On positive functions with positive fourier transforms
Abstract
Using the basis of Hermite–Fourier functions (i.e. the quantum oscillator eigenstates) and the Sturm theorem, we derive constraints for a function and its Fourier transform to be both real and positive. We propose a constructive method based on the algebra of Hermite polynomials. Applications are extended to the 2-dimensional case (i.e. Fourier–Bessel transforms and the algebra of Laguerre polynomials) and to adding constraints on derivatives, such as monotonicity or convexity.
Domains
Mathematical Physics [math-ph]
Origin : Files produced by the author(s)
Loading...