely they can be generated by repeated derivations and/or integrations, e.g.,

( d

dx

)j

xb
∣

∣

x=1
= [b]j (D.1)

∫ y

0

dyj · · ·

∫ y2

0

dy1 y
b
1

∣

∣

y=1
=

1

(b+ 1)j
= [b]−j . (D.2)

D.1. Other proof of equation (3.14)

Differentiating j times (x− 1)i xb+j−1 in two ways (binomial formula and chain rule derivation of a product)
[13],

( d

dx

)j{

(x− 1)i xb+j−1
}

=

i
∑

k=0

(−1)i−k

(

i

k

)

( d

dx

)j

xb+j+k−1

=

j
∑

ℓ=0

(

j

ℓ

)

{( d

dx

)ℓ

(x− 1)i
}( d

dx

)j−ℓ

xb+j−1 (D.3)

and setting x = 1, only the term with ℓ = i is nonzero. Thereby, one gets

i
∑

k=0

(−1)i−k

(

i

k

)

[b+ j + k − 1]j = [j]i [b + j − 1]j−i (D.4)

where [j]i, and thus the right-hand side, vanishes for i > j, see equation (2.10). Since from equations (2.12)
and (2.13)

[b+ j + k − 1]j =
Γ(b+ j)

Γ(b+ i)
[b+ i− 1]i−k (b+ j)k (D.5)

[b+ j − 1]j−i =
Γ(b+ j)

Γ(b+ i)
(D.6)

one recovers equation (3.14) (with s = 1 for simplicity).

D.2. Other proof of equation (3.21)

Assume first i > j. Then, as above, one gets

( d

dy

)i−j−1{

(y − 1)i yb+i−2
}

∣

∣

y=1
=

i
∑

k=0

(−1)i−k

(

i

k

)

[b+ i+ k − 2]i−j−1 = 0 (D.7)
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where the last equality is due to an overall factor y − 1 which remains after the derivation. When i ≤ j,
integrating j − i+ 1 times (y − 1)i yb+i−2 in two ways and then setting y = 1 yield

∫ y

0

dyj−i+1 · · ·

∫ y2

0

dy1 (y1 − 1)i yb+i−2
1

∣

∣

y=1
=

i
∑

k=0

(−1)i−k

(

i

k

)

1

(b+ i + k − 1)j−i+1

=

∫ 1

0

dy1 (y1 − 1)i yb+i−2
1

∫ 1

y1

dy2 · · ·

∫ 1

yj−i

dyj−i+1 =
(−1)i

(j − i)!
B(b+ i− 1, j + 1) (D.8)

where B(z, w) is the beta function [4] 25, thus

i
∑

k=0

(−1)i−k

(

i

k

)

1

(b+ i+ k − 1)j−i+1
= (−1)i [j]i

Γ(b+ i− 1)

Γ(b+ i+ j)
. (D.9)

Now, since from equations (2.24), (2.12) and (2.13)

(−1)i−k[b+ i+ k − 2]i−j−1 =
(−1)i−k

(b+ i+ k − 1)j−i+1
(D.10)

=
Γ(b+ 2i− 1)

Γ(b+ j)
×

1
(

−b− 2(i− 1)
)

i−k

1

(b+ j)k
(D.11)

and furthermore

Γ(b+ i− 1)

Γ(b+ i+ j)
=

Γ(b + 2i− 1)

Γ(b + j)
×

1

(b + i− 1)i (b + j)i
(D.12)

the sum over k in equation (D.7) for i > j and (D.9) for i ≤ j does correspond to the sums considered in
equation (3.21) (with s = 1 for simplicity). Note that since [j]i vanishes for i > j and with equation (D.10),
the relation (D.9) is true in all cases.

D.3. Other proof of equations (3.35), (3.37)

Assume first i > j. With now two variables x and y, as above, one gets
( ∂

∂x

)j( ∂

∂y

)i−j−1{

(xy − 1)i xc+j−1 yd+i−2
}

∣

∣

x=1

y=1

=
i
∑

k=0

(−1)i−k

(

i

k

)

[c+ j + k − 1]j [d+ i+ k − 2]i−j−1

=
( d

dx

)j
{

xc−d
( d

dx

)i−j−1{

(x− 1)i xd+i−2
}

}

∣

∣

x=1
= 0 (D.13)

where the last equality is due to an overall factor x−1 which remains after the derivation over x. When i ≤ j,
differentiating j times with respect to x and integrating j−i+1 times over y the expression (xy−1)i xd−c+i−2

in two ways and then setting x = 1 and y = 1 yield
∫ y

0

dyj−i+1 · · ·

∫ y2

0

dy1

( ∂

∂x

)j {

(xy1 − 1)i xc+j−1 yd+i−2
1

}

∣

∣

x=1

y=1

=
i
∑

k=0

(−1)i−k

(

i

k

)

[c+ j + k − 1]j
(d+ i+ k − 1)j−i+1

=

j
∑

ℓ=0

(

j

ℓ

)
∫ 1

0

dy1

{( ∂

∂x

)ℓ

(xy1 − 1)i
}{( d

dx

)j−ℓ

xc+j−1
}

yb+i−2
1

∫ 1

y1

dy2 · · ·

∫ 1

yj−i

dyj−i+1

∣

∣

x=1

=
1

(j − i)!

i
∑

ℓ=0

(−1)i−ℓ

(

j

ℓ

)

[i]l [c+ j − 1]j−l B(d+ i+ ℓ− 1, j − ℓ+ 1) (D.14)

25 See, e.g., [4] 6.2.1 and 6.2.2.
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where B(z, w) is the beta function. Thereby, after some elementary algebra, using equations (2.24), (2.12)
and (2.13), one gets

i
∑

k=0

(−1)i−k

(

i

k

)

[c+ j + k − 1]j
(d+ i+ k − 1)j−i+1

= [j]i
Γ(c+ j)

Γ(c+ i)

Γ(d+ i− 1)

Γ(d+ i+ j)

i
∑

ℓ=0

(−1)i−ℓ

(

j

ℓ

)

(d+ i− 1)ℓ [c+ i − 1]i−ℓ

=
Γ(d+ 2i− 1)

Γ(d+ j)

Γ(c+ j)

Γ(c+ i)
×

[j]i (d− c)i
(d+ j)i (d+ i− 1)i

(D.15)

where the last equality follows from the binomial formula (2.46). Now, since

[c+ j+k − 1]j [d+ i+ k − 2]i−j−1 =
[c+ j + k − 1]j

(d+ i+ k − 1)j−i+1
(D.16)

=
Γ(d+ 2i− 1)

Γ(d+ j)

Γ(c+ j)

Γ(c+ i)
×

[c+ i− 1]i−k

[d+ 2(i− 1)]i−k

(c+ j)k
(d+ j)k

(D.17)

the sum over k in equation (D.13) for i > j and (D.15) for i ≤ j does correspond to the sum over k in
equation (3.35) (with s = 1 for simplicity). Note that since [j]i vanishes for i > j and with equation (D.16),
the relation (D.15) is true in all cases.

References

[1] Mehta M L and Normand J-M 1998 Probability density of the determinant of a random Hermitian
matrix J. Phys. A: Math. Gen. 31 5377-91
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