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ABSTRACT

Context. Large-scale solar eruptions signi�cantly a�ect space weather and damage space-based human infrastructures. It is necessary
to predict large-scale solar eruptions; it will enable us to protect the vulnerable infrastructures of our modern society.
Aims. We investigate the di�erence between �aring and non�aring active regions. We also investigate whether it is possible to forecast
a solar �are.
Methods. We used photospheric vector magnetogram data from the Solar Dynamic Observatory’s Helioseismic Magnetic Imager to
study the time evolution of photospheric magnetic parameters on the solar surface. We built a database of �aring and non�aring active
regions observed on the solar surface from 2010 to 2017. We trained a machine-learning algorithm with the time evolution of these
active region parameters. Finally, we estimated the performance obtained from the machine-learning algorithm.
Results. The strength of some magnetic parameters such as the total unsigned magnetic �ux, the total unsigned magnetic helicity,
the total unsigned vertical current, and the total photospheric magnetic energy density in �aring active regions are much higher than
those of the non-�aring regions. These magnetic parameters in a �aring active region evolve fast and are complex. We are able to
obtain a good forecasting capability with a relatively high value of true skill statistic. We also �nd that time evolution of the total
unsigned magnetic helicity and the total unsigned magnetic �ux provides a very high ability of distinguishing �aring and non�aring
active regions.
Conclusions. We can distinguish a �aring active region from a non�aring region with good accuracy. We con�rm that there is no single
common parameter that can distinguish all �aring active regions from the non�aring regions. However, the time evolution of the top
two magnetic parameters, the total unsigned magnetic �ux and the total unsigned magnetic helicity, have a very high distinguishing
capability.

Key words. methods: data analysis � methods: observational � Sun: �ares � Sun: coronal mass ejections (CMEs) �
Sun: magnetic �elds

1. Introduction

Solar �ares and coronal mass ejections are the two greatest
explosions in the Solar System. These two explosions release a
huge amount of magnetic energy into the solar corona, creating
disturbances in space weather. These two events directly a�ect
the Earth’s atmosphere, causing geomagnetic disturbances. It is
now well known that the magnetic �eld structures in the Sun
are responsible for large-scale eruptions. The study of magnetic
�elds in the Sun is critical for understanding the energy buildup
and release mechanism in solar �ares and coronal mass ejection.

Solar �ares and coronal mass ejections are believed to
be a storage-and-release mechanism by which the nonpoten-
tial magnetic �eld of the solar corona is released abruptly
(Priest & Forbes 2002; Shibata & Magara 2011). It is also
believed that complex magnetic structures on the solar surface
are related to the onset of solar eruptions. Many studies have
been performed to investigate the relationship between solar

eruptions and photospheric magnetic parameters. Many active
region parameters have been proposed to characterize the non-
potentiality of the magnetic �eld structures on the solar surface.
Some of the well-known nonpotentiality parameters are the cur-
rent helicity (Abramenko et al. 1996; Zhang & Bao 1999), the
vertical electric current (Leka et al. 1993), the horizontal gra-
dient of the longitudinal magnetic �eld (Zirin & Wang 1993;
Tian et al. 2002), the total photospheric magnetic free-energy
density (Wang et al. 1996; Metcalf et al. 2005), the strong mag-
netic shear (Low 1977; Kusano et al. 1995), the reverse mag-
netic shear (Kusano et al. 2004; Vemareddy et al. 2012), the
shear angle (Ambastha et al. 1993), and the twist parameter
(Pevtsov et al. 1994; Holder et al. 2004). Although individual
case studies indicate a strong relationship between these non-
potentiality parameters and the �are productivity, it is unclear
so far which property is common in all the eruptive active
regions and distinguishes them from other noneruptive active
regions.
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It is now well known that magnetic �eld structures on the
solar surface change signi�cantly with time. A detailed study
of this photospheric magnetic �eld evolution may shed light on
the energy buildup and release mechanism of solar eruptions.
The most frequently discussed mechanism for the change in the
photospheric magnetic �eld structure is �ux emergence and can-
cellation (Livi et al. 1989; Spirock et al. 2002; Sudol & Harvey
2005; Burtseva & Petrie 2013). Flux emergence and cancella-
tion are found to play a signi�cant role in some theories of
solar eruptions (van Ballegooijen & Martens 1989; Amari et al.
2010). Flux cancellation is also one of the necessary condi-
tions for the formation of solar �laments (Martin et al. 1985;
Gaizauskas et al. 1997; Martens & Zwaan 2001). Solar �laments
are believed to be one of the main precursors for solar eruptions
(Sinha et al. 2019). The possible orientation of the magnetic �eld
that is ejected as a result of solar eruptions can be predicted
by studying the hemispheric preference of the �lament chiral-
ity (Martin et al. 1994; Hazra et al. 2018). In summary, the time
evolution of the photospheric magnetic �eld parameters plays
an important role in the onset phase of the solar �are. However,
because of the large amount of solar data, it is almost impos-
sible to analyze every solar eruptive event manually. We must
build some reliable automated method that can analyze the erup-
tive active regions and distinguish them from other noneruptive
active regions.

In recent times, machine-learning appears as a promising
automated candidate to reliably forecast solar eruptive events
(Ahmed et al. 2013; Bobra & Couvidat 2015; Bobra & Ilonidis
2016; Nishizuka et al. 2017; Hamdi et al. 2017; Ma et al.
2017; Filali Boubrahimi & Angryk 2018; Florios et al. 2018;
Inceoglu et al. 2018). Machine-learning is also used to iden-
tify the common parameter that is most important to distin-
guish an eruptive active region from other noneruptive active
regions. Dhuri et al. (2019) used machine-learning to determine
the critical criteria in the onset phase that can lead to a solar
�are. Di�erent types of data sets are used for the purpose
of predicting eruptive events using machine-learning. Yu et al.
(2009) and Yuan et al. (2010) used line-of-sight magnetogram
data obtained from Michelson Doppler Imager (MDI) for �are
prediction. Aggarwal et al. (2018) used �lament metadata for the
prediction of eruptive events. However, most of the studies used
vector magnetogram data obtained from the Helioseismic Mag-
netic Imager (HMI) onboard the Solar Dynamics Observatory
(SDO) for the purpose of �are prediction. Di�erent machine-
learning classi�ers have been used for the solar �are predic-
tion. Some studies also used the time series of the magnetic �eld
data obtained from HMI for �are prediction (Hamdi et al. 2017;
Ma et al. 2017).

In this paper, we aim to investigate the importance of the
time evolution of magnetic parameters in terms of �are fore-
casting. We �nd that there is a signi�cant di�erence between
an eruptive and a noneruptive active region in terms of both
strength and time evolution of photospheric magnetic parame-
ters. We also determine the common magnetic parameter that
will clearly separate an eruptive active regions from a nonerup-
tive regions. For this purpose, we trained a machine-learning
algorithm using the time evolution of the photospheric mag-
netic parameters. We are able to predict a solar �are quite well.
We �nd that total unsigned magnetic helicity and total unsigned
magnetic �ux have a higher distinguishing capability than other
photospheric magnetic parameters.

Section 2 describes the details of the data we used. We
present a detailed manual comparison study between eruptive
and noneruptive active regions in terms of the time evolution

of magnetic parameters in Sect. 3. We present a comparison
study between eruptive and noneruptive active regions using
the machine-learning algorithm in Sect. 4. We also describe the
details of the machine-learning algorithm and its performance in
Sect. 4. Finally, we present a summary and our conclusions in
Sect. 5.

2. Data

2.1. Data for active regions

The HMI, an instrument on board the SDO spacecraft, pro-
vides us continuous full-disk photospheric magnetic �eld data
(Scherrer et al. 2012; Schou et al. 2012). The HMI team devel-
oped an automated method that detects active region patches
from the full-disk vector magnetogram data and provides us
derivative data that are called space-weather HMI active region
patches (SHARP) (Bobra et al. 2014). The automatic-detection
algorithm operates on the line-of-sight magnetic �eld image and
creates a smooth bounding curve, called bitmap, which is cen-
tered on the �ux-weighted centroid. The HMI Stokes I, Q, U, V
data were inverted within the smooth bounding curve with the
code called very fast inversion of the Stokes vector (VFISV),
which is based on the Middle-Eddington model of the solar
atmosphere. The 180� ambiguity in the transverse component of
the magnetic �eld was corrected for using the minimum-energy
algorithm (Metcalf 1994; Crouch et al. 2009). The inverted and
disambiguated magnetic vector �eld data were remapped to
a Lambert cylindrical equal-area projection, which gives us
decomposed Bx, By, and Bz data. JSOC provides us these
decomposed data. We downloaded these decomposed data from
the JSOC webpage. We calculated 17 active region magnetic
�eld parameters every 12 min from these SHARP data. These
parameters are listed with keywords and formula in Table 1. We
followed the same procedure to calculate the active region mag-
netic �eld parameters as de�ned in Bobra & Couvidat (2015).
We considered the pixels that are within bitmap and above
a high-con�dence disambiguation threshold (coded value is
greater than 60) for our magnetic parameter calculation. We
used a �nite-di�erence method to calculate the computational
derivative needed for the parameter calculation. We used Green’s
function technique with a monopole depth of 0.00001 pixels to
calculate the potential magnetic �eld, which is necessary for the
calculation of the total photospheric magnetic free-energy den-
sity. We neglected active regions near the limb, where it is di�-
cult to see magnetic structures because of the projection e�ect.
The calculated magnetic �eld parameter data are also not reli-
able near the limb. We therefore only considered the data for
our study that were within �70� from the disk center. We note
that data for all of these magnetic parameters are available in the
SHARP header1.

2.2. Data for a solar �are

We considered the solar �are for our study based on the peak
X-ray �ux observed by GOES X-ray satellites. When the GOES
satellite detects a �are, it generally reports this to the �are cata-
log. Then the �are is paired with its parent active region. Gener-
ally, �ve types of �ares namely A, B, C, M, and X are observed
by GOES satellites. While X and M class are high-intensity
�ares (intensity greater than 10�5 Wm�2); other A, B, C �ares

1 SHARP data products from SDO HMI can be found at
jsoc.stanford.edu (Scherrer et al. 2012).
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Table 1. Keywords, de�nitions and units of our calculated active region parameters.

Keyword Description Unit Formula

TOTUSJH Total unsigned current helicity G2 m�1 Hctotal /
P
jBz:Jzj

TOTPOT Total photospheric magnetic free-energy density ergs cm�1 �tot /
P�

Bobs � Bpot
�2

dA
TOTUSJZ Total unsigned vertical current Amperes Jz;total /

P
jJzjdA

SVANCPP Sum of the modulus of the net current per polarity Amperes Jz;sum / j
B+

zP
JzdAj + j

B�zP
JzdAj

ABSNZH Absolute value of the net current helicity G2 m�1 Hcabs / j
P

Bz:Jzj
USFLUX Total unsigned �ux Maxwell � /

P
jBzjdA

MEANPOT Mean photospheric magnetic free-energy density ergs cm�3 fl� / 1
N

P�
Bobs � Bpot

�2

MEANGAM Mean angle of the �eld from radial Degrees fl
 / 1
N

P
arctan

�
Bh
Bz

�

MEANSHR Mean shear angle Degrees fl� / 1
N

P
arccos

�
Bobs:Bpot

jBobs j:jBpot j

�

SHRGT45 Fraction of area with shear >45� m2 Area with shear> 45�/total area
AREA_ACR Area of strong-�eld pixels in an active region m2 Area =

P
Pixels

MEANGBT Mean gradient of the total �eld G Mm�1 jrBtotj = 1
N

P q�
@B
@x

�2
+

�
@B
@y

�2

MEANGBZ Mean gradient of the vertical �eld G Mm�1 jrBzj = 1
N

P q� @Bz
@x

�2
+

� @Bz
@y

�2

MEANGBH Mean gradient of the horizontal �eld G Mm�1 jrBhj = 1
N

P q�
@Bh
@x

�2
+ ( @Bh

@y )2

MEANJZH Mean current helicity G2 m�1 flHc / 1
N

P
BzJz

MEANJZD Mean vertical current density mA m�2 Jz / 1
N

P� @By
@x �

@Bx
@y

�

MEANALP Mean characteristic twist parameter, � 1 Mm �total /
P

JzBzP
B2

z

are less intensive ones. For our study, we only consider X and
M class �ares as a �are. We also only consider the �ares for our
study which are within �70� of the central meridian and if there
is also an associated parent active region.

3. Comparing �aring and non�aring regions
Active regions NOAA 11166 (SHARP 401), NOAA 11283
(SHARP 833), and NOAA 11143 (SHARP 335) were chosen
for the comparison study between �aring and non�aring active
regions. All of these active regions transited across the visible
solar disk for a long time. AR 11166 produced one X-class and
two M-class solar �ares during the passage across the visible
solar disk, while AR 11283 produced two X-class and �ve M-
class solar �ares. In contrast, AR 1143 produced no �are during
its transit. The questions now are why these three active regions
behaved so di�erently during their transit across the solar disk,
and whether it is possible to distinguish �aring and non�aring
active regions.

It is now well known that the di�erent magnetic nature of
the active regions is responsible for di�erent behaviors. Here,
we study the temporal evolution of the magnetic parameters of
the photospheric active region to form an idea about the di�er-
ence between �aring and non�aring active regions. Figures 1�3
show the temporal evolution of four magnetic parameters: the
total unsigned magnetic �ux (�tot), the total unsigned current
helicity (hc;tot), the total unsigned vertical current (Jz;tot), and
the proxy of the total photospheric magnetic free-energy den-
sity (�tot). All these four parameters have a much higher value in
the case of the �aring active regions (AR 11166 and 11283) than
for the non�aring active region (AR 11143). All four magnetic
parameters also show signi�cant evolution. The total unsigned
magnetic �ux for AR 11166 decreases before the �rst large-scale

�are, but increases for the other two �ares (Fig. 1). The other
three magnetic parameters for AR 11166 show an increasing
trend before the �rst �are. The total unsigned magnetic �ux for
AR 11283 shows a signi�cant decreasing trend before the �rst
�are and an increasing trend later (Fig. 2). The total unsigned
magnetic helicity for the two �aring active regions (AR 11166
and 11283) shows an increasing trend before the �rst �are, and
both active regions start the �aring activity when the value of the
magnetic helicity is su�ciently high. Another interesting point
is that when an active region starts �aring, it continues to �are
for some time. All four magnetic parameters also show signi�-
cant evolution for non�aring AR 11283, but have a much lower
value than the other two �aring active regions (see Fig. 3). We
also note that the signal-to-noise ratio in the data near the solar
limb is high, therefore the values of the magnetic parameters in
our time evolution study are not reliable for the start and end
times (active regions are near the limb).

The change in the total unsigned magnetic �ux during the
active region transit is mostly due to �ux cancellation and emer-
gence on the solar surface. The magnetic �ux is always observed
to disappear when the magnetic �ux of one particular polarity
encounters �ux fragments of opposite polarity. Some previous
studies have indicated that �ux cancellation plays an important
role in triggering solar eruptions (van Ballegooijen & Martens
1989; Amari et al. 2010). The total unsigned magnetic �ux of the
active region and the magnetic �ux near the polarity-inversion
line (R-value) is also found to be correlated well with the �ar-
ing activity and the coronal X-ray luminosity (Schrijver 2007;
Leka & Barnes 2007; Barnes & Leka 2008; Burtseva & Petrie
2013; Hazra et al. 2015). The emergence of the new magnetic
�ux is also a well-observed phenomenon and believed to be
one of the mechanisms for the formation of the current sheet
(Tur & Priest 1976; Wang & Tang 1993; Sudol & Harvey 2005).
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Fig. 1. Time evolution of the total unsigned magnetic �ux (USFLUX), the total unsigned vertical current (TOTUSJZ), the total unsigned current
helicity (TOTUSJH), and the total photospheric magnetic free-energy density (TOTPOT) for active region NOAA 11166 (SHARP 401). The thick
dashed vertical blue line corresponds to an X-class solar �are, and the thin dashed vertical blue line corresponds to an M-class solar �are.

Our results indicate that the total unsigned magnetic �ux is con-
siderably higher in �aring active regions than in non�aring active
regions.

We also found that �aring active regions are magnetically
more complex than non�aring active regions. The magnetic
complexity in an active region can be characterized by dif-
ferent magnetic parameters: the vertical electric current, mag-
netic helicity, twist, shear angle, photospheric magnetic free
energy density, etc. (Abramenko et al. 1996; Metcalf et al. 2005;
Pevtsov et al. 1994; Park et al. 2008). Magnetic helicity, which
is a measure of twist, shear, and the inter-linkage of magnetic
�eld lines, is a conserved quantity in an ideal MHD scenario
(Berger & Field 1984). A change in magnetic helicity re�ects a
deviation from the ideal MHD scenario and indicates that the
magnetic complexity inside the active regions evolves. We �nd
signi�cantly higher magnetic helicity and excess magnetic free
energy in the �aring active region than in the non�aring region.
Recent theoretical and observational studies also suggest that
the injection of magnetic helicity of both the same and opposite
sign into the global helicity of a system can trigger a solar �are
(Kusano et al. 2002; Moon et al. 2002; Park et al. 2008, 2012,
2013). Kusano et al. (2003) also developed a theoretical model
of a solar �are based on the destruction of magnetic helicity. Our
result indicates both the accumulation and destruction of mag-
netic helicity before the onset of a solar �are.

In summary, our result highlights that the time evolution of
magnetic parameters is important for distinguishing �aring and
non�aring active regions. However, the question arises which
magnetic parameter is more important. This is very di�cult to
say. In reality, a large number of active regions appears on the
solar surface within a few days. It is di�cult to analyze all active
regions manually to predict the probability that on such region

erupts. We have to develop some automated method that will
help us to predict whether an active region will �are.

4. Comparing �aring and non�aring regions using
machine learning

In the previous section, we discussed the di�erences between
�aring and non�aring active regions based on the time evo-
lution of magnetic parameters. In this section, we distinguish
them based on an automated machine-learning method. Machine
learning is a branch of arti�cial intelligence that provides a com-
puter the ability to learn automatically and improve from past
experience without being explicitly programmed. Two types of
learning, unsupervised learning and supervised learning, exist
in the machine-learning literature. In the unsupervised learning
scenario, the machine-learning algorithm identi�es the patterns
in the data without the use of explicitly labeled information,
while in the supervised learning, labeled data are available. As
we already have a well-known database of �aring and non�aring
active regions, we used supervised learning techniques for our
problem.

4.1. Data preparation

To train the supervised machine-learning algorithms, we �rst
de�ned the positive and negative class. We followed the de�ni-
tion prescribed by Ma et al. (2017) and Dhuri et al. (2019) for this
purpose. An active region that produces at least one X- or M-class
solar �are during its transit across the visible solar disk belongs to
the positive class, and an active region that does not produce any
X- or M-class �are during its transit belongs to the negative class.

A44, page 4 of 12

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201937426&pdf_id=1


S. Hazra et al.: Distinguishing between �aring and non�aring active regions

Fig. 2. Time evolution of the total unsigned magnetic �ux (USFLUX), the total unsigned vertical current (TOTUSJZ), the total unsigned current
helicity (TOTUSJH), and the total photospheric magnetic free-energy density (TOTPOT) for active region NOAA 11283 (SHARP 833). The thick
dashed vertical blue line corresponds to an X-class solar �are, and the thin dashed vertical blue line corresponds to an M-class solar �are.

Fig. 3. Time evolution of the total
unsigned magnetic �ux (USFLUX),
the total unsigned vertical current
(TOTUSJZ), the total unsigned current
helicity (TOTUSJH), and the total
photospheric magnetic free-energy
density (TOTPOT) for active region
NOAA 11143 (SHARP 335). This active
region did not produce any solar �are
during its transit across the visible solar
disk.

Fig. 4. Data selection criteria for eruptive
active regions in terms of �are-generating
time (te), loopback time (l), and span time (s).
We use the time evolution of the active region
parameters during span time (s) to train the
machine-learning algorithm. The loopback
time is also the forecasting window.
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Most previous �are-prediction studies considered only mag-
netic parameters that were 24 h before the �are time. They did
not consider any time evolution of the magnetic parameters for
their prediction purposes. However, most of the theoretical mod-
els suggest a change in magnetic parameters before the solar
�are. The standard �are model indicates that �ux cancellation
near the polarity inversion line is an important determinant for
solar �are (van Ballegooijen & Martens 1989). Thus it is neces-
sary to include the basic essence of the time evolution of mag-
netic parameters in the training purpose.

We considered the time evolution of the magnetic parame-
ters during a time window, named span, for the training purpose.
The span time window is always before the loopback time. The
loopback is the time window before the occurrence of the solar
�are. Figure 4 represents this selection graphically. We assume
that we wish to predict a solar �are 24 h before its occurrence,
and for this purpose, we considered the 12 h of the time evolution
of the magnetic parameters, which is 24 h before the �are occur-
rence. In this situation, loopback is 24 h and span is 12 h. As
we consider 17 magnetic parameters for our study, we obtain 17
time series of the magnetic parameter evolution for the training
purpose. We represent each time series of the magnetic parame-
ter evolution by seven statistical parameters associated with the
time series: the mean, median, skewness, kurtosis, standard devi-
ation, and the �rst and third quartile. For a time series named
T = [x1; x2; x3; : : : ; xn], the statistical summary parameters are
de�ned in the following way:

Mean (�) =
1
N

NX

i=1

xi (1)

Std: Deviation (�) =

sPn
i=1(xi � �(T ))2

N
(2)

Skewness =
Pn

i=1(xi � �(T ))3

N�(T )3 (3)

Kurtosis =
Pn

i=1(xi � �(T ))4

N�(T )4 � (4)

The median is the middle number of the ascending time
series T , the �rst quartile is the middle value between the median
and the smallest number of the time series T , and the third quar-
tile is the middle value between the median and the largest num-
ber of the time series T . The standard deviation (�) represents
the dispersion around the mean. Skewness and kurtosis are a
statistical measure to describe the distribution. While skewness
is the measure of the symmetry of the dataset, kurtosis tells us
how the tails of the distribution di�er from the tails of the nor-
mal distribution. We considered 17 magnetic parameters for our
study and therefore have a time series for each of the 17 magnetic
parameters. As we represent each of the time series by seven sta-
tistical parameters, we have 119 entries in the resulting matrix.

4.2. Different supervised machine-learning techniques

There are di�erent supervised machine learning classi�ers in
the literature. These supervised machine learning algorithms are
used for training. Some of the well-known supervised machine-
learning classi�ers are logistic regression, a decision tree, K near-
est neighbors, naive Bayes, a support vector machine, a multilayer
perceptron, or a random forest. In the machine-learning litera-
ture, every problem is unique. We do not know what algorithms to
use or whether the problem can be modeled e�ectively. A base-
line model is the simplest possible prediction model. The result

of the baseline model will tell us whether a more complex algo-
rithm adds any value to the result. There is no need for a com-
plex machine-learning algorithm for a particular problem if a sim-
ple baseline algorithm can do the same. We here used the logistic
regression classi�er as a baseline model and compared the base-
line result with the results obtained from some other complex
machine-learning algorithms, the support vector machine, a ran-
dom forest, naive Bayes, and a multilayer perceptron.

Baseline model: Logistic regression. Logistic regression
(LR) is one of the simplest and most commonly used machine-
learning algorithms for the binary classi�cation problem. It is easy
to implement, easy to interpret, e�cient, and does not require
high computation power; thus it can be used as a baseline model
for the binary classi�cation problem. This model estimates the
probability of an event occurrence by �tting data to a logistic
function. The equation used for logistic regression is log( p

1�p ) =
�0 + �1x1 + : : : + �nxn; where p is the probability of the event
occurrence. x1; x2; : : : xn is the number of independent variables.

p
1�p is known as the odd ratio. If the odd ratio is positive, then the
probability of an event occurrence is more than 50%. One of the
main drawbacks of the algorithm is the assumption of linearity
between the dependent and independent variable. This algorithm
separates the classes by constructing a linear decision boundary
between them. It is a linear classi�er. It does not perform well if the
classes are not linearly separable. We used the lbfgs solver for our
logistic regression classi�er. However, a kernel trick can be used
to change any linear decision boundary algorithm into a nonlinear
decision boundary algorithm.

Support vector machine. The support vector machine
(SVM) is a classi�cation algorithm that separates the data of
two classes by �nding a line (in 1D) or a hyperplane (in higher
dimensions) between two classes. In the SVM algorithm, the
points near the line or the hyperplane are called support vec-
tor, and the distance between the support vector and the line or
the hyperplane is called margin. This algorithm tries to �nd the
hyperplane or line by maximizing the margin. SVM is highly
suitable for linear classi�cation problems. However, SVM can
also solve nonlinear classi�cation problems by moving lower-
dimensional space to higher-dimensional space such that we can
�nd the separating hyperplane in the higher dimension. These
transformations are known as the kernel trick.

We assumed N training points where each input xi has D
attributes and belongs to any of the two classes yi = +1 or �1.
In most of the cases, di�erent classes cannot be solved fully lin-
early. In this situation, the soft-margin SVM algorithm is com-
monly used, where the concept of a slack variable and the idea of
a trade-o� between the minimization of misclassi�cation rate and
the maximization of margin is introduced. The hyperplane can be
described by the equation wixi + b� 1 = 0;where w is the normal
to the hyperplane and b=jjwjj is the normal distance from the origin
to the hyperplane. In the SVM scenario, 1=jjwjj is the margin. In
the soft-margin SVM algorithm, we have to select the variable b
and w in a way that we can describe our training data by

xi:w + b � +1 �  i for yi = +1
xi:w + b � �1 +  i for yi = �1,

where,  i � 0 is the slack variable. We can combine these two
equation into a single equation:

yi(xi:w + b) � 1 +  i � 0.

In the soft-margin SVM algorithm, we have to maximize
the margin and also reduce the misclassi�cation rate. This can
be made by minimizing an objective function subject to the
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previous condition. In a more general way, this problem can be
de�ned as

min
0
BBBBB@

1
2

wT w + C
LX

i=1

 i

1
CCCCCA ; (5)

such that yi(wT �(xi) + b) � 1 +  i � 0. Parameter C controls the
trade-o� between the size of the margin and the slack variable.
This parameter is also known as the regularization parameter.
� is the function that maps the input data into higher dimen-
sional space, also known as the kernel function. It is sometimes
di�cult to �nd an appropriate kernel for a particular problem.
We do not know whether our problem is linearly separable. We
used the kernel trick for our problem. It has previously been
shown that a radial basis function kernel projects vectors into
in�nite-dimensional space. Motivated by this fact, we used a
radial basis function kernel for our study. Our choice of the
rbf kernel ensures that our support vector machine algorithm
will separate the classes by constructing a nonlinear decision
boundary.

Multilayer perceptron. The multilayer perceptron (MLP)
uses the concept of a neural network to predict the output based
on some input features. A perceptron is a linear classi�er that
separates the input into two classes by a straight line. The out-
put of a perceptron depends on the input, that is, on the feature
vector (x), which is multiplied by a weight w and added to a bias
b (simply, output = w:x + b). The �nal prediction will be made
after passing the output of the perceptron through a nonlinear
activation function.

An MLP is a deep neural network. It consists of an input
layer where the feature vector is fed, of an output layer for mak-
ing the prediction about the input, and an arbitrary number of
hidden layers in between the input and output layer. Each neuron
in the multilayer perceptron is connected with all other neurons
of the previous layer. A neuron is a processing unit where inputs
are summed using weights and the result is passed through an
activation function. In summary, the output of each basic pro-
cessing unit (neuron) is

y = �
�X

wixi + b
�

= �(wT x + b); (6)

where x denotes the vector of inputs, w is the vector of weights, b
represents the bias, and � is the activation function. We used the
RELU activation function for each neuron in the hidden layers,
and in the output layer, we used a sigmoid activation function.

Training the MLP algorithm involves the adjustment of bias
and weights to minimize the error in the output. This is achieved
by using forward and backward propagation. MLP is a feed-
forward network that involves constant backward and forward
propagation until we achieve the desired result.

Forward propagation. In this method, we move the sig-
nal from the input layer to the output layer through hidden
layers. We measure the output or decision of the output layer
with respect to the ground-truth label. This measurement is also
known as error.

Backward propagation. In this process, we back-propagate
the partial derivative of the error with respect to weights and bias
from the output layer. A stochastic gradient descent algorithm is
used to adjust the weights and bias in this process.

The multilayer perceptron model has some advantage. A
very complex model can be trained by the MLP model, and no
feature engineering is required before training. However, it is

di�cult to explain the MLP model simply, and parameterization
is also complex. This model also needs more training data.

Random forest. This algorithm is an ensemble algorithm
that is used for both regression and classi�cation. This algorithm
uses the aggregate of multiple decision trees to make the pre-
diction. This algorithm �rst selects some random bootstrap sam-
ples from a given dataset. Next, it generates decision trees for
every random sample and obtains the prediction from each deci-
sion tree. Finally, it gives the �nal prediction based on the voting
of each predicted result obtained from multiple decision trees.
This model has one major advantage. It overcomes the prob-
lem of over�tting by averaging the results. Complexity and more
computing resource requirement is the main disadvantage of this
algorithm.

K-nearest neighbor and naive Bayes classi�ers. The K-
nearest neighbor (KNN) algorithm classi�es the samples based
on a similarity measure (e.g., distance function). It classi�es the
case by the majority vote of nearest neighbors. This algorithm
is easy to implement and easy to interpret. However, the KNN
algorithm has dimensionality problems. It does not perform well
with a large number of features.

Naive Bayes is a probability-based algorithm that separates
the classes based on the Bayes theorem. It calculates the prob-
abilities for a particular class for given features. One main
assumption made in this algorithm is that features are indepen-
dent of each other. This is why the algorithm is called naive.
Finally, this algorithm considers the class with the highest prob-
ability as the most likely class.

4.2.1. Performance measure and class imbalance problem

We obtain a confusion matrix as a result of our classi�cation
algorithm that consists of four entries: TP, TN, FP, and FN.
Here TP (true positive) are the cases where positively labeled
samples are correctly predicted as positive, TN (true negative)
are the cases where negatively labeled samples are correctly
predicted as negative, FP (false positive) are the cases where
negatively labeled samples are predicted as positive, and FN
(false negative) are the cases where positively labeled samples
are incorrectly predicted as negative. Accuracy in the classi-
�cation problem is de�ned as the number of correct predic-
tions made by the model over the total number of predictions
made:

Accuracy =
T P + T N

T P + FP + T N + FN
� (7)

Accuracy is a good performance measure when the data set
is balanced. Some other performance measures are precision
(T P=(T P + FP)), recall (T P=(T P + FN)), and the F-score (har-
monic mean of precision and recall).

As solar active regions do not have �ares or an eruption most
of the time, there are more non�aring active regions than �aring
active regions. There is a huge imbalance between the number of
�aring and non�aring active regions. This problem is known as
the class imbalance problem. In this case, accuracy will be very
high if the model predicts almost all active regions as non�aring
(as the number of non�aring regions is very high). However, we
aim to predict the �aring active regions, which are rare. Thus,
accuracy is not a good performance measure for the class imbal-
ance problem. Later, some other performance measures, such as
the Heidke skill score (HSS1 and HSS2) and the Gilbert score
(GS) are used (Barnes & Leka 2008; Mason & Hoeksema 2010;
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Ahmadzadeh et al. 2019):

HSS1 =
T P + T N � N

P
(8)

HSS2 =
2 � [(T P � T N) � (FN � FP)]

P � (FN + T N) + (T P + FP) � N
(9)

GS =
T P � (P + N) � (T P + FP) � (T P + FN)

(T P + FP + FN) � (P + N) � (T P + FP) � (T P + FN)
;

(10)

where P and N are the total number of actual positive and nega-
tive samples. HSS1 measures the improvement of the prediction
over all negative predictions, while HSS2 measures the same,
but over a random forecast. The Gilbert score (GS) measures the
number of TPs obtained by chance.

However, all these measures HSS1, HSS2 and GS have some
dependency on the ratio of class imbalance. To alleviate this
problem, Bloom�eld et al. (2012) introduced a new performance
measure, the true skill statistic (TSS), which is independent of
the class imbalance ratio. True skill statistic is de�ned as

TSS =
T P

T P + FN
�

FP
T N + FP

� (11)

The TSS value varies from �1 to +1, where perfect correct
prediction scores +1, always incorrect prediction scores �1,
and random prediction scores zero. Flare prediction is a highly
imbalanced problem. The TSS is the most meaningful measure
in the case of the �are prediction scenario as it does not depend
on the ratio of the class imbalance. The code for this study can
be found in our github repository2.

4.2.2. Results

We use active region vector magnetogram data from June 2010
to December 2017 for this study. After generating the dataset, we
performed some preprocessing in our data set because some val-
ues were missing. We replaced these with the mean of the corre-
sponding features. It was also necessary to normalize the dataset
before training because it will transform the ranges of all feature
values into a uniform range. We used the zero-one data transfor-
mation technique for normalization. We randomly divided our
dataset into a training set (70%) and a testing data set (30%). We
maintained the same class ratio (N/P) in the training and testing
data set following the prescription of Bobra & Couvidat (2015)
and Ahmed et al. (2013). We did not include C-class �ares in
our positive data set. Our data set is highly imbalanced because
there are far fewer �aring than non�aring regions. Oversampling
and undersampling are the two well-known strategies to make an
imbalanced data set balanced. While oversampling involves the
strategy of adding more positive examples in the data set, under-
sampling involves the strategy of removing most of the nega-
tive examples from the data set. However, both methods have
some limitations. In oversampling, the addition of many repli-
cas of positive examples may cause the model to memorize the
pattern; this causes the model to be prone to over�tting. On the
other hand, we removed many negative examples in the under-
sampling strategy, therefore the computer did not learn from the
entire data set.

We used the concept of weighted techniques following
Ahmadzadeh et al. (2019) to solve the issue of class imbalance.
A detailed investigation of the class imbalance issue is beyond

2 http://gitub.com/soumitrahazra/Flaring_Region_
Prediction

the scope of our current study. In the weighted techniques, we
provided more weights to the classes that we aim to predict. The
weighted technique is also free from the limitations of under-
sampling and oversampling techniques. We aimed to predict �ar-
ing active regions, of which there are fewer. We provided more
weight to the �aring active regions than to non�aring regions
such that our classi�er did not exclusively focus on the non�ar-
ing class, which is the majority one. In our SVM classi�er, we
set the cost parameter of the �aring class higher than that of the
non�aring class to solve the issue of class imbalance. We also
used a similar technique for our baseline classi�er to address the
issue of class imbalance. In the case of our other classi�er, MLP,
we used the weight-balancing technique to solve the issue of
class imbalance. In the weight-balancing technique, we altered
the weights of each training data during the computation of loss
function. Generally, both positive and negative classes carry the
same weight 1.0 in the computation of loss function. As our pri-
mary aim here is to predict minority classes (�aring one), we
provided more weight to the �aring classes in the calculation of
the loss function than to the non-�aring one.

Table 2 lists the performance metrics found after running
the baseline-weighted logistic regression classi�er on the �ve
di�erent data sets. We provide the means and standard devia-
tions in the table by repeating training and testing phases sev-
eral times. We used a 24 h forecasting window for the data
sets loop24span12, loop24span24, and loop24span0. We used
a 12 and 24 h time evolution of the magnetic parameters for
the data sets loop24span12 and loop24span24 as training pur-
poses (spans of 12 h and 24 h). We used no time evolution of
the magnetic parameters for the data set loop24span0 for train-
ing purposes. The loop24span0 data set is almost similar to
that of Bobra & Couvidat (2015), but it covers a longer time
(June 2010 to December 2017). We used a 12 h time evolution
of the magnetic parameters for the data sets loop12span12 and
loop48span12 for training purposes, but we used di�erent fore-
casting windows. The forecasting window was 12 h for the data
set loop12span12, and the forecasting window for the data set
loop48span12 was 48 h. We found a very good TSS value for all
�ve cases (see Table 2). We obtained the maximum TSS value
(0.92) for the data set loop12span12. Interestingly, we also �nd
a very good TSS value for the data set loop24span0, where we
did not use any time evolution for training. In summary, the
time evolution does not have much e�ect on the performance
of a classi�er. We also �nd a good TSS value for the data set
loop48span12. Our baseline model result indicates that it is pos-
sible to distinguish a �aring active region from a non�aring one.

Table 3 shows the di�erent performance metrics we found
after running some other classi�ers such as the SVM, the MLP,
the RF, KNN, and naive Bayes on the loop24span12 data set.
We also list the results of our baseline classi�er for comparison.
We tuned the hyperparameters of the SVM algorithm by using
a grid-search algorithm provided by the Scikit-Learn software
package (Pedregosa et al. 2012). This algorithm �nds the best
combination of hyperparameters after performing an exhaus-
tive search over a prede�ned set of hyperparameters. Our SVM
hyperparameter, regularization parameter (C), varies between
0.001 and 10, and the RBF parameter 
 varies between 0.001
and 1. We used binary cross-entropy as a loss function and
rmsprop as an optimizer for our multilayer perceptron algo-
rithm. We also used the Keras l2 regularizer as a kernel reg-
ularizer for our MLP algorithm. The hyperparameters for our
other classi�ers are the following: RF (n estimators = 100, max
depth = none, criterion = gini, class weight = balanced), naive
Bayes (priors = none), and KNN (number of neighbors k = 1,
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Table 2. Flare prediction capabilities obtained from our baseline model LR for �ve di�erent data sets.

Results from our baseline model: Logistic regression
loop24span12 loop24span24 loop24span0 loop12span12 loop48span12

Considering Accuracy 0.95� 0.023 0.94� 0.007 0.94� 0.008 0.96� 0.006 0.92� 0.010
all Precision (Positive) 0.84� 0.023 0.84� 0.019 0.79� 0.026 0.87� 0.021 0.77� 0.025
magnetic Precision (Negative) 0.98� 0.005 0.98� 0.005 0.98� 0.005 0.97� 0.003 0.97� 0.006
parameters Recall (Positive) 0.93� 0.018 0.92� 0.016 0.93� 0.019 0.96� 0.014 0.89� 0.021

Recall (Negative) 0.95� 0.008 0.96� 0.006 0.94� 0.010 0.97� 0.004 0.92� 0.011
F1-score (Positive) 0.88� 0.014 0.88� 0.013 0.85� 0.017 0.91� 0.014 0.83� 0.018
F1-score (Negative) 0.97� 0.004 0.97� 0.004 0.96� 0.005 0.97� 0.004 0.94� 0.007

HSS1 0.75� 0.031 0.74� 0.033 0.69� 0.041 0.81� 0.025 0.64� 0.039
HSS2 0.85� 0.018 0.85� 0.019 0.82� 0.022 0.89� 0.015 0.77� 0.023
GS 0.74� 0.026 0.73� 0.028 0.68� 0.030 0.80� 0.024 0.63� 0.030
TSS 0.87� 0.016 0.87� 0.016 0.86� 0.018 0.92� 0.014 0.81� 0.023

Considering Accuracy 0.94� 0.006 0.93� 0.007 0.94� 0.006 0.96� 0.005 0.91� 0.009
only the top Precision (Positive) 0.83� 0.023 0.81� 0.022 0.83� 0.022 0.85� 0.020 0.78� 0.025
�ve magnetic Precision (Negative) 0.97� 0.006 0.97� 0.006 0.96� 0.005 0.98� 0.005 0.95� 0.008
parameters Recall (Positive) 0.88� 0.023 0.87� 0.024 0.86� 0.023 0.91� 0.021 0.84� 0.027

Recall (Negative) 0.95� 0.008 0.95� 0.007 0.96� 0.004 0.96� 0.006 0.93� 0.011
F1-score (Positive) 0.85� 0.015 0.84� 0.017 0.84� 0.014 0.88� 0.014 0.81� 0.018
F1-score (Negative) 0.96� 0.004 0.96� 0.005 0.96� 0.004 0.97� 0.003 0.94� 0.006

HSS1 0.69� 0.035 0.68� 0.036 0.68� 0.034 0.75� 0.029 0.61� 0.041
HSS2 0.81� 0.021 0.81� 0.022 0.80� 0.019 0.85� 0.017 0.75� 0.024
GS 0.68� 0.029 0.67� 0.031 0.67� 0.028 0.74� 0.025 0.60� 0.031
TSS 0.83� 0.025 0.82� 0.023 0.82� 0.021 0.87� 0.017 0.76� 0.027

Notes. The �rst three data sets, loop24span12, loop24span24, and loop24span0, correspond to the data sets with the same forecasting window of
24 h, but a di�erent span time of 12 h, 48 h, and zero hours, respectively. The last two data sets, loop12span12 and loop48span12, correspond to
the data sets with the same span time of 12 h, but have a di�erent forecasting window of 12 h and 48 h, respectively.

Table 3. Flare prediction capabilities obtained from di�erent classi�ers for the loop24span12 data set.

Performance by other classi�ers on our loop24span12 data set
Our classi�ers: LR SVM MLP KNN Random forest Naive Bayes
Accuracy 0.95� 0.023 0.96� 0.019 0.96� 0.017 0.95� 0.006 0.96� 0.006 0.94� 0.008
Precision (Positive) 0.84� 0.023 0.90� 0.022 0.86� 0.080 0.90� 0.022 0.93� 0.019 0.82� 0.033
Precision (Negative) 0.98� 0.005 0.98� 0.005 0.98� 0.009 0.97� 0.006 0.97� 0.005 0.97� 0.006
Recall (Positive) 0.93� 0.018 0.92� 0.019 0.94� 0.036 0.85� 0.023 0.90� 0.020 0.88� 0.024
Recall (Negative) 0.95� 0.008 0.97� 0.006 0.95� 0.031 0.97� 0.005 0.98� 0.005 0.95� 0.012
F1-score (Positive) 0.88� 0.014 0.91� 0.014 0.89� 0.032 0.88� 0.017 0.91� 0.013 0.85� 0.017
F1-score (Negative) 0.97� 0.004 0.96� 0.005 0.97� 0.016 0.97� 0.004 0.97� 0.008 0.96� 0.005
HSS1 0.75� 0.031 0.83� 0.028 0.77� 0.016 0.76� 0.034 0.83� 0.023 0.69� 0.040
HSS2 0.85� 0.018 0.89� 0.017 0.86� 0.054 0.85� 0.020 0.89� 0.015 0.81� 0.022
GS 0.74� 0.026 0.81� 0.028 0.76� 0.071 0.74� 0.032 0.80� 0.024 0.68� 0.030
TSS 0.87� 0.016 0.90� 0.018 0.89� 0.029 0.83� 0.024 0.88� 0.019 0.83� 0.020

distance = Eucledian). A comparison between the TSS values
obtained from di�erent classi�ers con�rms the robustness of our
model in distinguishing �aring and non�aring active regions. We
also note that our baseline classi�er LR (which is easy to inter-
pret) works very well in distinguishing �aring and non�aring
regions. Although a detailed investigation about the class imbal-
ance issue is beyond the scope of the current study, here we have
provided a comparison study between the results obtained from
the classi�ers with and without class remedy. Table 4 shows the
confusion matrices obtained from the classi�ers with and with-
out class remedy. We note that FN decrease when we take the
remedy of class imbalance in our model into account. The reduc-
tion of FN is more important than the reduction of FP in the case

of the forecasting study. In other words, recall is also an impor-
tant metric. In summary, we �nd that the performance of the clas-
si�er improves when we perform the remedy of class imbalance.

The question now is which magnetic parameter is most crit-
ical for distinguishing �aring and non�aring active regions. We
followed the suggestions of Hamdi et al. (2017) to determine the
best active region parameter. We used the time evolution of the
magnetic parameters for training machine-learning algorithms.
The magnetic parameter whose corresponding time evolution
gives the highest TSS after the classi�cation by the LR (base-
line) and SVM algorithm is considered to be the best of all active
region magnetic parameters in terms of distinguishing capability.
We used the data set loop24span12 for this experiment. For this
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Table 4. Confusion matrices obtained from our three di�erent models
for the loop24span12 data set.

Our models: TP FP TN FN
Logistic regression 163 11 750 30
(without class imbalance remedy)
Logistic regression 177 27 734 16
(with class imbalance remedy)
Multilayer perceptron 190 54 707 3
(with class imbalance remedy)

purpose, we trained the SVM and LR algorithms by using the
time evolution of a single magnetic parameter at a time and mea-
sured the TSS value for each case. The bar plot of Fig. 5 shows
that the total unsigned magnetic helicity and the total unsigned
magnetic �ux achieve maximum TSS. These results indicate that
the time evolution of the total unsigned magnetic helicity and the
total unsigned magnetic �ux is the best indicator in terms of dis-
tinguishing capability. Bobra & Couvidat (2015) also found that
the total unsigned magnetic helicity parameter is the best active
region parameter based on the Fisher criterion. However, we �nd
that the time evolution of the total unsigned magnetic �ux has an
equally good distinguishing capability. We also note that the time
evolution of some other parameters, the total photospheric mag-
netic free energy density, the total unsigned vertical current, and
AREA_ACR, have a good distinguishing capability as well (see
Fig. 5). The time evolution of the total unsigned magnetic �ux
is an indicator of �ux cancellation and emergence on the solar
surface. On the other hand, the time evolution of the magnetic
helicity indicates the magnetic complexity of the active region.
Our �nding in terms of critical active region parameter is consis-
tent with the earlier theoretical and observational �ndings.

Previous studies suggested that there will be no over�tting if
we use 12 to 18 magnetic parameters (Bobra & Ilonidis 2016;
Inceoglu et al. 2018). Because of this, we did not apply any
feature selection criterion before applying a machine-learning
algorithm. Now, we selected only the top 5 magnetic parame-
ters for our study. These are the total unsigned magnetic �ux
(USFLUX), the total unsigned current helicity (TOTUSJH),
the total unsigned vertical current (TOTUSJZ), the total photo-
spheric magnetic free energy density (TOTPOT), and the area
of strong-�eld pixels in the active region (AREA_ACR). We
trained our baseline logistic regression algorithm using the time
evolution of these �ve magnetic parameters. The bottom part of
Table 2 lists the performance metrics found after running the
classi�ers over the data sets. It considers only the best �ve mag-
netic parameters. We �nd that our baseline classi�er performs
quite well in terms of distinguishing capability even if we con-
sider only the top �ve magnetic parameters. We also note that
TSS values obtained using only the top �ve magnetic parameters
are very close to the values obtained by considering all magnetic
parameters.

To investigate how the classi�er performance changes with
forecast window, we created a data sets with di�erent forecasting
windows (loop) but the same span. Table 2 shows the classi�cation
metrics obtained after running the classi�er over three data sets,
loop12span12, loop24span12, and loop48span12. We used a 12 h
time evolution of the magnetic parameters for training in all cases.
Table 2 shows that there is a decreasing trend of the TSS value
with our selected forecasting windows. However, we obtain very
good TSS values for all three data sets. Our selected forecasting
windows a�ect the performance of the classi�er very little.

We considered data sets with a �xed forecasting window of
24 h but di�erent span windows to determine how the time evo-
lution of magnetic parameters for di�erent time windows (span)
changes the performance of the classi�er. We did not �nd any
increasing or decreasing trend of the TSS value with the span
size. The span size may not have much e�ect on the performance
of the classi�er.

5. Summary

We have performed a comparison study between eruptive and
noneruptive active regions in terms of the time evolution of
the photospheric magnetic parameters. We �rst performed this
study manually. We selected two eruptive active regions and one
noneruptive active region to determine the di�erence between
the time evolution of the magnetic complexity in eruptive and
noneruptive active regions. We �nd a signi�cant di�erence
between the eruptive and noneruptive active region in terms of
both strength and time evolution of the photospheric magnetic
parameters. All of our selected magnetic parameters, that is,
the total unsigned magnetic �ux, the total unsigned helicity, the
total photospheric magnetic free-energy density, and the total
unsigned vertical current, have a much higher value in case of
eruptive active regions than in noneruptive active region. We �nd
the signature of �ux emergence and cancellation in the time evo-
lution of the total unsigned magnetic �ux. The time evolution of
the total unsigned current helicity shows a strong indication of
both helicity accumulation and destruction at the onset of a solar
�are.

As it is not possible to analyze all �aring events man-
ually because of the large amount of solar data, we used
machine-learning algorithms to distinguish eruptive active
regions from the noneruptive regions. We used the time evolu-
tion of the photospheric magnetic parameters to train our base-
line machine-learning algorithm logistic regression. Motivated
by Bloom�eld et al. (2012) and Bobra & Couvidat (2015), we
selected the TSS as a performance measure of our forecasting
algorithm because the TSS does not depend on class imbalance.
Solar �are prediction is a highly imbalanced problem as there
is a fewer �aring active region compared to non-�aring ones.
We obtain high TSS values for our baseline algorithm. A higher
TSS value also implies a lower false-negative rate, which is very
important for the forecasting study. We then compared our base-
line result with the results obtained from our other classi�ers. We
�nd that our model results are robust in terms of distinguishing
capability.

We note that our TSS value is higher than that in previous
studies. This may be due to our data set (because the data set is
di�erent from previous studies) or it may be due to our choice
of training the computer by the evolution of the photospheric
magnetic parameters. Martens & Angryk (2018) described the
importance of the �benchmark data set� for this type of pre-
diction studies. Preparation of the benchmark data set involves
many processes such as gathering a large amount of data, that
then need to be cleaned and balanced. We also performed one
study where we did not use the time evolution of the photo-
spheric magnetic parameters to train the machine-learning algo-
rithm. We found a very good TSS value in that case. There-
fore we are not sure whether the time evolution of the mag-
netic parameters is really important for a �are-forecasting study.
However, we described the time evolution by eight statistical
parameters, which may not be a very good way to describe the
time evolution (but it is the simplest way). We did not consider any
statistical quantities to represent seasonal or periodic features in
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Fig. 5. Top bar plot: distribution of TSS
values after running the logistic regression
(baseline) classi�er on the summarized time
series of individual active region parameters.
Bottom bar plot: same, but for the support
vector machine algorithm. This plots clearly
show that the top few parameters, speci�cally,
the total unsigned magnetic �ux and the total
unsigned magnetic helicity, have the best dis-
tinguishing capability.

this study. Features generated from fast Fourier transform (FFT)
of the time series will be helpful to capture the information of
periodic features of the time series. Di�erent characteristics of the
time series carry some important pieces of information. There is
also no established work at this moment that clearly determines
the e�ective statistical features for improved �are forecasting. We
leave this investigation for our future studies.

Next, we determined the common critical magnetic param-
eter that clearly distinguishes a eruptive active regions from a
noneruptive region. We �nd that the time evolution of the total
unsigned magnetic helicity and the total unsigned magnetic �ux
have a very high distinguishing capability. We note that the time
evolution of the unsigned magnetic �ux is an indicator of �ux
emergence and cancellation on the solar surface, while the time
evolution of the unsigned magnetic helicity represents the helic-
ity accumulation and destrucitonn. Previous theoretical models
described the importance of these two mechanisms in detail at
the onset phase of the solar �are. Our manual analysis with three
active regions also supports this view. Now, we compare this
result with some earlier studies. Bobra & Couvidat (2015) found
that the total unsigned magnetic helicity has the best distinguish-
ing capability compared to others. However, they did not �nd
any signi�cant distinguishing capability of the total unsigned
magnetic �ux. They did not use the time evolution of the mag-
netic parameters to train a machine-learning algorithm. Ma et al.
(2017) used the univariate time-series clustering and multivariate
time-series decision tree for the purpose of �are prediction and
found that both the total unsigned magnetic �ux and the total
unsigned magnetic helicity have very high distinguishing capa-
bility compared to other parameters.

We also �nd a very high TSS value when we considered only
the evolution of the top �ve magnetic parameters for the train-
ing of machine-learning algorithms. In summary, although we
are not able to �nd a single critical magnetic parameter, we �nd
that a combination of the top few magnetic parameters will give
us almost similar distinguishing capability. This result is con-
sistent with earlier studies. Earlier studies also found that the
top few magnetic parameters can produce a forecasting capa-
bility comparable to their entire data set (Leka & Barnes 2003,
2007; Ahmed et al. 2013; Bobra & Couvidat 2015; Hamdi et al.
2017). We note that �total� parameters are more valuable in
a �are study compared to the mean parameters. Welsch et al.
(2009) also found that extensive magnetic parameters (whose
value increases with size) have a stronger correlation with the
�are productivity than the intensive parameters (value does not
increase with size). This result indicates that larger and complex
active regions are more �are prone than a smaller region.
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